Country Office

Taxonomy Term List

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Climate security and sustainable management of natural resources in the central regions of Mali for peacebuilding

The proposed "Climate security and sustainable management of natural resources in the central regions of Mali for peacebuilding" project tackles Mali’s interlinked challenges of land degradation and climate change that together threaten the long-term sustainability of vulnerable productive landscapes in the country’s central regions. The proposed project will restore 21,000 hectares of land, implement improved practices in 15,000 hectares, offest 900,000 metric tons of CO2, and reach 150,000 direct beneficiaries (80,000 women and 70,000 men). The project is currently in the PIF stage.

The Republic of Mali is committed to achieving Land Degradation Neutrality, defined by the UNCCD as “a state whereby the amount and quality of land resources, necessary to support ecosystem functions and services and enhance food security, remains stable or increases within specified temporal and spatial scales and ecosystems.” Currently this global challenge is not being met, since the area of Mali over which productivity has been lost in the past two decades far exceeds the small pockets where productivity has been restored, and these trends continue. Evidence is already seen of how climate change and increased climate variability contribute to the desertification and the degradation of ecosystems on which societies depend for food and water security, and projections are that these impacts will worsen over the decades ahead. As anthropogenic and climate impacts shrink the productive natural resource base, so conflicts over land and water intensify, particularly between farming and herding communities, feeding into the ongoing conflict between jihadists and civilian militia.

The proposed project involves strategies that will simultaneously combat land degradation and restore land productivity, help vulnerable communities adapt to climate change, and promote peace-building, with the overarching goal of developing resilient rural communities in Mopti region. The main emphasis of the project is focused on activities on the ground involving communities and their structures, local government, and private sector actors.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-1.4267581770588 18.471272480165)
Primary Beneficiaries: 
150,000 (80,000 women and 70,000 men)
Financing Amount: 
US$7.5 million
Co-Financing Total: 
US$28 million
Project Details: 

Overview

The proposed project tackles Mali’s interlinked challenges of land degradation and climate change that together threaten the long-term sustainability of vulnerable productive landscapes in the country’s central regions. The Republic of Mali is committed to achieving Land Degradation Neutrality, defined by the UNCCD as “a state whereby the amount and quality of land resources, necessary to support ecosystem functions and services and enhance food security, remains stable or increases within specified temporal and spatial scales and ecosystems”. Currently this global challenge is not being met, since the area of Mali over which productivity has been lost in the past two decades far exceeds the small pockets where productivity has been restored, and these trends continue. Evidence is already seen of how climate change and increased climate variability contribute to the desertification and the degradation of ecosystems on which societies depend for food and water security, and projections are that these impacts will worsen over the decades ahead. As anthropogenic and climate impacts shrink the productive natural resource base, so conflicts over land and water intensify, particularly between farming and herding communities, feeding into the ongoing conflict between jihadists and civilian militias.

Addressing interconnected challenges

Demographic pressures and conflict, exacerbated by COVID-19: Mali’s population has been growing at a rate of about 3% per year for the last 15 years, and the current population is estimated at over 20 million. The fertility rate of 5.92 births per woman is one of  highest in the world, and the population is very young, with a median age of 16.3 years. Conflict in the North and Central regions since 2012 has caused significant internal migration, with over 800,000 Malian citizens estimated to be internally displaced, in neighbouring countries, or recently returned in March 2020. Conflict also restricts movement and prevents cultivation of fields located further from the village, worsening the vulnerability of households to food insecurity. Mopti Region saw a rise in conflict in 2019, with the presence of armed groups and self-defence militias, increasing criminality and intercommunal tensions triggering a spiral of violence, reflected in a 25% decline in the area under cultivation compared with the previous year. Before the recent 8 years of conflict, Mopti’s poverty rate at 79% was already much higher than the national average of 43%. A UN report in 2011 highlighted that 59.5% of the population was living on degraded land and only 29.2% had satisfactory water quality, and the conflict years have worsened this situation, as a growing population tries to eke out a living on a shrinking area of productive land, without significant technological investment. Competition over scarce resources further fuels conflict, in a vicious cycle. In this context, the spread of the COVID-19 pandemic in Mali might have a devastating impact for the population. As of late September 2020, Mali had just over 3,000 confirmed cases of COVID-19 infection, with 129 deaths recorded as being due to the virus. These figures are likely an under-reflection of the real situation, given the poor spread of healthcare facilities across large parts of the country, the low level of testing capacity available, the unavailabilty of “excess deaths” data and analysis, and the unreliable system for recording of deaths generally. The Government of Mali has designed a National Action Plan for the prevention and response to COVID-19. Among the measures taken so far, the Mali government has introduced restrictions on travels to and from Mali, suspended public gatherings, requested the closure of all schools, and, on 25 March, a curfew from 21:00 to 5:00 has been decreed, along with the closure of land borders.

Impacts of climate change

Already observed changes in increased temperatures and diminished rainfall are reducing the absolute area of land suitable for food production nationally. During the most humid month of July, the maximum temperature recorded for the period 1961-1990 was 30.5°C, and this is projected to be 32, 5°C by 2050 and 34.5°C by 2100. Data from Mali’s meteorological services demonstrates a southward encroachment of the Sahelian and Saharan climatic and vegetation zones over the past 40 years, as rainfall has decreased. This is in line with recent studies showing that the Sahara Desert has expanded by 10% over the past century, affecting regional food and water security, and also influencing global weather patterns and human health, as huge seasonal dust clouds are carried across the Atlantic as far as Central America. Analysis of Mali’s rainfall patterns over the past 50 years shows a decrease in total rainfall of 19% in the South and 26% in the North, and communities widely report increased inter-annual variability and a more unpredictable monsoon. Studies indicate that historical climate change across West Africa in the period 2000–2009, relative to a non-warming counterfactual condition (that is, pre-industrial climate), accounted for average annual yield reductions of 10–20% for millet (loss of 2.33–4.02 billion USD in value) and 5–15% for sorghum (loss of 0.73–2.17 billion USD). There is significant uncertainty in climate scientists’ rainfall projections for West Africa over the coming decades, but inter-annual variability, which is already high because of the effect of the Inter-Tropical Convergence Zone, is likely to grow, and increased temperatures will enhance evapotranspiration. The recently submitted Mali Climate Risk profile confirms the increase in evapotranspiration (according to RCP6.0, evapotranspiration will increase by 2.4% by 2030, 3.7% by 2050 and 7% by 2070), as well as the decrease in soil moisture (-3.7% by 2080 according to RCP6.0). According to the Mali’s third Communication on Climate Change in Mali (2015), the most plausible climate scenarios for 2100 predict a decrease in rainfall in all localities. The Mali Climate Risk profile report also identifies the risks climate change poses on water resources and agriculture sectors. The report projects an expected reduction in water availability per capita of 77% by 2080 (RCP2.6 and RCP6.0), taking into account the projected population growth. In addition, harvests of important crops such as Maize (-13%), Millet and Sorghum (-12%) and peanuts (-7%) are expected to decrease by 2080 (RCP6.0).

The unreliability of rainfall during the rainy season (June-September) is also projected to increase by 2080-2099, with projected changes between -51mm to +37mm in July, -38mm to +88mm in August and -25 to +88mm in August, significantly impacting the risks of flood. Between 1980 and 2012, Mali already experienced six major droughts and two major floods, and the country is likely to see an increase in these disaster types, as well as stronger winds, sand and dust storms, and bush fires, and larger and more frequent locust swarms. More intense rainfall events are predict to increase flash floods in the inland Niger Delta and along river floodplains. Without effective adaptation strategies, many models predict significant decreases in central and northern Mali in both water availability and yields of staple crops rice, millet and sorghum; for example, the Mali NAPA analysis predicts significant losses in staple crops as early as 2025. The central / Sahelian region is most sensitive to changes in rainfall, and households derive over 70% of their income from the land, making them highly vulnerable. A vulnerability mapping study showed over 90% of the Mopti Region as high or very high vulnerability, as defined by a combination of high biophysical exposure to climate impacts, high socio-economic sensitivity and low adaptive capacity.

Poor land management: Mopti Region, where the project focuses, is in the Sahel zone and contains arid and semi-arid ecosystems, as well as the fertile inland delta of the Niger River. Outside of the delta, the natural vegetation is mostly steppe grassland or tree and shrub steppe with Acacia species dominant and other trees like Combretum and Boscia. Mopti is characterised by widespread degradation of natural ecosystems because of unsustainable practices – including overgrazing by livestock, over-extraction of woody vegetation for fuel, removal of natural vegetation to expand crops, and uncontrolled bushfires (sometimes accidentally spread when using fire to clear land). Loss of vegetation allows valuable topsoil to be eroded by wind and rain, resulting in serious sand encroachment in the northern Sahel, and siltation of waterways in the Delta zone. Extreme temperatures and overgrazing cause hardening of the top layers of soil, preventing infiltration of rainwater, furthering the loss of vegetation, and worsening unexpected floods. The area covered by woodland, estimated at 10.1% of the country in 2008, is continually declining. Recent estimates from the National Directorate of Water and Forests show the disappearance of 450,000 to 500,000 ha of woodland per year.The Sahelian zone is identified in Mali’s LDN Country Report as a hotspot of land degradation. Rainfed cropland productivity is also declining – with intermittent localized droughts, and declining soil fertility from shorter fallow periods combined with low use of inputs. Land degradation can also influence local and regional micro-climates, through the albedo effect and alterations in moisture transfer between land surface and the atmosphere.

Poor water management: With increased variability in rainfall and localized droughts, villages in the north and centre of Mali need adaptation strategies to maximize water availability for drinking, sanitation, livestock and crop irrigation. At present, there are parts of Mopti in and around the inland Niger Delta where significant groundwater potential exists, but is not sustainably exploited. There is also inadequate capture of surface water through small dams and rainwater harvesting. In recent years with changing rainfall patterns, Mali’s southern regions have experienced flooding, including flash floods in Bamako in 2013 causing loss of life and displacement of 20,000 people. In the Delta, unexpected high floods have also caused damage, but the opposite problem of insufficient expected, manageable flooding also exists. Seasonal flooding of the massive delta area (comparable only with Okavango) is the basis for irrigated rice, fishing and grazing (as well as a Ramsar Site and important global site for migratory birds), but the inundated area has shrunk from over 35,000 km2 each year to sometimes as small as 10,000 km2 under drought conditions. Underlying this is a decline in the Niger’s average flow – which fell from 1,300 m3/second in 1978 to 895 m3/second in 2002.  Irrigated cropland is subject to problems of leaching and alkalization of soils, and the spread of invasive plants, as well as ineffective management to combat siltation. As vegetation is lost in upstream watersheds, erosion of banks is causing massive siltation of rivers, channels and ponds, especially in the Niger downstream from Bamako and the Delta.

Addressing these root causes of land degradation and likely impacts of climate change and variability requires a coordinated and scaled up effort across Mali. But this is difficult to undertake at a time when government is still battling to stabilize the country, to decentralize and deliver services throughout the fragile central and northern regions, made even more challenging since the political instability at national level in 2020. Since 2012, Mali has faced ongoing conflict, at times caused or worsened by competition over scarce land, water and grazing resources, particularly in the Mopti Region. The government signed a peace accord with northern separatist rebels in 2015, but armed groups continue to assert territorial control in much of the vast desert north. At the same time, Islamist insurgent groups have expanded from the north into previously stable central Mali, allegedly leveraging interethnic tensions and local resentment toward state actors to recruit supporters and foment conflict.

In 2019 Mopti faced a dramatic deterioration of its security situation, with hundreds of recorded violations of human rights and international humanitarian law. The presence of armed groups and self-defence militias, increasing criminality and intercommunal tensions triggered a spiral of violence, leading to a loss of livelihoods for displaced populations, and difficulties in cultivating fields and accessing markets for those who have remained in their villages. A perceived inability to curtail massacres of civilians is one of the issues highlighted in anti-government protests in recent months in Bamako, leading to the forced resignation of President Ibrahim Keita on 18 August 2020. Conflict analysis of Mopti Region shows that rising levels of insecurity led to approximately 1,300 fatalities and tens of thousands of internally displaced people across the region in 2019 only. According to the World Food Programme analysis of the Mopti security situation up to April 2020, in a context already made fragile at many levels – an economy marked by mounting demographic pressures, youth unemployment, soil degradation or scarcity of natural resources, exacerbated by repeated droughts intensified by climate change, the impact of violence on food security is highly threatening: displaced communities lose their livelihoods and those remaining in their villages experience difficulties in cultivating fields and accessing markets.

The proposed project aims to ensure the long-term sustainability of vulnerable productive landscapes in Mali’s central region of Mopti, through nature-based solutions that reverse land degradation, strengthen communities’ resilience to climate change impacts and to conflict that is worsened by climate change. These nature-based solutions will follow the principles of conflict-sensitive adaptation –  critical in areas where there is high dependence on natural resources and in already fragile (politically, socially, economically, environmentally) contexts. International literature on the Sahel shows that the region is both very vulnerable to the physical effects of climate variability and to communal conflicts, the dynamics of which in turn seem to be sensitive to climate variability.

Because of this fragile context, the project preparation phase and final site selection process will involve using consultants with in-depth local cultural as well as agro-ecological knowledge to undertake a detailed scoping of conditions on the ground and consultations with a wide range of stakeholders at local level (following COVID-19 protocols), and particular attention will be paid during the PPG to: (i) the design and resourcing of measures to mitigate security-related risks likely to be faced during project implementation (ii) measures to ensure that the root causes of conflict relating to competition over access to scarce (and declining with climate change) natural resources: and (iii) use the Environmental and Social Management Framework to ensure that conflicts are not inadvertently sparked by project interventions. The vulnerability assessment and mapping process planned for Component 1 will include the application of a security sensitivity framework. The proposed interventions are also built on an analysis of the interdependencies of these challenges  that builds on the RAPTA (Resilience, Adaptation Pathways and Transformation Assessment) methodology developed through the STAP, which highlights a systems view of food security, as dependent on availability of adequate and nutritious food to households in the district, access to adequate and nutritious food, utilization of this food by individuals in a house-hold , and the stability/resilience of the availability, access and utilization of food in the face of shocks and stresses, over time.  The first, second and last of these factors are severely affected by the conflict situation in the Mopti Region, and are further compounded by increasingly erratic rainfall and creeping desertification. Specific barriers to achieving the project’s objective are as follows:

Barriers

Barrier 1: Lack of coordination and capacity for implementing and monitoring environmental agreements

Mali has a fairly comprehensive set of national policies, laws and strategies for achieving its international environmental commitments (including UNFCCC, UNCCD and CBD) . Some interministerial cooperation has been achieved around climate change adaptation through the AEDD, but the mainstreaming of resilience principles into sectors like agriculture, water and forestry, as envisaged in the 2007 NAPA, has not been effectively achieved. This is partly because of the ongoing security situation, the uneven presence of state institutions across the country, and the challenges of decentralization – which has built capacity at regional and cercle (district) levels, but has also caused confusing overlaps between local government and traditional authorities over natural resource management. In addition, Mali’s Land Degradation Neutrality country report to the UNCCD identifies a number of weaknesses that constrain effective implementation of policy, including: institutional conflicts between national directorates and specialized agencies of MEADD and other ministries; difficulty in inter-ministerial coordination around LDN and low-emission climate-resilient development, with significant overlaps in mandates; weak consultation between the focal points of the Rio Conventions, and a lack of monitoring and evaluation mechanisms for consultations upstream of major national and international forums. These challenges are compounded by a high turnover of officials in AEDD and other key agencies. Mali has recently set overall targets for achieving LDN by 2030, through actions to reduce forest loss, regreen woodland and grassland areas, restore soil fertility, and protect wetlands. Still missing is the identification of key indicators (in most countries these are: (i) land cover and land cover change, (ii) land productivity and (iii) soil organic carbon), agreement how these will be measured and monitored, setting of baselines and targets, and then a detailed implementation plan for the actions required. Although climate vulnerability mapping has featured in some donor-funded projects, there is no long-term system for regular assessment and mapping nationwide, or for ongoing analysis of the links between security and climate change risks. Challenges identified in the 2019-2021 budget framework for MEADD include “the establishment of a monitoring system and continuous surveillance of the environment and the dynamics of forest and wildlife resources”.  Much data and monitoring capacity exists in Mali, scattered between different government departments and agencies, research institutes and universities, but there has been little coordination, and reporting on Mali’s progress to the MEAs is not done in a coherent and integrated fashion.

Barrier 2: Lack of a systemic approach to enhancing resilience of degraded production landscapes

There is a need for landscape restoration interventions to be piloted, adapted for local context and scaled up across the country, utilizing existing processes for cross-sectoral climate change adaptation planning for economic sectors, wherever possible. Mali,  and particularly the Mopti Region, has complex, interlinked socio-ecological systems built around grazing, farming and fishing that are increasingly vulnerable to climate impacts[6]. A number of donor-funded projects and programmes have tackled the challenges of restoring the productivity of land and water systems, and helping communities develop their capacity to adapt to the unavoidable impacts of climate change. What is missing, however, is a systemic approach that aligns such interventions within an overall strategy (see Barrier 1 above). Sectors of government, such as agriculture, economic development, livestock, fisheries, water and forestry, have limited budgets and little presence on the ground in the central regions. Where they are engaged in development activities, this tends to be sporadic and isolated, and interventions are not based on a systemic understanding of climate and other risks across the landscape, and how these can be managed in an integrated fashion. For example, a new pond may be dug, but no effort made to stabilize the river banks upstream, leading to the pond quickly silting up. In the central regions, with limited government presence, land use decisions are taken by local actors such as village chiefs, and there is no systematic land use policy or planning. There is a need to work with the resources that do exist on the ground and strengthen local governance of natural resources in a manner which enhances climate resilience, promotes peace, and allows for social inclusion and equity. Community NRM structures need to cooperate with customary mechanisms and committees to negotiate agreements between herding, farming and fishing communities on boundaries for grazing and farmland, access to pasture and water, timing and regulated migration. They also need to feed into local government land use and development planning, through the Economic, Social and Cultural Development Plans of target cercles and communes. Technical training and support in accessing inputs is also needed for farming households (including women-headed households) to adapt farming practices to climate change, and restore land productivity through regeneration of tree cover in farmlands, and sustainable land and water management techniques, building on traditional knowledge and local preferences. Although donor-funded projects have led to some communal rehabilitation works to restore land and water resources (e.g. desilting water infrastructure, stabilizing dunes to prevent sand encroachment) and develop new water sources in a sustainable basis, there is a need for this work to be better coordinated, and scaled up, with work opportunities created especially for youth and internally displaced people.

Barrier 3: Insufficient support for households and communities wishing to diversify their production activities

As the changing climate puts increasing pressure on the natural ecosystems on which traditional livelihoods such as fishing, livestock-keeping and cereal-crop farming depend, there is a need to (i) adapt these practices to changing conditions, (ii) diversify into other activities which are less directly dependent on these fragile ecosystems, and (iii) generate cash income so households can buy the food and materials needed for enhanced resilience. This is particularly true in the central and northern regions, and it is here that government agencies have the least presence on the ground, which makes achieving effective agricultural extension support a challenge. In this context, there is a need for projects and programmes funded by government’s technical and financial partners to fill some of the gaps in the short term, and to help build government extension capacity for the longer term. At present, agricultural extension services are limited, and concentrated in the cotton-producing regions of the south, not in the mostly subsistence-oriented farmers in the central regions, whose agricultural yields are highly vulnerable to climate change, and who have little opportunity for diversification. Although there is potential for value-add activities e.g. processed products from fish grown in aquaculture ponds, or processed millet with a longer shelf, communities lack training on new opportunities, micro-finance and access to markets. There is also a lack of access to electricity for processing agri-products, and for cold storage, and while solar water heating is widespread, photovoltaic technology is more expensive and complex, and communities lack skills to install and maintain equipment. Although government has a number of programmes to support youth entrepreneurs, in practice access to opportunities has tended to be limited to young people in urban areas whose families have government connections. Such initiatives have generally focused on individuals involved in trading, and have not facilitated real entrepreneurial growth and job creation. There is a need to learn from the more successful initiatives (e.g. TETILITSO and DoniLab) and create links to these for emerging entrepreneurs in rural areas, including women, young people and internally displaced people, all of whom may have limited direct access to productive assets, but can get involved in value addition and new value chains. There is a particular need to support organizations for widowed women, who sometimes receive local government support, but are often left without access to land or productive assets because of discriminatory legislation and customary practices. Access to regular commercial loan finance is near-impossible for many rural entrepreneurs, especially youth and married women, but progressive microfinance opportunities do exist (e.g. APPIM, PMR) and even loan guarantees for promising projects (FGSPSA, ANPE’s FARE Fund), and need to be made accessible.

Barrier 4: Few opportunities for sharing learning across initiatives for evaluation and national scale-up

Although there is a large number of recent and current initiatives (see Section 2 below), and these initiatives do  monitor their own progress, there is little systematic effort to share learning between initiatives. (These include initiatives that address stabilization and peace-building, planning for climate change adaptation, early warning systems and flood protection, resilience of rural communities, integrated water resource management, biodiversity conservation, sustainable land and water management, and entrepreneurship and economic development.) There is also a tendency for pilot or demonstration activities carried out in a particular area to remain limited to that area. Regional platforms which were established to promote climate change adaptation across sectors have been successful while project funding lasts, but have not managed to sustain themselves thereafter. There is a need to harmonize and rationalize the knowledge management activities of a set of related initiatives that are important for achieving LDN and climate security. Related to Barrier 1, there is a need for agreement on ways to measure progress, so that the efforts of disparate initiatives can all be matched up against national targets. There is also much untapped potential for sharing the lessons of Mali’s Sahel zone with those of other countries – northern Senegal, southern Mauritania, northern Burkina Faso, southern Algeria, southwestern Niger, northern Nigeria, central Chad, central Sudan and northern Eritrea. There are a number of international initiatives under the umbrellas of the African Forest Landscapes Restoration Initiative (AFR-100) and the Great Green Wall which are generating learning about best practice, and effective and cost-effective ways of combating desertification in this region. In recent years, with the difficult security situation in Mali, lessons from Mali are not being shared optimally with the rest of the region and in international fora, and there is a need to create such opportunities. There are also barriers to effective monitoring and evaluation of donor-funded projects in Mali – because of the constraints under which many project management teams operate, evaluation is often limited to measuring the outputs of a project, and not finding creative ways to assess its overall impact; what really worked and what didn’t, and why; and how the positive impacts can be sustained and scaled up. Project monitoring is also rarely linked in to long term development of monitoring capacity at regional and national levels for purposes of MEA reporting.

Project overview

The proposed project involves strategies that will simultaneously combat land degradation / restore land productivity, help vulnerable communities adapt to climate change, and promote peace-building, with the overarching goal of developing resilient rural communities in Mopti region. The main emphasis of the project, and the bulk of the proposed resources, are focused on activities on the ground involving communities and their structures, local government, and private sector actors – through Components 2 and 3. The project interventions in Component 1 support the on-the-ground efforts of Components 2 and 3, through creating an enabling environment that supports strategies for restoration of land productivity and climate change adaptation, and sets a baseline for and tracks changes in communities’ climate change vulnerability and adaptive capacity. The project is very timely because the country has recently developed its programme for defining national targets for Land Degradation Neutrality, and is ready to enhance coordination for implementation of adaptation and re-greening strategies, and for tracking progress towards achievement of land degradation neutrality and climate security. In this alternative scenario, an LDN action plan is developed across all economic sectors for achieving the targets, and a monitoring system is set up – building on existing data to review and agree on baselines, targets, indicators and means of measurement. The project activities in Component 4 enable knowledge platforms for replication and scale-up, facilitating learning within and beyond Mopti Region, and sharing of lessons learnt with other countries of the Sahel zone. They also equip youths in Mopti to support on agroecological monitoring of project results and impacts, which can be fed back through the IER into the national action plan as a pilot for monitoring.

In this alternative scenario, significant resources are invested through the project in building resilience of highly vulnerable communities of Mopti to the impacts of climate change, in particular drought – expected to become more frequent and serious as a result of climate change, on top of human-induced degradation of agro-ecosystems. Since the nett result of these climate and anthropogenic effects is a shrinking of productive capacity, the focus in the alternative scenario is on project interventions that restore and enhance productive capacity – in the process also reducing competition over natural resources and enabling adaptation to climate change. In Component 2, there is an improvement in local governance through developing capacity of community natural resource management committees. This improved governance enables better decision-making on land use, including access to pastures and water – so that conflicts are avoided and natural regeneration of productive capacity is enabled. The component also involves intervening on the ground to: (i) restore crop / agroforestry productive capacity through equipping small-scale farmers to regreen their farmlands; (ii) maximize crop / agroforestry land productive capacity though supporting farmers on climate-smart agriculture and aquaculture; and (iii) restore pastureland productive capacity and water resources through communal restoration by the village-level committees.

As part of the alternative scenario there is a need to provide inputs on a sustainable basis to climate-smart agriculture, and to enable market access for its products. Selling climate-smart agricultural produce and value-added products will bring new income streams into households, and provide cash that can be used to improve nutritional status and strengthen homes against disaster. Such enhanced and diversified household incomes are important for building resilience against external shocks and stresses of all kinds – including civil conflict and climate hazards. In Component 3, technical assistance is provided for establishing cooperatives businesses involving youth and women. Some businesses may develop inputs for climate-smart agriculture, such as liquid fertilizer or agroforestry seedlings. Other businesses may enhance the economic sustainability of the climate-smart agri- and aquaculture by adding value to its products, e.g. primary processing of drought-resistant millet, or fish drying and smoking, and selling these products on local markets. Component 3 will also facilitate the incubation of sustainable youth-led businesses that can enable the productivity-enhancing adaptation strategies of Component 2, for example, businesses that enhance the supply of water for dry season vegetable irrigation, or energy for primary agri-processing activities at village level. Some youth might develop business concepts for more sophisticated levels of processing, for example, turning millet into snack foods, porridge, wine, nutrition powder or poultry feed. Scholarships will also be provided for local youth to obtain the skills for manufacture and maintenance of these technologies, where appropriate.

As part of the alternative scenario, climate change adaptation co-finance from financial and technical partners of the Government of Mali will contribute to enhancing resilience of degraded production landscapes through rehabilitation efforts, including a GCF program on climate change adaptation in the Niger basin (including Mopti) and two partnerships with the government of Canada through FAO on climate-resilient agriculture for food security. A project also funded by Canada, through IFAD, on access to finance for agricultural value chains, including in the central regions, will support the GEFTF/LDCF project’s Component 3, which aims to develop capacity of farm households to innovate and adopt resilient and sustainable livelihoods. Pression with private sector partners agreed business incubation hub is proposed for Output 3.2, supporting youth on climate-smart agri business incubation and technology for adaptation. An investment by the government of Monaco on women’s livelihoods will support Output 3.1 on building household adaptive capacity through supporting value chains for climate-resilient crops and products.

Activities in Components 2 and 3 of the project will be focused in three target landscapes in Mopti Region. These landscapes, to be made up of clusters of Communes (rural municipalities), for example across a micro-watershed, may be focused in any of the 8 Cercles (districts) of Mopti Region, and the exact target landscapes will be selected during the PPG phase. At that time, a security analysis will be conducted to understand the extent to which the security situation in specific Cercles enables or prevents the carrying out of project activities. Depending on the security situation, a case could be made for focusing on the three Cercles of Youwarou, Douentza and Koro. These three cercles are the districts of Mopti where studies show that communities are most vulnerable to the impacts of climate change. This includes studies by GIZ undertaken in 2019, confirming the findings as indicated on the map below – from a detailed climate vulnerability analysis conducted through USAID in 2014 (northern part of country not included due to low population density). This map shows cumulative results for vulnerability, using various indicators for (i) biophysical exposure to climate hazards, (ii) socio-economic sensitivity, and (iii) adaptive capacity. The three cercles also include two of the five natural regions of the Sahel identified as hotspots of land degradation in Mali’s 2020 Land Degradation Neutrality Report – the Gourma hotspot, and the Gondo-Mondoro hotspot. The Youwarou Cercle also includes a portion of the inland Niger Delta which is flooded annually and provides critical seasonal resources for hundreds of fishing, farming and pastoralist communities. The delta zone is highly vulnerable to climate change and human-induced degradation, and simultaneously forms the poses an enormous asset for the Mopti Region in building resilience. The precise clusters of communes (target landscapes) to be involved will be decided during the project preparation phase, since travel has not been possible during the COVID-19 pandemic.

Strategy and action framework for response to the COVID-19 pandemic: In the alternative scenario, the project contributes to the Government’s response to the pandemic, supported by the United Nations (UN) and other financial and technical partners. According to a rapid analysis by the UN Country Team of the socio-economic impacts of COVID-19 in Mali, the indirect socio-economic impacts are likely to be even more devastating than the direct health effects. The study, conducted in May 2020, observed a sharp loss of jobs in the secondary and tertiary sectors of the economy, and reported that 4 million children were estimated to be out of school. The study’s projections for the country as a result of global economic slowdown include: a decline of 0.9% in GDP for 2020 (as against 5% growth in 2019), an increase of the number of people living in extreme poverty by 800,000, an increase in the need for food assistance by 70%, and loss of state revenue causing the debt burden to increase from 39% to 45% of GDP.

During the PPG, the UNDP Mali Country Office will support the consultant team to conduct regular assessments of both the security situation and COVID-19 pandemic impacts in the country, and specifically in Mopti Region, and to put in place appropriate measures to ensure the safety of all stakeholders involved in project design and implementation. This will take into account (i) what impact the pandemic (or measures to contain it) has had on government capacity/resources to implement the work proposed in the project (or other baseline initiatives), either at the enabling level or practically; (ii) how targeted project beneficiaries have been affected (e.g. disruption of supply chains, price increases etc); and (iii) how will implementation be affected if there is recurrent outbreaks of this or other diseases during implementation.

The proposed project strategy is to contributes in two ways to assisting the Government of Mali with a “green recovery” from the pandemic, building on UNDP’s support to Government, and on the Government’s commitment of new resources for social protection, corresponding to 1.3% of GDP. This strategy responds to the guidance document “GEF’s Response to COVID-19”, and has a dual action framework including for alignment of the project goals with the response and recovery strategies: 

1. Actions to support COVID-19 response in the short-term: The proposed project has been designed to maximize opportunities for job creation and training, local economic development, and productivity improvements, as follows:

Job creation through small business development: In Output 3.2 of the project, youth-led climate-smart agribusinesses, technologies and services are developed. This includes work to: (i) provide opportunities for local youth from target communities to receive entrepreneurship training in existing incubator programmes in Mopti city; (ii) promote access to loan finance and loan guarantees for youth with solid business plans and family/community backing – in agri-processing and climate-smart technologies. In Output 2.2, training is provided in 9-12 target communes in Mopti to develop farmers’ capacity for Assisted Natural Regeneration and other Sustainable Land and Water Management (SLWM) techniques, building on traditional knowledge and local preferences.

Productivity improvements: In Output 2.2 of the project, technical and financial support are provided to farming households (including women headed households) to adapt farming practices to climate change, and restore farm productivity. This includes work to: (i) form agro-ecological farmer’s groups / Farmer Field Schools, including women farmers, and establish demonstration plots for train-the-trainer activities; (ii) provide heads of households (male and female) with regeneration incentive package (e.g. shears, pickaxe, wheelbarrow, boots and gloves); and (iii) promote climate-smart agriculture – including new drought-resistant local crops/varieties, improved pest management, fodder and fruit trees, and dry season gardening schemes, providing training and equipment, (e.g. seeds, seedlings, polyethylene bags, watering cans and spades).

2. Actions to support COVID-19 response in the long-term: The proposed project has been designed to maximize opportunities for strengthening supply chains, consistent with long-term decarbonization targets, and increasing natural and economic resilience and adaptive capacity, as follows:

Strengthening supply chains: In Output 3.1 of the project, new value chains for climate-resilient crops and processed products are identified and catalyzed. This includes work to: (i) empower organizations of widowed women with climate-smart business and leadership training; (ii) support / establish women producer associations and cooperatives of youth and displaced people e.g. for processing of cereal crops, fish drying and smoking, liquid fertilizer, seedling nurseries etc., conducting value chain analysis and market studies with them; and (iii) support set-up and first two years of operation of cooperative climate-smart businesses – including partnerships for land and infrastructure, technical training and business planning, market access and savings groups/micro-credit.

Supporting long-term decarbonization targets: Output 3.2 of the project involves creating scholarships for local youth to be trained in supply and maintenance of solar PV technology for adaptation activities (water pumps and agri-processing for adaptation). Solar power also support low-emissions development strategies and decarbonization targets as part of the post-COVID green recovery.  

Increasing natural and economic resilience and adaptive capacity: In Output 2.4 of the project, land and water resources (outside of family farms) are restored through communal restoration works for ecosystem-based adaptation. This includes work to: (i) train community resource management committees and community members, including youth and displaced persons, to analyze adaptation needs, and to plan, carry out and monitor rehabilitation efforts; (ii) equip commune / village-level committees and carry out plantings for rehabilitation of pastureland and protection of villages from sand encroachment; (iii) equip committees to develop and sustainably restore watercourses (channels, rivers, ponds, pools) and carry out rehabilitation works; and (iv) equip committees to construct/rehabilitate communal earth dams, and wells with solar PV-powered pumps, to increase household water supply and irrigation (for Output 2.1).

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Enhancing coordination and monitoring for land degradation neutrality and climate security. The planned outcome of this component is that capacity is improved for national coordination and monitoring, to achieve implementation of Land Degradation Neutrality targets. Given the current high level of uncertainty around the political transition in Mali, the AEDD will be supported on this component by the Mali Geographic Institute (IGM)[1] and the Institute of Rural Economy (IER)[2]. These institutes will be responsible respectively for undertaking capacity needs and gap analyses, and designing capacity development interventions on two fronts: for preparing climate risk and vulnerability assessments and maps (LDCF) and for achieving and monitoring targets for Land Degradation Neutrality (GEFTF). This will involve work at national level around LDN targets, building on existing data to review and agree on baselines, targets, indicators and means of measurement / monitoring, and enable long-term monitoring plots through unlocking research partnerships. Following global trends, indicators may focus on the three core areas of land cover and land cover change, land productivity and soil organic carbon[3]. Over the six-year project period, training will be conducted at regional levels in all of Mali’s 8 regions for climate vulnerability assessment and mapping. This component will link to Component 4, where youth monitors will be trained in the target landscapes of Mopti to pilot “bottom-up” monitoring that can feed into the “top-down” national monitoring through satellite data.

Output 1.1: Action plan for achieving and monitoring targets for Land Degradation Neutrality (GEFTF)

    Conduct survey to assess government and partner capacity for implementing strategies and actions for LDN, and enforcing relevant legislation

    Undertake review of natural resource legislation to harmonize and address gaps for effective management and restoration, including potential tree tenure reform as the basis for effective Assisted Natural Regeneration (ANR)[4]

    Hold a series of workshops led by Mali’s Institute of Rural Economy (IER) with government (national, regional, cercle[5] levels represented), research and civil society partners to develop an action plan for achieving and monitoring targets for Land Degradation Neutrality

Output 1.2: Regional biennial climate risk and vulnerability assessments and maps developed, with an application of security sensitivity framework (LDCF)

    The Mali Geographic Institute (IGM) to work with Météo Mali to develop a common methodology for measuring the vulnerability and adaptive capacity of communities to climate change, building on existing initiatives[6]

    Conduct training for youth from all 8 regions to carry out assessment, with household surveys and ground-truthing of maps

    Carry out a biennial climate change vulnerability assessment and mapping across all 8 regions of Mali

    Report results to the public, analyzing links between security and climate change risks, and providing a spatial risk analysis with recommended mitigation and governance actions

Component 2: Enhancing resilience of degraded  production landscapes with communities vulnerable to climate change. The planned outcome of this component is that productivity is restored and yields increased in vulnerable grazing,  farming and fishing landscapes through effective community management in three target landscapes of Mopti Region, potentially in the highly vulnerable cercles of Youwarou, Douentza and Koro (to be finalized and specific sites to be determined in PPG). The component involves the clusters of work outlined below – strengthening natural resource management through capacitated community committees structures and agreements between herders and farmers; supporting farmers to undertake climate-smart agriculture and regreening efforts on their land; and undertaking communal restoration works for grazing land and water resources. The agriculture and agroforestry activities here will also be linked to small business development in Component 3, prioritizing opportunities for women and youth. There will be further discussions with stakeholders in local government and communities level during the project preparation phase, to achieve an understanding of communities’ adaptive capacity and needs, any underlying sources of competition or conflict, and what would work in a particular socio-ecological system, ensuring that specific project interventions are carefully designed to promote peace and reconciliation between communities in target landscapes in Mopti, and to avoid unintentionally feeding into underlying tensions or conflicts – applying a conflict-sensitive adaptation approach. 

 

Output 2.1: Community natural resource management committees are established and adaptation actions are embedded in local development plans (GEFTF)

    Undertake baseline survey and annual update with communities in 9-12 target communes in Mopti[7] on climate vulnerability, adaptive capacity, production practices and livelihood activities, and household income, using this as a pilot for national system

    Integrate community land management for adaptation and rehabilitation into the Economic, Social and Cultural Development Plans and budgetiung frameworks of Cercle Councils and Commune Councils[8]

    Build new or redynamize existing community resource management committees at village level[9], involving women and youth

    Use customary mechanisms and committees to negotiate, formalize and uphold agreements between herding, farming and fishing communities on boundaries for grazing and farmland, access to pasture and water, timing and regulated migration, and NRM[10] agreements (including pastoral corridors)

Output 2.2: Training and inputs provided to farmers in 9-12 target communes in Mopti for regreening of farmlands (GEFTF)

    Provide training to develop farmers’[11] capacity for Assisted Natural Regeneration[12] and other Sustainable Land and Water Management (SLWM)[13] techniques, building on traditional knowledge and local preferences

    Form agro-ecological farmer’s groups / Farmer Field Schools, including women farmers, and establish demonstration plots for train-the-trainer activities

    Provide heads of households (male and female) with regeneration incentive package (e.g. shears, pickaxe, wheelbarrow, boots and gloves)

Output 2.3: Capacity development programme for climate-smart agriculture delivered to farm households in target communes (LDCF)

    Provide training and inputs[14] – including new drought-resistant local crops/varieties, improved pest management, fodder and fruit trees, and dry season gardening schemes

    Advocate for climate-smart agriculture and SLWM through developing and piloting in local languages: a radio programme, a short message service for farmers, a capacitated network of traditional communicators, and materials for schools

Output 2.4: Communal restoration work undertaken over 21,000 hectares of degraded grass/shrubland and wetlands (LDCF)

    Train community resource management committees and community members, including youth and displaced persons, to analyze adaptation needs, and to plan, carry out and monitor rehabilitation efforts

    Equip commune / village-level committees and carry out plantings for rehabilitation of pastureland and protection of villages from sand encroachment

    Equip committees to develop and sustainably restore watercourses (channels, rivers, ponds, pools) and carry out rehabilitation works

    Equip committees to construct/rehabilitate communal earth dams, and wells with solar PV-powered pumps, to increase household water supply and irrigation (for Output 2.1)

Component 3: Supporting family farms, youth and women to innovate and adopt resilient and sustainable livelihoods. The planned outcome of this component is that rural households and community-based organizations enhance their resilience to conflict and climate change by restarting and diversifying productive activities and businesses that spread household risk, whilst simultaneously provide inputs to climate-smart agriculture, or adding value to climate-smart agricultural products. The component involves two clusters of work outlined below – (i) supporting the strengthening / establishment of small agri-businesses and cooperatives at village level, (based on the enhanced and diversified production stimulated in Component 2); and (ii) linking these to value chains beyond the village through targeted support to youth entrepreneurs. Further discussion will be held with stakeholders in the private sector, government and civil society during the project preparation phase, including scoping of potential in particular target landscapes, and what partnerships can be forged with agribusiness innovation hubs, and providers of micro-finance and technical training in Mopti city.

Output 3.1: New cooperative climate-smart businesses established involving women, youth and displaced people (LDCF)

    Empower organizations of widowed women with climate-smart business and leadership training

    Support / establish women producer associations and cooperatives of youth and displaced people e.g. for processing of cereal crops, fish drying and smoking, liquid fertilizer, seedling nurseries etc., conducting value chain analysis and market studies with them

    Support set-up and first two years of operation of cooperative climate-smart businesses – including partnerships for land and infrastructure, technical training and business planning, market access and savings groups/micro-credit[15]

Output 3.2: Entrepreneurship training and business incubation services provided to youth from target landscapes for adaptation-linked business ideas (LDCF)

    Provide opportunities for local youth from target communities to receive entrepreneurship training in existing incubator programmes in Mopti city

    Promote access to loan finance and loan guarantees for youth with solid business plans and family/community backing – in agri-processing and climate-smart technologies

    Create scholarships for local youth to be trained e.g. in maintenance of solar PV systems (supporting adaptation activities)[16].

Component 4: Monitoring and evaluation and knowledge management for upscaling. The planned outcome is that project impacts are monitored and learning shared for scale-up of results across Sahel regions of Mali, and beyond. This involves two proposed outputs, with indicative activities for further discussion with stakeholders in national and regional government agencies, research institutions, development partners and civil society. The two clusters of work are outlined below – (i) creating platforms for scaling up the project learning across Mali and the Sahel; and (ii) facilitating learning exchanges and training of youth to feed into a monitoring system, both for the project, and also feeding into the implementation and monitoring of the LDN action plan in Component 1.

Output 4.1: Knowledge platform operational for coordination and lessons sharing among stakeholders at commune, cercle, region, national and international levels (GEFTF)

    Establish a knowledge platform with online and face-to-face elements, including project stakeholders and all related initiatives (peace-building, adaptation, mitigation, sustainable agriculture etc)

    Hold annual multi-stakeholder dialogues through the platform in target Cercles and Mopti Region to address interrelated challenges of SLWM, peace and climate security

    Host a national learning event[17] on Climate Security and Sustainable NRM to share learning from project, inviting participation by other conflict-affected Sahelian countries[18] to promote South-South engagement

    Produce a lessons learnt publication and series of short videos and use these as basis for participation by Mali in international forums to disseminate lessons learnt

Output 4.2: A participatory M&E and learning framework is developed and implemented for project as a whole (including sites for Component 2 and 3 activities) (LDCF)

    Develop, implement and monitor youth and gender action plans for project

    Arrange learning exchange visits to share experiences in climate change adaptation and agro-ecological restoration between target villages, communes and cercles

    Operationalize the mechanism for monitoring changes in agro-ecological ecosystem condition, adaptive capacity and resilience in the Mopti region, including training and equipping youth monitors who feed data back via the Institute for Rural Economy to the national LDN action plan

_____________________________

[1] The Mali Geographic Institute (IGM) is in charge of the production, maintenance and diffusion of geographic reference information in Mali, including on land cover, land use and land degradation.

[2] The Institute of Rural Economy (IER) is the main research institution in Mali for the implementation of the national agricultural research policy, covering all of Mali's agro-ecological zones, and addressing climate change vulnerability and adaptation strategies.

[3] UNCCD (2016) Scaling up Land Degradation Neutrality Target Setting - from Lessons to Actions: 14 Pilot Countries’ Experiences

[4] Assisted Natural Regeneration (ANR) or la Régénération Naturelle Assistée (RNA) is the term used in Mali for Farmer Managed Natural Regeneration (FMNR), as the most successful proven technique for sustainable regreening in the Sahel - see https://fmnrhub.com.au/wp-content/uploads/2019/03/FMNR-Field-Manual_DIGITAL_FA.pdf or http://fmnrhub.com.au/regeneration-assistee/ or https://regreeningafrica.org/wp-content/uploads/2020/06/FMNR-Booklet-French_High-Res_web.pdf

[5]A cercle is a rural district

[6] Potential exists for co-financing from the German Government, building on the 2017 Climate Change Risk Assessment in Mali by MERADD and AEDD in Partnership with GIZ, funded by BMZ.

[7] Component 1 and 4 of the project will be carried out at national scale, as well as with the regional government of Mopti Region. Components 2 and 3 of the project are proposed to take place in three target landscapes, to be selected during the project preparation phase, according to criteria agreed by the Technical Committee under AEDD, in consultation with stakeholders. A target landscape could, for example: (i) involve 3-4 contiguous communes, in a particular cercle (or crossing cercle boundaries if this makes sense ecologically; (ii) be in an area shown on the map below as vulnerable or highly vulnerable to climate change; and (iii) have visible evidence of ecosystem degradation, for example, thinned woodland, bare soils, silted waterways, or sand-encroached dwellings.

[8] A commune is a rural municipality

[9] Potentially in all the villages of the 9-12 target communes

[10] Natural Resource Management

[11] Including farming households headed by women (including widows and divorced women)

[12] Assisted Natural Regeneration (ANR) or la Régénération Naturelle Assistée (RNA) is the name given in Mali to the concept sometimes known as Farmer Managed Natural Regeneration. This approach has proven highly effective in the Sahel context and has multiple benefits – it can restore land productivity, reverse desertification and enhance resilience to disaster: increasing crop yields, improving groundwater recharge, retaining soil moisture, and increasing soil organic carbon, nutrient recycling, shade, wind and dust barriers, fodder and compost production and availability of fruit and medicine.

[13] For example, soil and water conservation strategies such as digging half-moon pits, contour bunds with stone, banquets etc.

[14] e.g. seeds, seedlings, polyethylene bags, watering cans and spades

[15] Potentially in partnership with the National Agency for Youth Employment, and with entrepreneurship support providers such as TETELISO and Doni-Labs

[16] Potentially in partnership with the Renewable Energy Agency

[17] Potentially through a partnership with the UN Peacebuilding Forum

[18] Particularly through existing GEF projects in these countries with related goals, which may have resources to enable such participation

Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Enhancing coordination and monitoring for land degradation neutrality and climate security.

Component 2: Enhancing resilience of degraded  production landscapes with communities vulnerable to climate change.

Component 3: Supporting family farms, youth and women to innovate and adopt resilient and sustainable  livelihoods.

Component 4: Monitoring and evaluation and knowledge management for upscaling.

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
Proj_PIMS_id: 
6317
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Enhancing Whole of Islands Approach to Strengthen Community Resilience to Climate and Disaster Risks in Kiribati

The Republic of Kiribati is a small island state with 33 low-lying and narrow atolls dispersed over 3.5 million km² in the Central Pacific Ocean and a population of approximately 110,000 people. 

Climate change and climate-induced disasters are projected to exacerbate the vulnerability of Kiribati’s people by causing more frequent inundations leading to damage of coastal infrastructure and exacerbating already problematic access to clean water and food.

Despite an existing strong policy framework and previous efforts, several barriers exist that prevent Kiribati from achieving its adaptation goals. 

Implemented with the Office of the President (Te Beretitenti), the project aims to benefit 17,500 people (49% women) on the five pilot islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati.

It is expected to contribute to several Sustainable Development Goals: SDG5 Gender Equality, SDG6 Clean Water and Sanitation, SDG12 Responsible Consumption and Production and SDG13 Climate Action.

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-157.34619142837 1.8735216654151)
Primary Beneficiaries: 
17,500 people (49% women) on the islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati
Financing Amount: 
GEF Least Developed Countries Fund project grant US$8,925,000
Co-Financing Total: 
Co-financing of US$769,667 from UNDP | $47,723,920 from the Government of Kiribati
Project Details: 

Background: Projected impacts of climate change on coastal infrastructure, water and food security in Kiribati

Climate change and climate-induced disasters are projected to cause more frequent inundations leading to damage of coastal infrastructure/ community assets and exacerbating the already problematic access to clean water and food.

Geographically, Kiribati’s narrow land masses and low-lying geography (in average 1-3 meters above mean sea level other than Banaba Island) results in almost the entire population being prone to flooding from storm surges and sea-level rise.

The low-lying atoll islands are already experiencing inundation leading to a loss of land, buildings and infrastructure. Mean sea level is projected to continue to rise (very high confidence) by approximately 5-15 cm by 2030 and 20-60 cm by 2090 under the higher emissions scenario.

Sea-level rise combined with natural year-to-year changes will increase the impact of storm surges and coastal flooding. This will lead to increased risks of damage to coastal homes, community infrastructure (community halls, schools, churches) and critical infrastructure, such as health clinics and roads. Further, increasing damage and interruption to roads, causeways and bridges, might lead to isolation of communities.

Sea-level rise also results in greater wave overtopping risk, and when marine flooding occurs, saltwater infiltrates down into the freshwater aquifer causing contamination. This risk will increase with sea-level rise and increased flooding and impact both water security and food security from agricultural production.

With limited groundwater reservoirs, access to clean water and sanitation is already a serious problem in Kiribati, impacting health and food security. Agricultural crop production can be expected to be increasingly affected by saltwater inundation, more extreme weather patterns, pests and diseases. This negative impact on food security is further exacerbated by the projected impact on coastal subsistence fisheries, affecting the main stable food source and livelihood. 

Barriers and challenges

While Kiribati has a strong policy framework around climate adaptation – with adaptation and disaster risk management recognized as national priorities within the Kiribati Development Plan and Kiribati’s 20-year Vision (KV20), and a national Climate Change Policy and Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 –  several barriers exist that prevent Kiribati from achieving its objectives, including:

  • Limited integration of CCA&DRM in national and sub-national development plans and frameworks;
  • Insufficient institutional coordination at national, sectoral and sub-national levels;
  • Limited technical and institutional capacities at national and sub-national levels;
  • Weak data management, monitoring and knowledge management (due in part to challenges in gathering and analysing data from dispersed and remote island communities without effective communication and information management systems); and
  • Limited community knowledge and adaptive solutions for CCA&DRM at outer island level.

 

Project interventions

This project will address the exacerbation of climate change on coastal infrastructure, water security and food security by increasing community resilience to the impacts of climate change, climate variability and disasters and building capacities at island and national levels, with benefits extended to household level and in community institutions/facilities such as schools, health clinics, community halls, agricultural nurseries, and Islands Councils.

It is expected to deliver adaptation benefits to the entire population on the five islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati, estimated at approximately 17,500 people (49% women).

The Project will address key challenges and vulnerabilities to climate change through four interrelated components:

  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: WoI-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies

 

It is expected to support progress towards the following Sustainable Development Goals:

  • SDG 13: Take urgent action to combat climate change and its impacts;
  • SDG 5: Achieve gender equality and empower women, by ensuring women’s equitable participation in Project planning and implementation and by actively monitoring gender equity and social inclusion outcomes.
  • SDG 6: Ensure availability and sustainable management of water and sanitation for all;
  • SDG 12: Achieve food security and improved nutrition and promote sustainable agriculture

 

Key implementing partners

  • Office of Te Beretitenti (OB – Office of the President) - CC&DM division
  • Kiribati National Expert Group on Climate Change and Disaster Risk Management 
  • Ministry of Internal Affairs 
  • Ministry of Finance and Economic Development 
  • Ministry of Environment, Lands and Agriculture Development 
  • Ministry for Infrastructure and Sustainable Energy 
  • Ministry for Women, Youth and Social Affairs 
  • Ministry of Fisheries and Marine Resources Development
  • Ministry of Commerce, Industry and Cooperatives
  • Ministry of Line and Phoenix Islands Development
  • Ministry of Justice 
  • Ministry of Information, Transport, Tourism and Communication Development (MITTCD)
  • Parliament Select Committee on Climate Change
  • Island Councils
  • Extension officers
  • Village Elders and Leaders  
  • Women and Youth
  • Community-based groups
  • KiLGA (Kiribati Local Government Association)
  • NGO’s
Expected Key Results and Outputs: 

Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge

Outcome 1 Capacities of national government institutions and personnel is strengthened on mainstreaming climate and disaster risks, supporting the operationalization of the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP)

Output 1.1.1 National and sectoral level policy, planning and legal frameworks revised or developed, integrating climate change and disaster risks

Output 1.1.2 National, sectoral and island level monitoring and evaluation (M&E) processes, related data-gathering and communication systems enhanced and adjusted to support KJIP implementation

Output 1.1.3 Coordination mechanism for the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP) enhanced

Output 1.1.4 Tools and mechanisms to develop, stock, and share data, knowledge, and information on climate change and disaster risks enhanced at the national level

Component 2: Island level climate change resilient planning and institutional capacity development

Outcome 2 Capacity of island administrations enhanced to plan for and monitor climate change adaptation processes in a Whole of Islands (WoI) approach

Output 2.1.1 Island and community level vulnerability and adaptation (V&A) assessments revised and/or developed for 5 targeted islands

Output 2.1.2 Island Council Strategic Plans developed/reviewed and complemented with Whole of Islands (WoI)-implementation and investments plans in 5 targeted islands

Output 2.1.3 Tools and mechanisms to develop, stock and share data, knowledge, and information on climate change and disaster risk enhanced at island level to strengthen information, communication and early warning mechanisms

Output 2.1.4 I-Kiribati population on 5 targeted islands receives awareness and technical training on climate change adaptation and disaster risk management

Component 3: Whole of Island implementation of water, food security and infrastructure adaptation measures

Outcome 3 Community capacities enhanced to adapt to climate induced risks to food and water security and community assets

Output 3.1.1 Climate-resilient agriculture and livestock practices (including supply, production and processing/storage aspects) are introduced in 5 outer islands

Output 3.1.2 Water security improved in 5 targeted project islands

Output 3.1.3 Shoreline protection and climate proofing of infrastructure measures implemented at 5 additional islands and communities

Component 4: Knowledge management and communication strategies

Outcome 4 Whole of Islands (WoI)-approach promoted through effective knowledge management and communication strategies

4.1.1 Whole of Islands (WoI)-communication, engagement and coordination strengthened at national, island and community levels

4.1.2 Whole of Islands (WoI)-lessons learned captured and shared with national and regional stakeholders

Monitoring & Evaluation: 

The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation.

Monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in UNDP’s Programme and Operations Policies and Procedures (POPP) and UNDP Evaluation Policy, with the UNDP Country Office responsible for ensuring full compliance with all UNDP project monitoring, quality assurance, risk management, and evaluation requirements.

Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.

The project will complete an inception workshop report (within 60 days of project CEO endorsement); annual project implementation reports; and ongoing monitoring of core indicators.

An independent mid-term review will be conducted and made publicly available in English and will be posted on UNDP’s Evaulation Resource Centre ERC.

An independent terminal evaluation will take place upon completion of all major project outputs and activities, to be made publicly available in English.

The project will use the Global Environment Facility’s LDCF/SCCF Adaptation Monitoring and Assessment Tool to monitor global environmental benefits. The results will be submitted to the GEF along with the completed mid-term review and terminal evaluation.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Results and learnings from the project will be disseminated within and beyond the project through existing information sharing networks and forums.

M&E Oversight and Monitoring Responsibilities

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks.

The Project Board will take corrective action as needed to ensure the project achieves the desired results. The Project Board will hold project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences.

The Implementing Partner is responsible for providing all required information and data necessary for timely, comprehensive and evidence-based project reporting, including results and financial data, as necessary. The Implementing Partner will strive to ensure project-level M&E is undertaken by national institutes and is aligned with national systems so that the data used and generated by the project supports national systems.

The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions.

Contacts: 
UNDP
Azza Aishath
Regional Technical Specialist - Climate Change Adaptation
Location: 
Programme Meetings and Workshops: 

Local Project Appraisal Committee (LPAC) Meeting TBC

Inception workshop TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: Whole-of-Islands (WoI)-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies
Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
GEF CEO endorsement /approval
Proj_PIMS_id: 
5447
SDGs: 
SDG 5 - Gender Equality
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
November 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Climate change adaptation in the lowland ecosystems of Ethiopia

Ethiopia is among the most vulnerable countries on the African continent. Small-holder farmers, agro-pastoralists and pastoralists in the Ethiopian lowland ecosystem are particularly and increasingly vulnerable to climate change. Climate change has resulted in food insecurity and dependence on food aid, and limited awareness of its long-term risks hinders efforts to promote climate-smart solutions to build resilience and adaptive capacity.

Due to lack of weather information for the short, medium and long-term and limited knowledge of adaptation measures, land users follow unsustainable livelihood practices. As it currently stands, generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is challenging and faced with capacity limitations. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather prediction, which has proved ineffective in the context of a changing climate. 

The "Climate change adaptation in the lowland ecosystems of Ethiopia" project will strengthen the ability of land users to adapt to the discernible impacts of climate change by disseminating credible weather information and advisory services using locally suitable communication channels to inform the preparation and implementation of actions meant for building resilience and adaptive capacity at a watershed level; reaching a wider audience of land users and government stakeholders across the lowland ecosystem of Ethiopia through a Training-of-Trainers (TOT) approach; conducting a “learning by doing” training to promote clarity and commitment of land users; and by providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas (districts)  across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

The project will promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems.  In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

Undefined
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (39.292967305264 7.8270963920238)
Primary Beneficiaries: 
The project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions
Financing Amount: 
US$5,836,073
Co-Financing Total: 
$10,450,000
Project Details: 

Context

Ethiopia has the second largest population of 102 million (2016) in Africa, making it the second most populous nation in the continent, after Nigeria. Ethiopia’s economy has grown rapidly primarily as a result of increased agricultural production. The agricultural sector in Ethiopia – which accounts for more than 80% of total employment and 45% of the country’s GDP is dominated by smallholder farmers, agro-pastoralists and pastoralists, (here referred to as “Land users”) that rely on rainfall and traditional farming practices. Current practices of cultivating crops and overgrazing of livestock contribute towards large-scale land degradation. Deforestation is taking place at a rate of about 140,000 hectares per year in Ethiopia.

At the national level, temperatures have increased by an average of around 1°C since the 1960s. Rainfall is subject to high variability between years, seasons and regions. Yearly variation around mean rainfall level is 25% and can increase to 50% in some regions. Extreme climate events are also common, particularly droughts and floods. Floods and droughts have resulted in severe losses of crops and livestock, leading to food insecurity. The economic impact depends on the extent of the variability and extreme events but droughts alone can reduce total GDP by 1% to 4%.

The rain in the lowland ecosystem of Ethiopia has often started later than expected over the last decade and has been mostly inadequate and unreliable. In many places water scarcity has increased. The unavailability of water imposes higher demands on women’s and girls’ time which would have otherwise been spent on other productive and human development activities. According to the views of land users, in 2018 alone, women and girls walked an average of 6kms a day to collect water. This is significant considering that the twelve woredas being targeted by this project consist of an estimated population of 600,000 people (or 120,000 households) and, according to the records of the concerned woreda administration offices, women represent about 49% of this population.

The land users rely on rain-fed agriculture and their crop production system has been buffeted by acute shocks related to climate. This has made it more difficult for them to grow crops or raise animals in the same way they have been doing. They stated that rain has been erratic, and when it comes it is too much and destroys their crops. They are now questioning the suitability of agriculture as an occupation in view of changing climatic conditions. The lowland ecosystem of Ethiopia is also home to significant livestock population which is characterized by low productivity, poor nutrition, low veterinary care and uncontrolled overgrazing. The grazing land has lower quality of pasture due to intensive grazing. The quality of the grazing land is progressively declining due to shorter rainy seasons, frequent droughts and overgrazing, causing cattle to graze before grasses have produced seeds, creating more shortages in subsequent seasons.

Changes in temperature coupled with frequency of extreme weather events have been damaging crops and reducing yields. Heat stress has entailed disease outbreaks, reduced milk production and resulted in extra expenditure or loss of income. In particular, prolonged dry seasons and droughts have become more frequent and severe. These risks are made worse by an upsurge in pests and diseases, especially the increasing threat of Fall Armyworm. Changes in pest and disease patterns have also threatened crop production and animal husbandry. The ranges and distribution of pests and diseases are likely to increase; causing new problems for crops and animals previously unexposed to these pests and diseases. These challenges are further aggravated by climate change and the absence of resilient alternative sustainable income generating activities.

Land users in the Ethiopian lowland ecosystems view climate change as a threat that has resulted in food insecurity and dependence on food aid. However, they also express having limited awareness of the long-term risks that climate change poses, and do not know how to respond to these risks and / or of the options available to adapt to them. Indeed, due to lack of reliable information as well as limited knowledge of, and access to a wide range of adaptation options they are forced to follow unsustainable livelihood systems as they use short term coping mechanisms. Generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is a challenge in Ethiopia. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather forecasting, which has proved ineffective given the context of a changing climate. Discussion with land users and government stakeholders revealed that the challenge of meeting poverty reduction and food security goals has been mainly associated with incapability to plan better so as to minimize climate related losses and damages.

The land users in the target project areas are resource-poor and their low income means they are unable to make investment and take on risk. In particular, the pastoralists in the Somali and Afar regions have seen their daily livelihood challenges being the constant need to cope with challenges like livestock feed, food, water shortages and migration from internal displacement among others. Moreover, because the main resources in the lowland ecosystem of Ethiopia are controlled by men, women rarely participate in decision-making and their contributions in building resilience and adaptive capacity are seldom recognized. In addition, the decrease in food in times of drought has affected human health especially among children under five years, pregnant women and old people, and reduced human disease resistance and productivity.

The focus group discussion (FGD) held during the PPG phase on impacts of and vulnerability to climate change with lowland farmers, agro-pastoralists and pastoralists revealed that land users are taking actions to cope with climate change and related hazards. However, their current coping strategies such as charcoal and firewood selling are not effective in serving their long-term adaptation needs. These coping strategies are based on short-term considerations, and survival needs, leading to mal-adaptation.

Due to the  limited support tailored to the needs of land users to maintain their livelihoods while adjusting to climate change,  land users across the Ethiopian lowland ecosystems are at risk due to climate-change threats. They face several barriers to effectively managing these risks.

THE BARRIERS IN BUILDING RESILIENCE AND ADAPTIVE CAPACITY

The following three sets of overarching barriers stand in the way of advancing towards the project objective of building sustainable and climate-resilient economic growth among vulnerable communities, targeting lowland areas in Ethiopia. The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

Barrier #1:

Lowland communities lack knowledge on risks of climate change; and the benefits of climate smart solutions and adaptation practices.

The causes and implications of current and future climate change are not well understood within lowland communities. Therefore, the land users in these communities are not ready to adopt climate resilient farming and animal husbandry practices because their knowledge of the risk of climate change as well as how to minimize risks and take advantage of these opportunities are limited. The current coping strategies of land users are not also effective in serving their long-term adaptation needs. On the other hand, there are a number of interventions that can make farming and animal husbandry practices in the lowland ecosystems of Ethiopia climate resilient and more productive. Yet, designing actions based on appropriate and participatory interventions that can steer course away from climate sensitive activities remain a challenge.

Although climate change is recognised as a matter of national importance within Ethiopia’s CRGE strategy, the Agriculture Sector Climate Resilient Strategy and the NAPA, the technical and scientific understanding of climate change and adaptation and its practical application is not well developed within government institutions. Gaps in the technical capacity can be attributed to insufficient training of staff employed in relevant departments within the Ministry of Agriculture, Environment, Forest and Climate Change Commission as well as development agents and extension officers at Woreda-level. As a result, they lack the capacity to offer needed advisories and effective extension support to the land users that would enable them to adopt more resilient and productive practices.  Consequently, the land users have limited awareness of the risks that climate change poses and are not familiar with climate smart solutions to build their resilience and adaptive capacity.

At present, there are few initiatives – either through the GoE or elsewhere – to conduct training activities supporting the implementation of the Climate Resilient Green Economy Strategy (CRGE). In particular, there are few training programmes on land management practices for climate change adaptation that are appropriate for Ethiopia’s lowland ecosystems. In addition, there are limited opportunities available for training on how to mainstream activities that are congruent with the CRGE strategy into decision-making and agricultural planning either at the federal or at the regional and woreda levels.

Government stakeholders and land users in the lowland communities require better understanding of community-based adaptation processes as a basis for incorporating climate smart solutions through a practical learning-by-doing approach in order to overcome the barrier.  The proposed project activities under outcome 1: Technical capacity for implementing diversified climate change adaptation practices strengthened will address this barrier.

Barrier #2: Limited access to climate forecasts, decision-making tools and climate advisory services for Lowland communities 

Effective adaptation requires farmers to have access to up-to-date, downscaled climate information, and the appropriate tools and advisory services at their disposal. Ethiopia’s Lowland communities do not have access to these, and are not connected to the climate information, products and advisory services. Technological and capability constraints have hindered the provision of weather and climate forecasts, including guidance and value-added advisory services to land users. In addition, information on how to adopt alternative and innovative farming, pastoral and agro-pastoral practices based on these climate forecasts is not available. This is a result of insufficient availability of climate forecast information, particularly at the local level and inadequate capacity of agricultural extension officers to guide farmers and other land users based on climate forecasts. Consequently, lowland farmers, pastoralists and agro-pastoralists can only undertake limited proactive measures in response to climate change.

At the level of overarching policies, plans and strategies, Ethiopia has made some progress in mainstreaming climate change considerations into national and regional frameworks. This has provided a good basis for the implementation of national adaptation priorities through existing LDCF projects. There is need to find more operational ways of influencing policies and actions on the ground. This requires expanding the capability to gather climate data and to share downscaled weather information and climate change information products with practical applications that combine climate predictions with advisory support services for vulnerable land users. However, the capacity at the national level to generate downscaled climate data and use it at local level is not yet well developed. Often, climate data is provided in complex scientific formats and at high resolutions. The generation of the data is also not informed by the needs of users on the ground.

Moreover, having the tools and undertaking climate information analyses is not in itself enough without the ability to use it to inform decisions at the farm level. Currently, there exists no climate advisory services tailored to the needs of Lowland communities. Practical application requires concerned government stakeholders and land users to have the capacity to use these information and analysis to respond to ongoing and emerging threats in the project area.

Overall, there is no alignment among the components of the climate information products and services value chain, from the collection, analysis and packaging of such information to meet the needs of communities, to the application of this information at local level to support adaptation decisions and actions. Along the chain, there are huge capacity constraints and disconnects in government institutions to provide the information, tools and advisory services synergistically.

The proposed project activities under outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools will address this barrier.

Barrier #3: Inability of land users to invest in climate smart technologies and solutions required to diversify and sustain their livelihoods in the face of climate change.

The land users in the project area are resource-poor and unable to invest in the available climate smart technologies, opportunities and solutions for the diversification of their livelihood system. In the project area, there is potential for constructing reservoirs, ponds and boreholes that help address the prevailing water scarcity. Indeed, the land users in the project area have underutilized this potential and few of them rely on flowing streams/rivers and shallow wells with limited capacity to supply domestic water needed during the drought period. There are also opportunities for local communities to diversify their livelihood options thereby building their adaptive base and assets, but are not able to do so due to a number of reasons. They lack technical knowhow to tap into these opportunities, while the advisory services available to them from support institutions is largely lacking in these areas. These services also focus on traditional agro-based livelihoods which themselves are climate-sensitive. Opportunities in activities such as bee keeping, fish farming, processing and marketing of natural products are not fully tapped by lowland land users to diversify their livelihoods and incomes while building adaptive assets.

These opportunities also remain untapped as they are out of reach for the land users who are not able to access funding and technical knowhow. They are therefore not able to construct, own and operate integrated water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures to enable the creation, improvement and sustenance of diversified livelihood options. Some of the investments especially in the construction of water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures require a high up-front capital investment.

This has also become more difficult in the absence of appropriate financial capital especially for poor land users with limited access to the financial services (Ethiopia is one of the most under-banked countries in sub-Saharan level, with a bank branch to population ratio of 1:43912 in 2013/14). Small land users are also perceived as risky borrowers by the formal financial services sector, which is compounded by their lack of collateral, while the costs of finance from the informal financial services sector makes this source unaffordable to them.

The proposed project activities under outcome 3: Climate change adaptation practices adopted in communities in lowland ecosystems will address this barrier.

Although no single initiative can address all the barriers mentioned above, the LDCF-financed project will deliver complimentary outcomes to contribute towards overcoming these barriers. The theory of change (ToC) (Annex K below) underpinning the design of this LDCF-financed project includes the barriers discussed above and activities that contribute to the preferred solution discussed in section III through the delivery of the outcomes 1, 2 and 3.

Strategy

The objective of the LDCF project is to promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems; which are selected using predefined criteria set by EFCCC through a bottom-up process. In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

The proposed project will develop and implement a capacity building support programme to strengthen the ability of land users through i) reaching a wider audience of land users and government stakeholders across the lowland ecosystems of Ethiopia using a TOT approach; ii) disseminating credible weather information and advisory services using a locally suitable communication channels to inform the preparation and implementation of actions designed for building resilience and adaptive capacity at a watershed level, iii) conducting a “learning by doing” training to promote clarity and commitment of land users and iv) providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

Accordingly, at the local-level, this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for prioritizing and incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds in the project regions.

This LDCF project will also support the GoE in reaching its development targets such as those specified under the GTP II, the CRGE Strategy and the SDGs. The project will contribute to Ethiopia’s National Adaptation Programme of Action (NAPA) through inter alia: i) Key Adaptation Need 24 – Promotion of on-farm and homestead forestry and agro-forestry practices in arid, semi-arid and dry sub-humid parts of Ethiopia; ii) Key Adaptation Need 29 –  Strengthening/enhancing drought and flood early warning systems in Ethiopia; and iii) Key Adaptation Need 32 – Enhancing the use of water for agricultural purposes on small farms in arid and semi-arid parts of Ethiopia.

In addition, the project will contribute to several Sustainable Development Goals (SDGs), including: i) SDG 8 – Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; ii) SDG 12 – Achieve food security and improved nutrition and promote sustainable agriculture; iii) SDG 13 –Take urgent action to combat climate change and its impacts; and iv) SDG 15 – Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss.

RELEVANT NATIONAL AND INTERNATIONAL REGIONAL RELATED INITIATIVES

Ethiopia has undertaken several efforts to strengthen technical, financial and institutional capacities for enabling climate change adaptation. There are already a number of existing national policy initiatives, sectoral policies, programs and strategies that may directly or indirectly address climate change adaptation. The most relevant public documents that have relevance for climate change adaptation include Ethiopia’s National Economic Development Plan (The Growth and Transformation Plan (GTP II), Ethiopia’s Programme of Adaptation to Climate Change (EPACC), the Green Economy Strategy (GE), the Nationally Determined Contribution (NDC) of Ethiopia, the recently prepared National Adaptation Plan (NAP), the Environmental Policy of Ethiopia, the Agriculture and Rural Development Policy and Strategy, the Water resources Management Policy, the Health Sector Development Policy and Program, the National Policy on Disaster Prevention and Preparedness, the National Policy on Biodiversity Conservation and Research, the Science and Technology Policy, the Population Policy and National Agricultural Research Policy and Strategy. In Ethiopia, various international initiatives continue to strive for sustainable development.

In spite of these efforts, there is disparity between objectives and what has been implemented due to the technical capacity limitations of government stakeholders and land users to translate these public documents into on-the-ground action to the fullest.

In view of the recent development with adaptation project implementation in Ethiopia, the project will coordinate with the following relevant projects including; The Green Climate Fund (GCF) financed project-‘’Responding to the increasing risk of drought’’; the Adaptation Fund (AF) financed project- ‘’Building gender responsive resilience of the most vulnerable communities’’ and the USAID Financed FAO Project on Fall Army Worm with the Ministry of Agriculture.

 

Expected Key Results and Outputs: 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened (Co-financing for Component 1, Outcome 1: $2,099,702; LDCF grant requested for Outcome 1: $450,000)

This outcome will deliver strengthened capacity of farmers, agro-pastoralists and pastoralists on planning, monitoring and evaluating diverse climate change adaptation approaches. To this effect, the project would develop targeted training modules to be eventually made available online by appropriate partner institution. The modules would be put online for wider use across the country. These modules would be based on agreed areas of interventions that help strengthen adaptive capacity of the pastoralist, farmer and agro-pastoralist communities. Key considerations would be given to community-based adaptation training that leads to the development of climate resilient action plans across the watershed. The training modules would also include community forecasting, monitoring and early detection of such risks as the Fall Armyworm infestation. Using the developed training modules (as listed below), sets of capacity building seminars and training workshops would be delivered to government officials and woreda development agents respectively.

Subsequently, specific learning by doing community adaptation and participatory trainings would be devolved to the local communities to help strengthen their adaptive capabilities.: More specifically, the training modules will include issues identified for training needs as detailed below. These trained communities from the twelve woredas will in turn develop their own respective water security focused climate adaptive action plans through incorporating climate smart technologies and good practices, as well as early response measures including community-based monitoring, forecasting and early warning initiatives using the guidelines developed by FAO and being implemented by the MoANR. In addition to the Fall Armyworm response plan, targeted community based adaptive response will be developed to include the flash flood risks adaptive response and grievance and response mechanism to address Farmers Pastoralist Conflicts at the community level. The early warning and response measure will depend on the need of each of the twelve project sites.

Furthermore, the results of project interventions implemented under outcomes 2 and 3 will be monitored and the results thereof would be used as an input for the development of best practice guidelines to promote the up-scaling of climate‑resilient farming, agro‑pastoralism and pastoralism in Ethiopia’s lowland ecosystems. Best practices from the training and demonstrations would be documented across the twelve woredas. These experiences would be shared across the regions through effective television and radio documentaries, local language-based posters and other awareness materials.

During the PPG phase, the following training needs were identified to address specific needs of institutions and communities at regional and woreda/community‑levels:

  • Training on climate smart technology and good practices for community adaptation (Regional Institution level training: support Output 1.1)
  • Training on developing climate adaptive community-based action plan (Regional Institution level training; support Output 1.2)
  • Responding to climate emergency at community level: early detection and monitoring training on Fall Armyworm, Pastoralist/farmers conflict and Emergency flood (Woreda and Community level training; support Output 1.3)
  • Training session on adaptive soil and water conservation techniques, including rehabilitation, improvement and maintenance of a productive and healthy watershed (Woreda and Community level training; support Output 1.2, 3.3)
  • Training on climate and weather information for planning and agricultural advisory support for the agro-metrology task force established and hosted by the MoANR (Regional Institution Level training; support Output 2.1)
  • Training on climate smart technologies for adaptive capacities and diversified livelihoods, including provision of enhances the knowledge base and capability of land users, including women and youths, on the establishment of community-based enterprises like water storage and rainwater harvesting techniques, livestock fattening and agroforestry, poultry production, etc. (Woreda/Community Level training; support Output 3.2)
  •  

The outputs under Outcome 1 include:

  1. Training modules and platform for enhancing the knowledge and capability of government officials, DAs and local-communities in twelve woredas on the formulation and implementation of adaptation measures are established and sustained.
  2. Strengthened capacity of development agents (DAs)[1] and government officials to support the implementation of climate change adaptation practices at the woreda and regional levels.
  3. Community action plans for adaptive crop production and animal husbandry developed using a participatory approach in twelve Woredas.
  4. Project benefits and climate change adaptation practices are documented and disseminated to local community members in twelve woredas through learning, using innovative and locally adapted means.

 

The strengthened technical capacity for planning climate change adaptation practices through the provision of targeted training under outcome 1 informs and contributes to Outcome 2 by enhancing the understanding of farmers, agro-pastoralists and pastoralists as well as other stakeholders to generate the inputs required for the formulation and adoption of climate adaptive management plan. The capabilities built under outcome 1 for the provision of inputs to Outcome 2 will be achieved including through enhancing capacity of stakeholders on how to i) define the geographical boundaries of the project area; 2) identify and document climate-related challenges faced by stakeholders; 3) gather credible climate related data; 4) identify climate risks and prioritize climate-related challenges that are likely to affect the social, environmental and/or economic status of local communities and their watershed by considering drivers of future trends and how these issues are currently being addressed as well as 5) on how to plan, monitor and evaluate diverse climate change adaptation approaches.

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools. (Co-financing for Component 1, Outcome 2: $2,193,632; LDCF grant requested for Outcome 2: $681,782)

This outcome will deliver the adoption of climate adaptive management practices by local communities using climate information and appropriate decision-making tools. To this effect, functional Automatic weather stations (AWS) – that will complement and be connected to the on-going effort to extend Ethiopia’s climate observatory network will be installed. Protocols will be developed for climate data collection and analysis as well as on the provision of support regarding climate data storage and management for future reference and decision making in collaboration with the National Meteorology Agency (NMA). Climate monitoring technologies such as rain gauges and handheld climate forecast devices will be distributed to the woredas in the intervention sites. In addition, training on the use of these climate monitoring technologies will be provided to woreda-level officers and DAs. The data collected from the AWS and the household monitoring devices will be used to compile short‑term and seasonal climate forecasts meant for land users.

In order to down-scale the data, the project will work with the Agro-meteorology Task Force established and hosted by the MoANR. This task force currently meets every other week to manually compile agro-meteorology data. Partnership with the MoANR Agro-meteorology Task Force will be formed with the aim of enhancing efficiency and clarity on the implications of weather information and on the practical application of climate science and traditional weather forecast practices. This multi-stakeholders Task force team will ensure that weather and climate forecast services are made easily accessible. The project will also provide capacity building support to the Task Force. The project will facilitate the linkage of activities under this outcome with the Agro-meteorology Task Force Initiative and support the updating of the Task force decision tools to digitized tools. These tools will allow the effective use of climate forecasts provided by the AWS and the downscale of the weather and advisory information to farmers, pastoralist and agro-pastoralist in the project area. Once implemented, the decision-making tools will be tested for a two-year period. The results of this testing period will be combined with lessons learned from the project “CCA Growth: Implementing Climate Resilient and Green Economy plans in highland areas in Ethiopia” to inform national up-scaling of decision-making tools for agro-pastoralists, pastoralists and farmers.

Local weather forecasts will be made available to the land users through mobile phones in each woreda. This would complement the Task Force on Agro-meteorology on-going collaboration[2] with Wageningen University, Netherlands and the Agricultural Transformation Agency (ATA) of Ethiopia. By providing end-users with information in a tailored, useable format, this outcome is building on the GEF financed LDCF project that is being implemented in the highland ecosystem of Ethiopia. This outcome will also build on the lessons learned through the LDCF-funded project “Strengthening climate information and early warning systems in Africa for climate resilient development and adaptation to climate change – Ethiopia” and solicit international expertise to develop climate forecast and decision-making tools.

The outputs under Outcome 2 include:         

  1. Nine Automatic Weather Stations (AWS) installed and linked to the national meteorological network and protocols for use and maintenance established in each woreda.
  2. Appropriate weather and climate monitoring and forecast technologies acquired by representatives of the beneficiary communities and maintained through a functional and durable partnership.
  3. Climate-risk assessment and decision-making tools developed and used in collaboration with local communities in twelve woredas.
  4. Climate-risk assessment and decision-making tools are pilot tested and periodically improved using the results thereof in each of the twelve woredas.
  5. Proactive climate adaptive management plan prepared anchored on functional water storage infrastructure to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.

 

The formulation and adoption of climate adaptive management plan using an up-to-date, downscaled climate information, and the necessary tools and advisory services under Outcome 2 explicitly links the information gathered under outcome 1 for the formulation and adoption of proactive climate adaptive management that would also describe who will be doing what and when to deal with the prioritized climate challenge risks under Outcome 1. Outcome 2 in turn provides inputs that will be implemented by local communities in lowland ecosystem through investment in climate smart technologies, opportunities and solutions as specified under Outcome 3.

Woreda level plans, climate risk assessments and data from AWS integrated with the Met department will inform the interventions under component 3 and the proposed special innovation direct investment.The uptake and use of data and information by local communities gives the AWS infrastructure its ultimate value, and is the purpose for having this infrastructure under the project. This has value both within the project areas as well as within the broader national network. In this regard, the project will facilitate the uptake and use of information and data by local communities through the Agro-Met Task Force Mobile Data provision to farmers and communities at large. It will also strategically support the relevant government institutions, including National Meteorological Agency and Ministry of Agriculture to facilitate community access and use of this information in decision making. This will not only be supported through this project, but through other projects as well thereby ensuring that the installed AWS serve the needs of farmers.

Component 2: Adaptation practices adopted at scale in lowland ecosystem

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems. (Co-financing for Component 2, Outcome 3: $5,956,666 ; LDCF grant requested Component 2, Outcome3: $4,426,383)

This outcome will strengthen land users capacity for the implementation of climate change adaptation practices  for building resilience and diversification of their livelihoods options. This component of the project will thus support land users to create, improve and sustain diversified livelihood options through rehabilitating degraded watersheds in a way that would lead to tangible and replicable changes. This will be achieved through the provision of needs-based technical support for soil and water conservation activities (soil bund, afforestation, check dam, hill-side terracing, etc.) and construction, operation and utilization of water storage structures for the diversification of livelihood options. As a result of this, land users will be able to do supplementary irrigation and engage in creating alternative climate resilient income generating opportunities. Water storage locations would be identified through the development of climate adaptive community-based action plans from Outputs 1.3. The climate adaptive plan will be developed for each woreda in the 6 regions through a participatory consultation process with the aim of securing, in advance, the commitment of the local community to contribute labor during construction, operation and maintenance; as well as to conserve the entire catchment area for long time durability and functionality of the water storage structure.

Local communities in the woredas targeted under this component will benefit from the implementation of a number of on‑the‑ground activities including; increased adaptive capacity through implementation of adaptive farming, agro-pastoral and pastoral practices; improvement of land productivity through such agro-ecological interventions as the bunds, alley cropping and terracing techniques and enhanced availability of fodder crops for livestock feed through planting of drought-resistant and high yield and early maturing varieties. Furthermore, to enhance access to resources in order to scale innovation for climate adaptation in the lowland ecosystem, the project would assist land users to organize into groups to learn from each other and replicate resilient practices.

A range of livelihood improvement activities will be implemented based on the community action plans developed under Component 2, and will vary from community to community. Examples of activities that will be considered include growing, processing and marketing of fruits and vegetables, installation of technologies for water and energy provision such as solar powered water pumps  and biogas to reduce deforestation for community groups, planting fast growing trees for firewood and construction, energy-efficient fuel-wood stoves for clean cooking solutions, growing area closure (fencing) plants using fruits trees, growing  animal forage plants, poultry and animal fattening. The project will train beneficiaries, and especially empower women to engage in value chain business opportunities such as processing and marketing of milk and milk products. Location-specific alternative livelihood support activities such as tree nurseries, bee keeping, fish farming at natural and artificial lakes, edible mushroom cultivation, compost preparation or sustainable use of incense and gum to reduce deforestation and forest degradation would be supported in the intervention sites. To support the offtake and sustainability of these options, the project will support beneficiaries to initiate business enterprises, and will link them to financing schemes.

Following the initial assessments done during the PPG phase, the project will conduct in-depth, focused capacity needs assessments with the aim of strengthening the capacity of beneficiaries for the delivery of sustainable and scalable businesses. The in-depth assessments, based on the selected livelihood activities for each community, will strengthen community buy-in and increase the levels of uptake and sustainability of the adaptive practices and technologies. As well as providing entry points for the establishment of community-based enterprises and involvement of the private sector in running the business enterprises. The assessments will include: i) analysis of market opportunities; ii) identification and implementation of selected income-generating activities; and iii) appropriate support to local communities on value-addition activities, including agro-processing and marketing skills; iv) sustainable financing options. In addition, the development of community business enterprises (CBEs) will be supported to: i) increase local communities’ access to markets; ii) increase market efficiencies; and iii) promote the development of local private sector agents such as agricultural service providers.

The project will also support training of extension agents to follow-up on the implementation of the adaptation and livelihoods activities and review progress in each Woreda with the aim to i)  review successes and failures from the LDCF and to suggest up scaling activities; and ii) develop training material and provide training workshops on developing bankable business plans  It will also develop a long-term M&E strategy for each Woreda that will be followed up by the extension agents and other development facilitators at Woreda level.

The outputs under Outcome 3 include:

  1. Sites identified, through community planning processes, as critically degraded are rehabilitated in the twelve woredas anchored on functional water storage infrastructure designed, constructed and utilized to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.
  2. Alternative livelihood opportunities created, expanded and made more responsive to climate change through the implementation of community-led climate adaptive initiatives in the twelve woredas.
  3. Farm/pasture land rehabilitated through physical and biological soil and water conservation measures in degraded areas in each woreda for and by the vulnerable lowland farmer, pastoralist and agro-pastoralist communities. 
  4. Community-based enterprises established and operationalized in each woreda to develop and strengthen climate resilient local business.
  5. Woreda-level M&E and follow-up strategy developed and adopted by woreda development facilitators and extension agents.

 

The implementation of adaptation plans outlined under Outcome 2 by local communities in lowland ecosystem ensures that land users in the project area enhance their investment in climate smart technologies, opportunities and solutions in order to diversify their livelihood system while mitigating risks and driving actual improvements in performance (Outcome 3). Project performance will be tracked periodically in order to learn from the outcomes and inform future climate change adaptation plans and actions within and outside the geographical boundaries of the Project area. Undertaking frequent evaluation in this way helps to generate and document knowledge and obtain good practice results that would be disseminated to strengthen capacity for the implementation of diversified climate change adaptation practices.

Outcomes 1 and 2 are intended to provide the basis for implementing climate adaptive solutions and practices (Outcome 3) through climate-informed planning at the local level as well as the use of climate information. For each community, the strategies and practices selected under Outcome 3 will be based on the skills and information from planning processes (Outcome 1) that take into account climate change considerations, as well as the capacity to generate provide and use climate information (Outcome 2) to come up with solutions that address climate risks and vulnerabilities. This will generate knowledge that will be applied in the long term. The implementation of Outcome 3 will follow a participatory process that involves communities as well as local level planning and development institutions in the application of climate-informed planning tools and locally relevant climate data. This structure and approach of the project is a deliberate strategy to ensure that planning capacity and the use of climate information are the basis for climate change interventions, and that there is capacity in the local planning structures to facilitate this process. A provision has been made for special innovation direct investment in community infrastructure and alternative livelihoods creation for Woredas with capacity to include additional site making maximum of 3 sites per woreda.




[1] At Kebele level, “development agents” are responsible for technical advisory services to farmers. At a Woreda-level, “extension officers” oversee the activities of and provide guidance to development agents. The term “extension agents” is used to refer to both levels throughout this document, as their roles often overlap.

 

[2] The partnership between MoANR and Wageningen University to develop downscaled weather and Agricultural advisory support to farmers and pastoralist would be explored further and supported by the project to achieve the objective set out in this component.

 

Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
October 2020
Description: 
CEO Endorsement
Proj_PIMS_id: 
5630
SDGs: 
SDG 2 - Zero Hunger
SDG 8 - Decent Work and Economic Growth
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action
SDG 15 - Life On Land

Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70 percent of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening of the already profound poverty levels. Climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas, forcing subsistence agro-pastoralist and nomadic pastoralist households living under deep-rooted levels of poverty into making livelihood decisions out of desperation because their co-dependence on water, agriculture and rangelands is becoming unsustainable. State and federal government budgets, already under strain with development challenges unrelated to climate change, are unable to cope with mounting tolls of a changing climate.

The "Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan" project supports climate change adaptation efforts among subsistence agro-pastoralist and nomadic pastoralist communities in dryland zones across nine states (West Darfur, Central Darfur, East Darfur, Western Kordofan, South Kordofan, Kassala, Red Sea , Northern and Khartoum state). The project will build climate resilience, health, well-being and food and water security for approximately 3.8 million people - almost 1.2 million direct beneficiaries and 2.5 million indirect beneficiaries - accounting for more than 32% of the total population across the nine targeted states, and about 9.2% of the total population of the country.

Its overall goal is to promote a paradigm shift in dryland pastoral and farming systems through i) an integrated approach by increasing resilience of food production systems; ii) improving availability/access to climate resilient water sources; and iii) strengthening capacities of institutions/communities on climate resilience. The project capitalizes on synergies in climate risk management practices across agriculture, water, and rangelands to enhance water and food security under changing climate conditions. Key results are enhanced resilience to climate risks among subsistence farmer and nomadic pastoralist communities and promoting an enabling environment for long-term (post-project) adaptation activities in Sudan. Moreover, the enhanced capacity of the state-level administration in areas of environmental governance, management of shared natural resources, inter- and intra-state relations and how to establish a network of early warning systems will help prevent conflicts and out-mitigation in the targeted areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (31.552734354975 15.424028679987)
Primary Beneficiaries: 
1,181,538 direct, 2,499,712 indirect
Funding Source: 
Financing Amount: 
US$25.6 million
Co-Financing Total: 
US$15.5 million
Project Details: 

The project introduces several interventions among highly vulnerable communities in the target communities. First, the project disseminates a set of sustainable technologies and practices including drought-resistant, early maturing seeds, establishment of integrated women-led sustainable farms, rehabilitation of communal rangelands, development of multi-purpose tree nurseries, and the establishment of shelterbelts to shield cultivatable plots from dust storms. Second, the project increases the availability of water resources through the construction and/or rehabilitation of hafirs (i.e. dugout enlargements into which surface-water runoff is converged during the rainy season), water yards (i.e. water extraction and distribution facility which includes borehole, storage tank, animal watering basins and tap stands), and sand water-storage dams (i.e. rain water harvesting structures). Third, the project strengthens local governance by building capacity among local leaders and stakeholders (i.e. village councils, village development committees, popular committees) regarding best practices, as well as increasing capacity of extension agents from state-level offices of the Ministry of Agriculture and Natural Resources and Ministry of Irrigation and Water Resources  on sustainable technologies/practices suitable for dryland areas.

In introducing these interventions, the project builds upon the lessons learned from recent climate change adaptation projects such as: The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer and Pastoral Communities; and the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these initiatives and applies a similarly integrated approach to crop, water and rangeland management that addresses recurring drought concerns and the linkages between agro-pastoralist and nomadic pastoralist livelihoods.

The barriers addressed by the project include weak drought contingency planning; low institutional capacity; limitations in food security research capacity; limited smallholder access to financing; and limited data infrastructure. Micro-credit and micro-finance systems that have been piloted successfully in other regions have been incorporated into project design to promote financial sustainability and overcome some barriers. The project facilitates transformational change in the short-term by building community resilience against climate change impacts, primarily recurrent drought, and in the long-term by integrating lessons learned into state-level planning, budgeting and implementation of risk reduction measures that will ultimately improve livelihoods in the targeted communities.

Project activities will directly benefit nearly 1,200,000 people in over 211,000 subsistence agro-pastoralist and nomadic pastoralist households. These direct beneficiaries are among 138 dryland villages across nine states. These households correspond to 10% of the total population in the targeted regions. Project activities will indirectly benefit an additional nearly 2,499,712 people through autonomous adoption by neighboring communities of the risk mitigation strategies that direct beneficiaries will implement. The project will take advantage of existing linkages with regional and global research institutions such as CGIAR and the Association for Strengthening Agricultural Research in Eastern and Central Africa.

The project’s paradigm shift potential is rooted in the fact that that the specific adaptation interventions can be leveraged to empower women in large numbers across adjoining communities. Providing women with access to information and knowledge on climate change issues can help reverse their lack of power and build their autonomy. In parallel, the implementation of a suite of adaptation initiatives will build resilience among vulnerable rural communities from future climatic shocks that would otherwise deepen their poverty, while also enabling them to diversify household incomes and assets. Moreover, effective adaptation within traditional agricultural systems will not expand in the poorest states in the absence of catalytic donor support.

The project is aligned with Sudan’s priorities as outlined in its Nationally Determined Contribution to the Paris Agreement and is line with Sudan’s Country Work Programme, as submitted to the Green Climate Fund (GCF). Based on a request made to UNDP by the Government of Sudan, Sudan’s National Designated Authority (NDA), the project is also a part of UNDP’s Entity Work Programme to the GCF and is fully aligned with Government priorities upon which UNDP is focusing.

Climate change challenges

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70% of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening already profound poverty levels. Notably, climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas of Sudan, forcing many subsistence agro-pastoralist and nomadic pastoralist households into making livelihood decisions out of desperation because their co-dependence on water, agriculture, and rangelands is becoming less and less viable. State and federal government budgets, already straining to cope with numerous development challenges unrelated to climate change, are simply unable to cope with the mounting tolls of climate change.

There is strong evidence confirming that Sudan’s climate has been changing over the past decades. First, there has been a steady decline in annual precipitation throughout Sudan. This is most pronounced in the Darfur States, where the data record from the sole meteorological station over the 40-year period from 1952-1992 indicates that rainfall has been declining by about 5.12 mm per year on average. Other areas such as Khartoum and South Kordofan show similar rainfall patterns (decline of 4.90 and 3.99 mm per year, respectively). These trends are reflected by mean annual normal rainfall isohyets. A comparison of the isohyets for the period 1941-1970 and 1971-2000 show that there is a southward shift by hundreds of kilometers.[1]

Moreover, a rainfall trend analysis for 21 meteorological stations across Sudan confirm that mean annual rainfall for the past two decades has been both decreasing and intensifying relative to the 40-year period from 1960 to 2000. This is illustrated in Figure 1 which shows the location of the meteorological stations (top) and indicates that, when compared to the historical period, average annual rainfall declined by an average drop of 9.3 mm per year during the 1990s (middle) and by an average of 23.4 mm per year 2000s (bottom).

These changes have posed profound adverse impacts for rural livelihoods. For faming activities, roughly 90% of cultivated areas depend exclusively on rainfall, with fluctuations in crop yield attributed almost solely to fluctuations in rainfall patterns. While irrigated agriculture is also practiced, it is minor in scope and limited to small areas along wadis and in small plots near hand-dug wells. For pastoralist activities, increasingly erratic rainfall patterns, as well as drought episodes, have led to the deterioration of natural rangelands. Declining rangeland productivity has been accompanied by an increase in seasonal fires, excessive grazing in communal lands, and by large livestock populations unsustainably concentrated around perennial water sources.

Second, there has also been a steady increase in temperature throughout Sudan over the period 1960-2010.  During the March-June and June-September periods, temperatures have been increasing between 0.2°C and 0.4°C per decade, on average. The decadal trend of increasing temperature is more intense during the March-June period. When averaged across all seasons, temperatures in the 2000-2009 period are roughly 0.8°C to 1.6°C warmer than they were in the 1960-1969 period. Figure 2 illustrates annual average temperature trends for a subset of 6 meteorological stations located across Sudan (top) for the period 1960-2010 (bottom).

Third, the above adverse changes in rainfall and temperature have been accompanied by recurrent drought episodes across Sudan since the 1970s. There have been widespread recurring droughts across Sudan during the period 1967-1973 and again during the period 1980-1984, the latter period being the more severe. In addition, there have been a series of spatially localized droughts during the years 1987, 1989, 1990, 1991, and 1993. These drought episodes have occurred mainly in Kordofan and Darfur states in western Sudan and in parts of central Sudan near Khartoum.

Such mounting evidence of decreasing rainfall and increased temperatures, have reduced available grazing lands, have led to crop failures, high livestock mortality and increased rural to urban migration. These climate-related impacts have also aggravated urban health and sanitation concerns. Together this evidence suggests that drought has been a major stress factor on farmer and pastoralist communities and has worsened regional conflicts over environmental resources. Additional information on the climate rationale underlying project design is provided in Annex 19f.

In the future, these climatic changes are projected to intensify. Dynamic downscaling of an ensemble of General Circulation Modeling outputs suggests that over the next two decades, average annual surface temperatures across Sudan will increase significantly relative to the historical climatic baseline, with increasing levels of rainfall variability. This is illustrated in Figure 3 which shows an ensemble of temperature and rainfall projections under Representative Concentration Pathway 8.5 (RCP8.5) for three meteorological stations with sharply differing annual historical rainfall regimes: Port Sudan (medium annual rainfall), Dongola (low annual rainfall), and Gedaref (high annual rainfall).

Baseline situation

The baseline situation is one in which rural households in Sudan are becoming increasingly unable to withstand and recover from climatic shocks, particularly drought. While there are other types of shocks that farmer/pastoralist households are forced to endure related to health, forced migration, or conflicts, they are largely derivative of an inability to effectively cope with recurring drought episodes. This vulnerability is likely to intensify for dryland households in Sudan in the absence of effective climate change adaptation interventions that build increased resilience to drought.

Since subsistence agro-pastoralist and nomadic pastoralist households derive a large share of their income from crop- and/or livestock-related activities, they are also particularly sensitive to drought. Household income from rainfed agriculture and pasture-based livestock production is far more vulnerable to climatic shocks than, for example, irrigated agriculture or other less shock-impacted activities such as the so-called cottage industries (i.e. a business activity carried on in an agro-pastoralist’s home). At present and likely for the foreseeable future, sensitivity to drought among dryland households is largely determined based on prevailing risk-hedging strategies that regard land, water, and livestock – and the mix of those resources – as essential to livelihood preservation. To the extent that household incomes are not diversified, or alternative income-generating strategies not introduced, sensitivity to drought is expected to remain unacceptably high.

The ability of farmer/pastoralist households to cope with droughts has been compromised by the increasing frequency of drought episodes. In the baseline situation, the time between climatic shocks is becoming shorter and shorter, leading to inadequate time to rebuild household assets to withstand subsequent weather-related shocks. Given the lack of governmental safety nets and access to credit, households are forced to rely on their own already depleted savings and assets to try and make up as best they can for food/income shortfalls. Hence, the liquidation of household assets to limit the harmful impacts of a drought episode is becoming less and less of a viable risk-hedging strategy, forcing households into increasingly desperate circumstances.

Taken together, the exposure and sensitivity of farmer/pastoralist households combined with their compromised coping capacity infers that overall vulnerability to climatic shocks is high in the baseline situation. Assent effective adaptation measures, climatic variability has become largely incompatible with traditional agro-pastoralist practices regarding crop selection, water resource management, communal rangeland management, drought preparedness, and household income generation. Additionally, access to tools and extension services designed to build adaptive capacity remains quite low given the overall lack of knowledge to make informed decisions under climate change.

States targeted for project activities

The target region of the project consists of 138 villages in dryland zones across 9 states in Sudan. The selection of these villages has been based on several common characteristics, namely subsistence agro-pastoralists and nomadic pastoralists who are highly vulnerable to climate change, with few opportunities for household income diversification and adaptation. Despite their vulnerability, local populations have little access to measures and practices that can increase their resilience in the face of climate change. A brief description of the major targeted state characteristics, together with key dimensions of vulnerability to climate change, is provided in the bullets below.

West Darfur: West Darfur is characterized by great environmental diversity with seasonal valleys that can sustain forests, rangelands, and agriculture. About 80% of the state's economy is based on cash crops and livestock production. Nevertheless, the state has a history of chronic food insecurity - it is the most food insecure region in Sudan with greater than 40% of the population unable to obtain a health daily diet.

East Darfur: East Darfur is largely characterized by nomadic tribes facing acute water scarcity. Increasingly rainfall variability has led to serious rangeland degradation and in some cases, the disappearance of essential grasses and herbs. Nomads who rely on these resources have been forced to cope by resorting to inferior options for feeding their livestock, namely lower quality tree leaves; limited crop residues, or moving across the border to South Sudan. East Darfur has become the home for significant numbers of displaced people from other Darfur states, all suffering from reduced rainfall. This has amplified the consequences of climatic change for the state and further exacerbated environmental degradation and socio-economic disruption.

Central Darfur: Central Darfur is characterized by diverse climate and soils, including volcanic soils in Jebel Marra (a mountainous area) sandy, clay and alluvial soils in the different valleys traverse the state towards the west to Chad and Central African Republic. Most economic activities are focused on agriculture and pastoralism, with 80% of the population comprised of farmers and pastoralists. Communities are suffering from recurrent droughts, increasing temperature and rainfall variability, which together with high poverty rates have led to a growing misuse of resources as evidenced by overgrazing and denuding of forests.

South Kordofan: The state is characterized by widespread poverty, lack of basic services, poor infrastructure and continued land disputes. While South Kordofan is less prone to drought conditions than its northern counterpart, the state is vulnerable to the impact of forced migration. That is, as agricultural regions in other parts of Sudan become less productive, South Kordofan may see an influx of climate refugees while lacking the infrastructure to accommodate rapid population growth. 

West Kordofan: West Kordofan is characterized by nomadic and transhumant tribes that concentrate in areas where water and other services are available. For farmers, higher temperatures and increased rainfall variability has led to crop failure, increased pest incidence, and out-migration by farmers. For pastoralists, lower humidity levels and higher temperatures have led to grassland degradation and animal diseases. The state has experienced diminishing levels of healthy drinking water due to lower rainfall as well as a higher incidence of certain climate-related epidemics.

Kassala: Kassala is characterized by widespread poverty and lack of basic services. Roughly 85% of the population live below the poverty line and rely on traditional rain-fed agriculture. Flash flooding is a growing risk with frequent seasonal flooding from the Gash and Atbara rivers in the western part of the state. While floods have occurred every 6-7 years over 1970-2000, they have been recently occurring every 4-5 years. Drought frequency has also been increasing, with two major droughts occurring in 2008 and 2011.

Red Sea: The Red Sea state is distinguished from other states in the Eastern region as the only state with a coastline (750 km).  The region supports varied and diverse coastal and marine habitats, including coral reefs, mangroves, and seagrass beds. Many species of birds and fish are supported by these ecosystems, many of which are not found anywhere else in the world. These resources also provide food and income for the communities living along the Red Sea coast. Water scarcity is a persistent problem across inland and coastal areas, while overgrazing is rapidly degrading rangelands.

Northern: The Northern state is characterized by an economy that depends upon both irrigated and rain-fed agriculture. In this region, rainfall is typically very low, temperatures are high in the extreme, and vegetative cover is sparse outside the immediate vicinity of the Nile. Rising temperatures, decreasing rainfall, fluctuations in River Nile water levels, and increased wind speeds have combined to result in a mix of drought and flooding with adverse effects on crop yields, rangelands, animal production, and riverbank erosion. Shifting climates have also hastened the arrival of new plant diseases, such as the date palm disease in the Elgab area, and new skin diseases, such as Jarab, which are not historically common in the state.

Khartoum State: Khartoum is the capital of Sudan and is in the tropical zone around the River Nile. It is characterized by rapid urban growth and the largest concentration of infrastructure. About 20% of the state population is located in rural areas and practice traditional cultivation and pastoralism. Dust storms are regular occurrences and river fluctuations threaten riverbank erosion and flooding. Increasing climatic variability have placed serious pressure on Khartoum’s crop yields, rangelands, and natural forests.

Related projects/interventions

The project builds upon the lessons learned from recent climate change adaptation projects such as: 1) The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; 2) the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer/Pastoral Communities; and 3) the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these projects and applies a similarly integrated approach to crop, water, and rangeland management that incorporate recurring drought concerns and understanding linkages between agro-pastoralist and nomadic pastoralist livelihoods. Some of the specific lessons that have been directly accounted for in project design are outlined below.

Rural water supply for domestic and small-scale irrigation using solar pumping has been readily adopted and effective in several rural settings, resulting in availability of water for agriculture and clean water for human an animal use and saving time of getting it;

Cultivation of drought-resistant horticultural crops (e.g., introduction of new vegetables and practicing cultivation in 3 seasons instead of one season cropping system in Gerf area in Gedarif State) has resulted in improved crop productivity;

Rehabilitation and improvement in irrigated agricultural production (e.g., in Wad Hassan village of Gedarif State) contributed to the creation of new income sources and labor opportunities, which contributed to improved socio-economic status of communities;  

Shelter belts around some farms in River Nile State demonstrably protected farms from hot wind and also created favorable microclimates, which helped to increase productivity and yields;

Afforestation in North Kordofan State - where 7 community nurseries were established, and 53,000 trees were planted – effectively protected agricultural lands and residential areas; and

Awareness-raising and capacity building through demonstration women’s farms led to improvement in crop productivity (e.g. fava beans) in river Nile State and led to women being more oriented to climate change adaptation practices.

 

Expected Key Results and Outputs: 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Activity 1.1:  Introduce drought-resilient seed varieties of sorghum, millet groundnut and wheat that have demonstrated greater yields in the face of climatic changes through village procurement systems;

Specifically, Activity 1.1 will involve a) developing and implementing a programme for drought tolerant and early maturing certified seed distribution; b) replicating successful implementation of drought tolerant and early maturing seed varieties of sorghum, millet, groundnut and wheat to neighboring communities through participatory process; c) establish climate adapted seed multiplication farms; d) conducting community-based drought tolerant and early mature seed procurement by ensuring farmer knowledge of technical aspects of seed production, handling and exchange, including establishment of seed multiplication farm at village level; and e) facilitation of access to micro-financing schemes . Drought tolerant and early maturing seeds constitute crop varieties that can better cope with heat, drought, flood and other extremes and help farmers adapt to climatic changes and lead to increases in agricultural production and productivity. The focus of seed varieties will be on adapted food and cash crops seed varieties that are currently available in Sudan that have shown desirable traits in withstanding climatic stresses such as drought, heat, and waterlogging. Seeds will be procured based on community-based procurement protocols that promote the role of the local farmers in procurement of quality seeds of improved varieties at household and community levels. It is predicated on the frequent circumstance of seed supply from the formal sector unable to reach or meet traditional farmers’ demand. The viability of community-based seed procurement programs is well established in rural Sudan thanks to past projects and local resource management practices. Seed multiplication farms consist of community-based drought-resistant seed supply on local farms through introducing improved seed varieties and strengthening farmers’ capacity and knowledge regarding technical aspects of seeds such as quality control, testing, storage, and certification. These farmers subsequently become a source of quality seeds of improved climate-smart varieties to the communities. The community–based seed supply can be a reliable and efficient way to access high quality seeds. Finally, micro-financing schemes (i.e., sandugs) will be established will be established through the village communities with mechanisms in place to facilitate access to funds.

Activity 1.2:  Introduce sustainable practices in agricultural production at the community level. This involves the introduction of greater irrigation efficiency in the management of water resources through the introduction of integrated women’s farms, home gardens, and demonstration plots;

Specifically, Activity 1.2 will involve a) establishing integrated women sustainable agriculture farms with access to micro-financing schemes; b) establishing sustainable women-centered home gardens, with access to micro-financing schemes; c) training farmers on sustainable wadi cultivated practices and subsequent cultivation in at least 5 specific wadi/depression zones; d) preparing technical manual and provide trainings to farmer groups on water management under climate change (for integrated farmland; home garden and Wadi); and e) setting up climate adaptation-oriented Farmers’ Field Schools. Women-run farms and gardens are enterprises for cultivation of a small portion of land which are around the household or within walking distance from the residence. They will be planted with vegetables and fruits and as well as extra-early maturing crops that can serve as a supplementary and urgent source of food and income during period of food scarcity. Women’s farms and gardens have proven to be a promising approach to enhance food security and wellbeing of resource-poor households in vulnerable areas, offering benefits of security, convenience, and marketable items. Sustainable wadi cultivated practices involve the implementation of climate-adapted technologies and practices that address the challenge of how to transition to a climate-adapt agriculture at needed scales for enabling agricultural systems to be transformed and reoriented to support food security under the new realities of climate change in rural Sudan. Two main categories of sustainable agriculture are the focus of project activities: a) improving water/soil management practices through the introduction of small scale irrigation and conservation tillage techniques and b) improving crop production practices through seed priming, fertilizer micro-dosing, adjusting planting density, and changing planting dates to conform to new climatic trends. Farmers’ field schools (FFSs) are based on the FAO’s Farmer Field School methodology[1] and have been introduced successfully in other parts of Africa to increase farmers awareness about climate change and climate-smart technologies. Among other things, they help farmers learn to integrate weather and climate information with disaster management and agricultural planning while creating awareness about disaster risk reduction and climate change adaptation. The project will address the short time frame to develop climate information by incorporating protocols and lessons learned from the GEF-funded Climate Risk Finance (CRF) project mentioned in Section B.1. That is, the logistical challenge of the time it takes to get climate data, then the time to build climate advisories and then the time to disseminate in FFSs and expect usage for impact will be overcome by the head start provided by the CRF project through the mobile-phone partnership established between the Sudanese Meteorological Authority, the Agriculture Research Center, extension service representatives, and a mobile phone company to develop and distribute climate information to local communities across 6 states in Sudan. As a result, rain-fed farmers and pastoralists now receive forecast/climate information and risk / agricultural / pest / livestock advisories by Short Message Service (SMS). At the same time, the CRF project is developing a Mobile Based Application comprising weather information, agriculture practices, crop insurance scheme, marketing information and advisory services that should be readily available by the start of project activities. Such information will be integrated into the FFS programme.

Activity 1.3:   Introduce rangeland management practices that reduce pastoral stress on communal lands through demonstration farms and rangeland rehabilitation techniques;

Specifically, Activity 1.3 will involve a) the development of technical guidelines for climate adaptive rangeland management; b) establishment of communal rangeland reserves for drought resistant ranged seed production; and c) Rehabilitation of 2,000 hectares of degraded rangelands and an additional 2,500 hectares of strategic rangelands by using site-suitable types of soil conservation and water harvesting techniques Technical guidelines will focus on climate-adaptive rangeland management techniques. Rangelands are a crucial resource for the poorest people in Sudan’s drylands, representing the major source of fodder in livestock production systems. Today, however, these areas are threatened by severe livestock population pressures and environmental degradation New rangeland management practices to be implemented include rotation grazing, reduced burning, reseeding, brush control, and scheduled rest periods.  Rangeland rehabilitation will consist of four main activities: reseeding, water harvesting, grazing management, and fire control. The modalities for introducing and sustaining these new practices will be addressed in Output 3 capacity building activities to ensure that the need for vegetation/soil recovery is community-learned and community-practiced.

Activity 1.4:   Establish shelterbelts/agroforestry to improve productivity and reduce land and environmental degradation.  This involves the plantation of trees to absorb energy from dust storms and protection of cultivatable areas

Specifically, Activity 1.4 will involve a) developing and implementing a programme for a total of 30 multi-purpose tree nurseries to be run by women groups; b) establishing shelterbelts with drip irrigation system; and c) establishing climate adaptive community-based afforestation. Shelterbelts will be equipped with drip irrigation systems to act as a barrier to reduce the harmful effect of wind velocities, wind erosion and sand drift and heat waves while improving existing harsh environmental condition. Community based afforestation will involve the planting of climate-resilient tree species and greater and continued community participation in the development of tree nurseries and the management and long-term protection of new forest cover. In addition to increasing resiliency against climate-related impacts, afforested areas will provide an important co-benefit of carbon sequestration. Principal species to be planted include Acacia Senegal with other Acacia species planted as needed, with a rotation of about 15 years and an uptake period of 30 years. Post-project sustainable management of nurseries, shelterbelts and afforested areas will rely on community mobilization/engagement, awareness-raising, and village institutional capacity building that has been achieved as part of Output 3.

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Activity 2.1:  Construct/rehabilitate water yards and drilling of shallow/borehole for drinking water for human and livestock and small-scale irrigation in targeted locations. This involves increasing the access to water by installing communal water infrastructure;

Specifically, Activity 2.1 will involve a) rehabilitation work for existing water yards to repair/replace components as needed (e.g., borehole, storage tank, animal watering basins, tap stands, solar pumps); b) drilling of new water yards, including boreholes, solar pumps, storage tanks and small-scale irrigated plots in vicinity of water yards; and c) conducting community training for maintenance in water yards, including access to micro-financing schemes. A total of 30 existing water yards will be rehabilitated, together with the installation of 50 new water yards among the targeted communities. Water yards are essentially a water extraction and distribution complex which includes borehole, storage tank, animal watering basins and tap stands. The borehole is equipped with a pump, typically powered by a diesel engine although in the proposed project, solar-powered pumping is the chosen alternative in order to avoid greenhouse gas (GHG) emissions. Project activities include both rehabilitation of existing water yards and the installation new ones. The installation of new water yards requires approval from State Water Councils which are part of the Ministry of Irrigation and Water Resources (MIWR), one of the Responsible Parties of the project. The MIWR has already committed to providing permission for the installation of new water yards. The procurement of all materials (i.e. pipe, fencing, solar panels, water storage tank, cement, sand, stone aggregate) for rehabilitating or installing new water yards are locally available, obviating the need for importing any goods from abroad.  The 80 new and rehabilitated water yards will each provide a daily storage capacity of 50 m3, or 1.46 Mm3 per year. Specific locations for rehabilitated and new water yards are indicated in Annex 2.

Activity 2.2: Establish sand water-storage dams in support of small-scale irrigation in targeted localities and villages. This involves the blocking seasonal wadis for groundwater storage and exploitation;

Specifically, Activity 2.1 will involve a) constructing sand water-storage dams in drought-prone areas; b) installing small pumping units around sand water-storage dam for sustainable agriculture; and c) providing training for operation and maintenance of sand water-storage dam and solar pumps for water management scheme, including access to micro-financing schemes. A total of 30 new sand water-storage dams and 50 solar-powered pumps will be installed at selected locations within the project sites. These are cost-effective rainwater harvesting structures which are used as a response to conditions of water scarcity due to severe drought and climate extremes in drylands. They are simple structures that consist of a reinforced concrete wall built up to 5 meters high across a seasonal water stream that transports runoff-water from catchment areas to streambeds. They are designed like ordinary dams, but the spillway is raised to enable sediments to sit in the dam. Project activities include constructing new sand water-storage dams which do not require a permit or approval from State Water Councils. The procurement of any materials for constructing sand water-storage dams are locally available, obviating the need for importing any goods from abroad.  Each sand water storage dam has an annual design capacity of 20,000 cubic meters. The 30 new sand water storage dams will contribute a total of 0.6 Mm3 in new annual water storage capacity. Specific locations for the new sand water-storage dams and pumps are indicated in Annex 2.

Activity 2.3:  Construct improved Hafirs and upgrade existing ones, excavating natural pond and cistern to increase availability of drinking water. This involves the construction of water storage infrastructure

Specifically, Activity 2.1 will introduce 75 new hafirs at selected locations within the project sites.  A hafir is simply an artificial excavation designed for harvesting rainwater. During the rainy season it will be filled by the discharge from seasonal streams and enhances the access of vulnerable communities to drinking water. Hafirs are usually constructed big enough to cater for the needs of the villagers/nomads and their livestock during the dry season.  Each improved hafir has an annual storage capacity of 50,000 cubic meters. The 75 new improved hafirs will contribute a total of 3.75 Mm3 in new water storage capacity.Project activities include both constructing improved Hafirs and upgrading existing ones. The installation of new hafirs does not require approval from State Water Councils. The procurement of any materials for rehabilitating or constructing new hafirs are locally available, obviating the need for importing any goods from abroad.

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Activity 3.1: Train extension officers and other government stakeholders on climate change resilience and adaptation related issues.  This involves the development of training materials tailored to local circumstances and delivered through a series of workshops;

Specifically, Activity 3.1 will involve a) conducting a training needs assessment for executing and concerned government agencies; b) developing manuals and technical guidelines for strengthening technical capacity for expanding climate-resilient practices throughout other communities; c) training extension staff from the Ministry of Agriculture and concerned government agencies; d) developing guidelines on adaptation measures for up-scaling to other localities; and e) developing a manual of best practices on climate change adaptation measures

Activity 3.2: Build capacity of beneficiaries for coping with climate change risks and local operation & maintenance of project interventions. This involves a series of seminars and workshops to raise awareness among village leaderships councils about climate change coping strategies

Specifically, Activity 3.2 will involve a) conducting climate resilience training of village extension networks, including role of micro-financing schemes; b) conducting training of village development committees, including role of micro-financing schemes and community procurement processes; c) carrying out awareness-raising campaigns on building resilience to climate change, including role of micro-financing schemes; and d) facilitating exchange visits of communities and extension staff across localities. A fair and transparent selection process will be established regarding beneficiary selection for capacity building. Several criteria will be employed to select training beneficiaries including specific level of stakeholder engagement; specific level of vulnerability, status as female-headed household, and other criteria to be determined.

 

Contacts: 
Tom Twining-Ward
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
June 2020
Description: 
GCF Board Approval
Proj_PIMS_id: 
5813
SDGs: 
SDG 2 - Zero Hunger
SDG 3 - Good Health and Well-Being
SDG 6 - Clean Water and Sanitation
SDG 13 - Climate Action

Integrated Water Resource Management and Ecosystem-based Adaptation in the Xe Bang Hieng river basin and Luang Prabang city, Lao PDR

Lao PDR is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

Increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase with climate change.

Led by the Government of Lao PDR with support from the UN Development Programme, this proposed 4-year project will increase the resilience of communities in two particularly vulnerable areas – Xe Bang Hieng river basin in Savannakhet Province and the city of Luang Prabang – through:

  • Strengthened national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction;
  • Ecosystem-based Adaptation (EbA) interventions with supporting protective infrastructure and enhanced livelihood options;
  • Community engagement and awareness-raising around climate change and adaptation opportunities, as well as knowledge-sharing within and outside Lao PDR; and
  • The introduction of community-based water resource and ecological monitoring systems in the Xe Bang Hieng river basin.
English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The proposed project will directly benefit 492,462 people (including 247,991 women) by increasing the climate resilience of communities in nine districts in Savannakhet Province, as well as the city of Luang Prabang, through facilitating the adoption of ICM at the provincial and national level and urban EbA at the local level. Government ministries at central and provincial levels will also benefit from capacity-building; development of relevant plans; technical support; coordination; and mobilisation of human and financial resources.
Financing Amount: 
GEF-Least Developed Countries Fund: US$6,000,000
Co-Financing Total: 
Government of Lao PDR: $19,500,000 (in-kind) | UNDP: $300,000 (in-kind) + $200,000 (grant)
Project Details: 

General context

The Lao People’s Democratic Republic is a landlocked Least Developed Country in Southeast Asia. It has a population of ~7.1 million people and lies in the lower basin of the Mekong River, which forms most of the country’s western border with Thailand.

Its GDP has grown at more than 6% per year for most of the last two decades and reached ~US$ 18 billion in 2018 (~US$ 2,500 per capita). Much of this economic growth has been dependent on natural resources, which has placed increasing pressure on the environment. Agriculture accounts for ~30% of the country’s GDP and supports the livelihoods of 70–80% of the population.

Impacts of climate change

The country is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

In 2018, for example, floods across the country resulted in ~US$ 370 million (~2% of GDP) in loss and damage, with agriculture and transport the two most affected sectors.  Floods in 2019 — the worst in 4 decades — affected 45 districts and ~768,000 people country-wide floods, resulting in US$162 million in costs.

An increase in the frequency of these climate hazards, including floods and droughts, has been observed since the 1960s, as well as an increase in the average area affected by a single flood.

Following the floods, the Government identified several priorities for responding to flood risk in the country, including:

  1. Improving flood and climate monitoring and early warning systems;
  2. Public awareness raising to respond to disasters and climate change;
  3. Building resilience at community level; iv) improved risk and vulnerability mapping; and
  4. Strengthening the capacity of government at the provincial, district and community level for better climate change-induced disaster response.

 

In addition, average increases in temperature of up to 0.05°C per year were observed in the period between 1970 and 2010. These trends are expected to continue, with long-term climate modelling projecting: i) an increase in temperature between 1.4°C and 4.3°C by 2100; ii) an increase in the number of days classified as “Hot”; iii) an increase of 10–30% in mean annual rainfall, particularly in the southern and eastern parts of the country and concentrated in the wet season (June to September); iv) an increase in the number of days with more than 50 mm of rain; v) a 30–60% increase in the amount of rain falling on very wet days; and vi) changing rainfall seasonality resulting in a longer dry season.

The increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase as a result of the projected increase in extreme rainfall events — associated with changes iv) and v) described above.

About the project under development

The proposed project focuses on strengthening integrated catchment management (ICM) and integrated urban flood management within the Xe Bang Hieng river basin in Savannakhet Province – a major rice-producing area and particularly important for the country’s food security, as well as one of the areas in the country which is most vulnerable to droughts and experienced severe flooding in 2017, 2018 and 2019 – and the city of Luang Prabang – one of the cities in Lao PDR which is most vulnerable to flooding, as well as being an important cultural heritage site – for increased climate resilience of rural and urban communities.

The approach will ensure that water resources and flood risks are managed in an integrated manner, considering the spatial interlinkages and dependencies between land use, ecosystem health and underlying causes of vulnerability to climate change.

The protection and restoration of important ecosystems will be undertaken to improve the provision of ecosystem goods and services and reduce the risk of droughts, floods and their impacts on local communities, thereby increasing their resilience to the impacts of climate change.

Improved hydrological and climate risk modelling and information systems will inform flood management as well as adaptation planning in the Xe Bang Hieng river basin and Luang Prabang. This information will be made accessible to national and provincial decision-makers as well as local stakeholders who will be trained to use it.

Using the ICM and integrated urban flood management approaches and based on integrated adaptation planning, on-the-ground interventions to improve water resource management and reduce vulnerability to floods and droughts will be undertaken, including ecosystem-based adaptation (EbA).

These interventions will be complemented by capacity development and awareness raising as well as support for rural communities to adopt climate-resilient livelihood strategies and climate-smart agricultural practices.

Addressing gender equality

The proposed project will promote gender equality, women’s rights and the empowerment of women in several ways.

First, the proposed activities have been designed taking into account that in Lao PDR: i) women’s household roles should be considered in any interventions concerning natural resource management, land-use planning and decision-making; ii) conservation incentives differ for men and women; iii) gendered division of labour needs to be understood prior to the introduction of any livelihood interventions; and iv) women need to have access to, and control over, ecosystem goods and services.

Second, an understanding of gender mainstreaming in relevant sectors and associated ministries will be developed, and gaps in gender equality will be identified and addressed in all aspects of project design.

Third, women (and other vulnerable groups) will be actively involved in identifying environmentally sustainable activities and interventions that will support them in safeguarding natural resources and promoting their economic development, with specific strategies being developed to target and include female-headed households. To ensure that the project activities are both gender-responsive and designed in a gender-sensitive manner, a gender action plan will be developed during the project preparation phase.

Expected Key Results and Outputs: 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

 

Monitoring & Evaluation: 

The overall monitoring and evaluation of the proposed project will be overseen by the Department of Planning under the Ministry of Planning and Investments, which carries out M&E for all planning processes in the country.

Contacts: 
Ms. Keti Chachibaia
Regional Technical Advisor for Climate Change Adaptation, UNDP
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Output 1.1.1: Central and Provincial training program implemented to enable climate risk-informed water management practices in target urban and rural areas

Output 1.1.2: Current and future zones of the Xe Bang Hieng River catchment at risk of climate change-induced flooding and drought mapped, based on hydrological models produced and protective infrastructure optioneering conducted

Output 1.1.3. Economic valuation of urban ecosystem services in Luang Prabang and protective options conducted.

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Output 1.2.1: Fine-scale climate-resilient development and land-use plans drafted and validated for Luang Prabang and in the headwater and lowland areas of the Xe Bang Hieng and Xe Champone rivers.

Output 1.2.2: Current Xe Bang Hieng river basin hydrological monitoring network — including village weather stations — assessed and updated to improve efficiency.

Output 1.2.3: Early-warning systems and emergency procedures of vulnerable Xe Bang Hieng catchment communities (identified under Output 1.1.2) reviewed and revised

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Output 2.1.1:  Xe Bang Hieng headwater conservation zones restored to ensure ecological integrity is improved for delivery of ecosystem services

Output 2.1.2: Headwater conservation zone management supported to improve resilience to climate change

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Output 2.2.1: Protective infrastructure constructed to reduce flood (cascading weirs and drainage channels) and drought (reservoir networks and rainwater harvesting) risk

Output 2.2.2: Implementation and distribution of communication and knowledge management tools and technologies (e.g. mobile phone apps, community radio) to increase climate resilience of agricultural communities to floods and droughts

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Output 2.3.1: Market analysis conducted, including; i) analysing supply chains for climate-resilient crops, livestock, and farming inputs; ii) assessing economic impacts and market barriers; and iii) drafting mitigating strategies to address these barriers.

Output 2.3.2: Community Conservation Agreements process undertaken to encourage climate-resilient agriculture, fisheries, and forestry/forest-driven livelihoods and practices

Output 2.3.3: Diversified activities and opportunities introduced through Community Conservation Agreements (developed under Output 2.3.2) in agriculture (livestock and crops, including vegetable farming) as well as fisheries, non-timber forest products (NTFP), and other off-farm livelihoods.

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Output 3.1.1: Training and awareness raising provided to Xe Bang Hieng and Xe Champone headwater and lowland communities on: i) climate change impacts on agricultural production and socio-economic conditions; and ii) community-based adaptation opportunities and strategies (e.g. water resources management, agroforestry, conservation agriculture, alternatives to swiddening ) and their benefits

Output 3.1.2: Project lessons shared within Lao PDR and via South-South exchanges on  strengthening climate resilience with regards to: i) catchment management; ii) flash flood management; and iii) EbA.

Output 3.1.2: Awareness-raising campaign conducted in Luang Prabang for communities and the private sector on urban EbA and flood management.

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

Output 3.2.1: Community-based monitoring systems developed and implemented to measure changes in key ecological determinants of ecosystem health and resilience in the Xe Bang Hieng river basin

Project Dates: 
2020
Proj_PIMS_id: 
6547
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Strengthening the climatic resilience of the drinking water sector in the South of Haiti

Haiti is part of the most beautiful island in the Caribbean and yet the most vulnerable to Climate Change due to economic and social issues combined with the problem of access to safe drinking water. Access to safe drinking water is an ongoing issue in Haiti that is being exacerbated by climate change. The problem will only get more critical with higher temperatures, decreased precipitation, and a rise in extreme weather events. The water issue affects the safety and health of Haitians and was one of the causes for the Cholera outbreak that began in 2010 as well as reduced resilience to prevent the spread of other bacterial and viral diseases. Only 1 in 4 Haitians have access to basic water services, over half have limited access, and 22 percent have no access at all. Over 80 percent of the small island developing state’s population have limited access to sanitation, while 18 percent have no access to sanitation services at all.

The ‘Strengthening the climatic resilience of the drinking water sector in the South of Haiti’ project will focus on improving the resilience of the drinking water supply in Haiti to the effects of climate change by improving conservation and management of water supplies, improving understanding and awareness of vulnerabilities in the water sector, strengthening regulations and policies..

The project addresses water stress due to climate change. Projected climate change will increase the duration and intensity of droughts in Haiti and consequently reduce water yields in springs, wells and rivers on which the population of rural areas and small urban centers depend. This will further exacerbate existing water supply deficits resulting from increased demand due to population growth and degradation of vegetation in aquifer recharge zones (which may also be exacerbated by climate change due to increased frequencies of drought-related wildfires). Climate changed induced floods and landslides will also further impact water stress and increase the risk of water-borne diseases.

The 60-month GEF Least Developed Countries Fund-financed project develops capacities, tools and infrastructure that will provide 90,000 individuals as direct beneficiaries in 86 communities and small urban centers to enjoy reliable access to drinking water throughout the year, despite the increases in the intensity and duration of droughts that are expected from climate change. The project promotes the adoption of improved water management and conservation practices across a 700-hectare area in the project target area (the arrondissement of Jacmel in the Southeast region). The project delivers cross-cutting benefits on economic, social and environmental levels.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (-72.905273438814 18.277345216103)
Primary Beneficiaries: 
90,000 direct beneficiaries
Financing Amount: 
US$4.5 million
Co-Financing Total: 
US$31.6 million
Project Details: 

The socio-economic profile of Haiti

Over 58 percent of the population lives on less than $2 per day (under the 2012 national poverty line)[1] and 23.8 percent are extremely poor (cannot satisfy their nutritional needs). Poverty is highest in rural areas where 52 percent of the population and 63 percent of extremely poor households reside. GDP per capita stood at US$730 in 2017. Haiti has a population of approximately 11 million people (55 percent women) and population is projected to increase to approximately 14.0 million in 2050 (UN, 2017)[2].

The Sustainable Development Goals (SDGs) global targets and indicators include, by 2030: i) ensuring all men and women, in particular the poor and vulnerable, have equal rights to economic resources, as well as access to basic services and;  ii) achieving universal and equitable access to safe and affordable drinking water for all. According to the World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) report under their Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP) [3], data from 2014 indicate that only 25 percent of Haiti’s population have access to basic water services as established in the SDGs[4]; 53 percent have  limited access[5] and; 22 percent have no access to water services[6]. Regarding sanitation, 82 percent of Haiti’s population has access to limited services and 18 percent have no access to sanitation services at all. This is comparable to some countries in sub-Saharan Africa, but far below the regional average in Latin America and Caribbean, where 63 percent of the population have basic sanitation services available and 65 percent have access to safely managed water. The overall coverage figures also show disparities between urban and rural areas in Haiti, especially for access to improved water sources. Sixty-two percent of urban and 34 percent of rural residents have access to distributed water[7].

The South-East Department has a total area of 2,034.10 km². It is bounded to the south by the Caribbean coast and to the north by the Massif la Selle mountain range, which includes the country’s highest peak, 'Pic la Selle' (2684 m). It is divided into eight river basins, of varying size, draining into the Caribbean, with mostly steep topography and only a narrow littoral strip. There is a steep rainfall gradient between mountainous and more western areas. In mountainous areas annual precipitation varies between 1,250 and 2,500mm and in the coastal strip, especially the south-eastern extreme of the area, annual precipitation ranges between 500 and 750mm with very pronounced seasonal variations.

On the ridge top of Massif la Selle there are two significant forest remnants, Macaya and La Visite National Parks. Besides these two forest areas, higher parts of the Massif are characterized by a largely treeless altiplano, which are used for vegetable production. There are some significant areas of tree cover at lower and middle altitudes, associated in some cases with coffee plantations, while the drier south-east part of the Department is largely dominated by Prosopis scrub which is mainly used for the cyclical extraction of wood for charcoal production. Middle and lower altitude areas are heavily impacted by smallholder food production and extensive livestock raising.

The population of the Department was 632,601 people in 2015, of which around 85 percent is rural and 40 percent is less than 18 years old[8]. In the South-East Department, 56 percent of the population obtains their drinking water from springs, 20 percent from communal water fountains, 12 percent from household water tanks (connected to piped water systems[9]) and 6 percent from rivers. Water is normally free, but the high levels of dependence on springs and rivers means that water supply is typically of poor quality and is highly vulnerable to seasonal variations in runoff and the level of the water table. In rural areas, the water supply systems generally consist of water points equipped with handpumps, while small towns are served with gravity-fed piped systems supplied by spring catchments, from which water is delivered through standposts, kiosks and household connections. A substantial portion of systems isn’t functional for lack of sufficient funds for operation and maintenance (O&M) and less than 10 percent are equipped with chlorination devices[10].

This lack of water and sanitation services contributed to the severity and rapid spread of the cholera epidemic that began in Haiti in October 2010, and had resulted in approximately 820,000 reported cases of cholera and 10,000 reported deaths as of December, 2018[11]. The primary means of cholera transmission is through consumption of water contaminated with human waste. With low sanitation coverage and inadequate availability and treatment of drinking water, few barriers were in place to stop the rapid spread of the epidemic, especially in a population that hadn’t been previously exposed to this disease[12]. Haiti therefore has all key risk factors UNICEF cites for cholera transmission[13]. Increasing temperatures, severe heat waves and prolonged flooding due to climate change are likely to spur cholera and exacerbate health and social conditions of already vulnerable segments of the population. The National Plan for the Elimination of Cholera (managed by DINEPA) established the goal of almost eradicating the cholera rate incidence by 2022. However, no planned or ongoing water sector investment will succeed in sustaining safe water access unless intensified climate variability and long-term change are duly taken into consideration.

The effects of climate change in Haiti

Haiti has a tropical climate, with some variation based on altitude. The average temperature at Port-au-Prince in January ranges from a minimum average of 23°C to a maximum average of 31°C. In July, it varies from 25–35°C. The average annual rainfall is 1,400-2,000mm, but it is unevenly distributed. Heavier rainfall occurs in the southern peninsula and in the northern plains and mountains. Rainfall decreases from east to west across the northern peninsula. The eastern central region receives a moderate amount of precipitation, while the western coast from the northern peninsula to Port-au-Prince, the capital, is relatively dry. There are two rainy seasons, April–June and October–November.

Global climate change is expected to affect Haiti in the following ways:

  1. Increases in temperatures: climate change projections indicate an increase in the average temperature of 0.8-1oC by the year 2030 and 1.5-1.7oC by the year 2060, with the highest increases expected in the months of June or July[14].
  2. Decreases in precipitation: precipitation is expected to decrease by 5.9-20 percent by 2030 and by 10.6-35.8 percent by 2060[15], leading to increased evapotranspiration and water demand, with the greatest decreases also expected in the months of June or July. Agriculture on the hill lands is mainly rain-fed, and therefore highly vulnerable to variations in timing and amounts of the rainfall which determine sowing and harvesting periods. A combination of increasing temperatures and decreasing precipitation, especially in June and July, is likely to impose particularly severe stresses on agricultural systems, especially given the highly degraded nature of soils and vegetation in the target area. Climate change predictions for 2050 and beyond suggest that more than 50 percent of the total area of Haiti will be in danger of desertification.
  3. Extreme weather events: according to the IPCC[16], the Caribbean region is likely to be exposed in the future to more intense and frequent extreme weather events. The impacts of the climate change induced extreme weather events can be exemplified by the 10 cyclonic floods have occurred in Haiti since 2000, resulting in 155 live losses and affecting 277,498 people. In the same period, 16 non-cyclonic floods have occurred in Haiti, affecting 88,466[17] people and killing 2725. Another example was Hurricane Matthew in 2016, which led to physical damages totaling of US$1.9 billion (23 percent of GDP), in addition to substantial loss of lives.[18]

The problem this project aims to address is water stress due to climate change. Projected climate change induced increases in the duration and intensity of drought periods in Haiti are expected to result in reduced water yields in springs, wells and rivers on which the population of rural areas and small urban centers depend. This will further exacerbate existing water supply deficits resulting from increased demand due to population growth and degradation of vegetation in aquifer recharge zones (which in itself may also be exacerbated by climate change due to increased frequencies of drought-related wildfires). Climate changed induced floods and landslides will also further impact water stress and exacerbate the risk of water borne diseases.

According to DINEPA, there are no regular measurements made on water sources that would enable knowing the seasonal and interannual variations of the quantity of water, which is mainly captured for food production and drinking water supply in the Southeast Department. However, in some observations made by DINEPA-Sud in the region, some sources have dried up completely while for others the flow has dropped considerably. Observed climate effects on water sources has weakened an already worrying structural situation regarding access to water. The scarcity of resources generated by drought has been reinforced by the advanced state of degradation of existing supply systems in both rural and urban areas. In some localities the resources are exhausted or very weak and cannot cover the minimum needs of the population: some communal sections simply do not have access to drinking water. This is the case, for example, of the Bodarie spring which supplies the population of Grand Gosier, the source Domingue in the locality of Lafond in Jacmel, as well as water sources in Bainet.

In Haiti, precipitation is expected to decrease by 5.9-20 percent by 2030 and by 10.6-35.8 percent by 2060 due to the effects of climate change. In 2015, the Southeast department was the most affected by the great drought which affected Haiti and droughts that occurred in 2013 and 2016 affected 1,000,000 and 3,600,000 people respectively throughout the country. According to UNDP, due to climate change, precipitation is expected to decrease in several areas of the country by 6 to 20 percent, which would lead to a reduction in groundwater levels of around 70 percent, severely reducing resources available for the population.

 

The baseline scenario and associated baseline projects

Given a full recognition and urgency of the mounting water stress, accelerated by climate change, a high investment has been made nationally in the expansion and improvement of water supply systems in both rural and urban areas (see baseline description below).

The AECID (USD 100,359,000)[19] bilateral program, implemented in partnership with DINEPA (2009-2021) aims at promoting access to drinking water and sanitation and strengthening of national institutions in charge of reforming the water and sanitation sector. This proposed LDCF project will complement it by strengthening institutional capacity at national, regional and local levels to inform water governance and water related decision making for addressing needs and conditions resulting from CC.

GCF-NAP project (US$2.8 million) implemented by UNDP aims at strengthening institutional and technical capacities for iterative development of NAP for an effective integration of CCA into national and sub-national coordination, planning and budgeting process.

DINEPA’s project financed by the Swiss Cooperation (2018-2030), “Strengthening local governance of water and sanitation in Hait (REGLEAU)” aims to meet citizens’ drinking water and sanitation needs by strengthening the local governance in the communes of Bainet, La Vallee de Jacmel, Jacmel and Marigot, in the South-East region. The proposed governance involves local authorities (mainly municipalities), citizens and the private sector engaged for managing the water and sanitation services in each target commune. The proposed LDCF project will fill institutional, information and capacity gaps to ensure that CC effects and adaptation needs are taken into consideration in decision-making and to promote climate proofing of water supply infrastructure.

Finally, IDB’s program implemented by DINEPA “Improved access to water, sanitation and hygiene (WASH) services for urban, peri-urban and rural areas of Northern Haiti” aims at improving the technical and commercial management and works of companies of potable water and sanitation, promoting a PPP for the Cap Haitien water company and; investing in potable water, sanitation and hygiene in urban and rural areas of the department. The objectives of the “Port-au-Prince water and sanitation project III” are to i) improve water and sanitation coverage, quality of service, and hygiene practices in Port-au-Prince; ii) improve water coverage and hygiene in rural areas affected by Hurricane Matthew and in OREPA West; iii) improve the financial sustainability of CTE-MRPP[20] and;  iv) achieve an effective regulation of the sector by DINEPA and the de-concentration of the OREPA West[21]. This LDCF-financed project will ensure, through the implementation of a continued information and knowledge generation system to inform water governance and water related decision making, that considerations of climate change resilience are adequately provided for the implementation of both IDB projects. Furthermore, the three projects will collaborate for strengthening DINEPA in its regulatory functions as well as the OREPAs. IDB will also support the LDCF project component related to adapting and strengthening regulatory measures by providing inputs from lessons learned in the discussion on PPP possibilities for the water sector and its systematic inclusion on discussions and planning.

Despite the wide scope of the baseline initiatives, these will not be sufficient to ensure local community’s access to clean and reliable drinking water, given the additional stresses that will be imposed by climate change, in particular the impacts of increased drought frequency on water yields in springs, wells and rivers, and damage to vegetation in aquifer recharge zones as a result of increasingly frequent wildfires. However, the existing baseline includes a very important initiative pertaining to the National Adaptation Planning that creates conducive environment for LDCF project to complement and introduce additional adaptation measures for consolidated impacts in water availability and access to particularly climate vulnerable communities.

The LDCF investment will be additional and complementary to these baseline investments by using a long-term resilience approach that focuses on response mechanisms to the impacts climate change is having and will have on budgets required for guaranteeing water access and water quality. This will be achieved by supporting local communities’ empowerment to improve their institutional organization for the management of catchment areas and water sources that are critical for freshwater availability in the long term, in light of climate change impacts.  Management practices, informed by climate risks, are critical to reinvigorate and reinforce the water yield capacity and the drainage control functions of the catchment, as well as the protection of water sources that are critical for ensuring local communities’ water security and safety.

The solution proposed by this project in response to this baseline scenario, aims at ensuring that the location, design and management of local drinking water supply systems are functional and sustainable in order to deliver the required water quantity and quality to local communities in the Southeast Department of Haiti. This will be complemented by restoring and improving the protection of vegetation in aquifer recharge areas, in order to optimize infiltration and stabilize water yield. The social acceptance, sustainability and equity of these measures will be ensured through strong, well-informed and representative local governance structures.

Project details

Project results will be achieved through actions structured under three components:

Component 1. Improved understanding and awareness of the water sector vulnerability to climate change

The project will make use of environmental information managed by ONEV and SNRE (building on and complementing the CCCD project initiative in relation to the generation and management of environmental information), in order to develop analyses of CC implications for drinking water access. To this end, it will calibrate climate change projections with local hydrogeological and hydrometeorological data, and with the registers of water sources in the south-east. In addition, activities under this component will give strong emphasis on supporting the interpretation and application of existing and new information generated by the project.

This will allow the identification, for example, of springs and wells that are likely to dry up and provide guidance regarding different possibilities for guaranteeing quality water access (for example stakeholders - including government and water users - will have the elements to guide their decision of either abandoning and replacing the wells/springs by alternative sources, or making investments to increase resilience through promoting aquifer recharge and the protection of water sources). Information generated and managed will also help identify the most reliable water sources on which it would be suitable to base piped water systems, in order to ensure the sustainability of these investments under conditions of climate change. Such decisions will further be supported by analyses of the cost-benefit implications of these alternatives, and by scientific and technical studies as necessary. These analyses will also feed into participatory community-based Vulnerability Assessments that will enable community members and their organizations to visualize, in locally understandable terms, the impacts of CC on drinking water access and its implication on their household welfare. The project will support the development of methodologies and capacities for carrying out these assessments.

In order to promote sustainability, this support will be complemented by the implementation of a continued information and knowledge generation system as a mechanism to inform water governance and water related decision making. Additionally, training activities will be provided to staff of key institutions on the magnitude and nature of CC impacts under different scenarios and on methodologies for the development and application of vulnerability assessments. This training will focus, in particular, on staff representing key national organizations (DINEPA, MDE and MARNDR), as well as staff members of regional and local government, and representatives of community organizations such as Water Committees (CAEPAs). The specific priorities for capacity development and strategies to be used for its successful delivery will be confirmed during the PPG phase together with the key institutions and staff members in order to maximize the impact and sustainability of this activity.

Integrated water resource modelling of the projected long-term impacts of CC on biodiversity, ecosystems, and urban systems, as well as of the implications of the interactions between these aspects on drinking water availability at a landscape level will be carried out.

Component 2. Strengthening of the framework of regulations, policies and institutional capacities at national, regional and local levels for the rational management of drinking water under CC conditions

The project will provide technical recommendations, facilitation and drafting support to enable the adaptation of the existing framework of regulatory and policy instruments to the changing circumstances caused by climate change. This will address issues such as the normative provisions and approval criteria for the establishment and management of water supply systems and watersheds, as well as priorities for action provided for in key policy instruments of the water, environment, agriculture and rural development sectors. The precise needs for intervention in these regulatory and policy frameworks will be confirmed through detailed analyses, with the participation of Government actors, during the PPG phase.

The strategic plans of DINEPA, and of regional and local governments in the target area, will also be the subject of mainstreaming support in order to ensure that they incorporate and respond to a range of plausible climate change scenarios in relation to freshwater availability (component 1), and that the proposed adaptation measures are based on rigorous cost-benefit analysis and technical feasibility studies. The result of this activity will be the optimization of the results to be achieved by these plans in terms of resilience, cost-effectiveness and sustainability.

The project will also support improved coordination of planning and investments between the key institutions with responsibilities related to the management of drinking water resources and other associated natural resources, including DINEPA, MDE (including ONEV) and MARNDR (including SNRE), as well as regional and local governments. This support will focus on minimizing the risk of conflicts or duplication between different institutions’ approaches to natural resource management in drainage basins and recharge zones (MDE), agricultural land use in these zones (MARNDR), local development and infrastructure initiatives (regional/local Governments and the Ministry of Public Works) and the installation of and management of water supply systems (DINEPA/OREPAs), guaranteeing that involved institutions include climate change adaptation into their approaches and activities in the water sector.

A targeted programme of capacity development will be formulated and applied, aimed at strengthening key institutional actors in technical aspects of CC adaptation in the drinking water sector, including aquifer management, land use planning, headwater protection and specific technical practices for water conservation and increased resilience. This will complement the capacity development proposed under component 1 and will similarly be based on specific needs assessments to be carried out during the PPG phase. The project also invest in  equipment required to effectively enforce adaptation practices. Such equipment will be used for groundwater level monitoring, rainfall gauges and discharge measurements and other functions that will be additionally identified during the PPG as being essential for the effective planning and enforcement of adaptation measures to secure freshwater availability.

Local actions for the conservation and sustainable management of water and target sub-catchment areas to increase resilience to climate change will be carried out within the framework of community-based strategic and operational plans, to be developed under a participatory approach to be facilitated by the project. Community-based strategic and operational plans will define priorities for action and investment, together with corresponding timelines, responsibilities and funding options. Plans focusing on adaptive water management options will be developed on top of and aligned to local land use plans, based on the same principles as those commonly developed at municipal and regional levels, but adapted to the local cultural context. This activity will give particular emphasis on identifying zones of importance for water supply (aquifer recharge zones and water sources and their protection zones), and defining adequate uses for the sustainability of water supply under climate change conditions.

A necessary complementary action to the plans that will be developed under this component will be the support to the strengthening of local governance structures in order to promote their effective implementation and improve the control of activities that negatively affect water sources conditions and recharge zones (such as the establishment of dwellings, tree felling, chemical pollution and road construction). This support will also focus on improving mechanisms for consensus-based community-level decision-making and norms, related to the distribution of responsibilities and benefits associated with climate-proofing drinking water supply (for example, in-kind contributions of community members to the construction of water supply infrastructure in collaboration with and under the supervision of trained technicians and workers or the establishment and maintenance of protective vegetation, and the application of governance rules to determine allowable levels of offtake by different stakeholders for domestic, agricultural and other uses). In certain cases, governance strengthening may extend to the facilitation of inter-community coordination and collaboration, in order to address upstream-downstream impacts on water supply. Key entities to be strengthened in relation to such governance roles will include community-level Water Committees. The project will also strengthen their technical and organizational capacities, in order to allow them to manage water resources and water supply infrastructure effectively and equitably under CC conditions. The strengthening of Water Committees will also help them to carry out their roles of overseeing and controlling construction work, O&M requirements, user right enforcement and equitable and fee-based distribution as well as source protection through the enforcement of agreed land use plans.

Project support will also promote the discussion on how to address mechanisms for charging for water services and for managing the resulting income to finance the maintenance and improvement of the water supply systems, as well as the reforestation and protection of water sources and recharge zones (including, where appropriate, “payment for environmental services”). This will build on the support provided to date by the existing LDCF project to the installation of water meters and water payment systems, seeking to improve the mechanisms by ensuring that payment levels and systems adequately reflect the additional costs of water supply resulting from the need to adapt to climate change. This approach will necessarily be accompanied by investments in awareness raising among community members on the need for financial sustainability of water supply, especially under conditions of climate change, comparing these costs with those of the eventual alternative which may involve the purchase of water from tanker trucks (an option on which many urban areas already depend). During the PPG phase, analyses will be carried out to compare alternative modalities and mechanisms for charging for water services, taking into account the balance of costs and benefits of each option in terms of, for example, operational and administration costs vs. the economic implications of the health benefits generated through access to reliable clean water. These analyses will also examine how charging systems will be set up and how they will function, based on information sources such as household surveys and discussions with Water Committees (CAEPAs) and other relevant members including government, private sector, CSOs)[22].

In addition, this project aims at encouraging the dialogue between the government, the civil society and the private sector to explore the possibility of engagement of small and medium local private enterprises in the water management sector. Dialogue will be promoted through workshops organized by DINEPA for ensuring coordination between the different entities (government, civil society organizations and private sector actors) and exploring the possibility of an appropriate inclusion of water management PPP[23] schemes in the review of the regulatory and policy framework of the water management sector. A participatory analysis will be conducted of existing needs/gaps of the water sector that could be addressed through the participation of existing local small and medium sized private enterprises. Discussion will involve the participation of other partner projects (i.e IDB) and Water Committee representatives for promoting an improved operational performance in the sector and the implementation of a climate change responsive, safe and affordable water service.

Component 3. Identification and promotion of practices for the conservation, management and supply of drinking water adapted to predicted CC scenarios

Under this component, concrete physical investments will be financed in order to promote the CC resilience of communities by improving drinking water access. These investments will build upon the lessons learned in Haiti, for example through the previous DINEPA/AECID/UNDP project and the UNDP/LDCF project on Strengthening Adaptive Capacities to Address Climate Change Threats on Sustainable Development Strategies for Coastal Communities in Haiti (GEF 3733; 2010-2018), and on international best practice in adaptive water management options and conservation. Activities under this component will also be oriented and validated through participatory analyses of needs and priorities involving the local communities and supported by technical and socioeconomic studies of their feasibility and cost-effectiveness.

Subject to validation of these studies and consultations (which will be carried out during the PPG phase), the practices to be implemented are likely to include the following:

  • Protection and reforestation of water sources and aquifer recharge zones. This Ecosystem-Based Adaptation (EBA) approach will focus on promoting infiltration of rainfall and runoff water, and consequent aquifer recharge, using local species and management models that are locally acceptable. Systems implemented will be resilient to climate change, capable of facilitating infiltration and providing shade to reduce evaporation, without negatively affecting water yield through evapotranspiration demands.
  • Establishment/expansion of cisterns and small storage reservoirs with sufficient capacity to last through extended drought periods.
  • Perforation/deepening of wells allowing falling water tables to continue to be accessed.
  • Establishment of physical measures to promote aquifer recharge (e.g. percolation tanks, gabions and contour bunds).
  • Establishment/improvement of roof top water capture systems, together with associated household rainwater storage cisterns.
  • Filters to allow grey-water to be recycled and thereby reduce overall household water demand.

 

Adaptation benefits

The project will develop capacities, tools and infrastructure that will enable 90,000 individuals as direct beneficiaries in 86 communities and small urban centers to enjoy reliable access to drinking water throughout the year, despite the increases in the intensity and duration of drought periods that are expected as a result from climate change. In addition to concrete investments to support climate-proofing drinking water supply (such as reforestation and protection of water sources, percolation tanks and rainwater capture systems), the project will contribute to the increased resilience to climate change achieved through baseline investments in water supply by ensuring that they are based on water sources that are least vulnerable to climate change-related failure, and will develop sustainable capacities for institutional adaptation to climate change through the strengthening of decision-making systems capable of responding to emerging information inputs on climate change and water resource status.

Innovation, sustainability and potential for scaling up

The project will be innovative in as much as it will apply a multi-sector approach to promoting climate resilience to water supply, involving actors beyond the water sector itself. It will confer added value to previous investments by ensuring that decision-making on water supply investments is sound, evidence-based and adaptive, taking into account multiple information sources and by complementing traditional approaches to water supply based on piped water with alternatives including rainwater capture and grey water recycling to reduce competition in household irrigation demands. Hence the diversification of potential water sources by the protection and mobilization of ground, surface, harvested rainwater and recycled household greywater will maximize local water availability, taking into consideration current and projected climate change impacts.

Sustainability of the field-level resilience measures proposed will be promoted by the use of low cost, locally appropriate technologies that have been subject to prior consultation and validation of engineers and target communities. Institutional sustainability will be promoted through the development of in-house capacities in key institutions for scenario analysis, monitoring and decision-making in accordance with principles of adaptive management, and by promoting inter-institutional collaboration in relation to climate change adaptation. Options for financial sustainability to be explored will include the implementation of locally-negotiated and consensus-based systems for water charges to cover the costs of operation and maintenance of water supply systems, taking into account the additional costs implied by climate change adaptation and including, when possible, the use of  a mechanism of payment for environmental services.  

The measures to be implemented by the project for increasing the resilience of communities to climate change by improving drinking water access will be highly replicable throughout Haiti, given the universally poor coverage and vulnerability of water supply in the country. The project will be of particular strategic value by functioning as a testing ground for models capable of being subsequently applied at larger scale in other areas in the country (such as the North-West and the metropolitan zone of Port au Prince), which face similar and even more severe problems, and which may be addressed in the future, by other projects, once the required institutional conditions and co-financing opportunities are in place for this to happen.

The achievement of the project’s objective of generating multiple environmental and social benefits through the preservation of water resources will be achieved by associating GEF resources with significant co-financing. GEF resources will be used to mainstream environmental considerations into a number of the ongoing initiatives described above, with the result that these initiatives will come to contribute actively to the generation of GEBs. These co-financing sources are as follows:

  • Ministry of Environment and DINEPA: Government recurrent budget for building capacities on climate change adaptation, water management, vulnerability and hydrometeorology[24].  
  • IDB’s programme aiming at improving access to water, sanitation and hygiene (WASH) services within the framework of SDGs for urban, peri-urban and rural areas and implementing with DINEPA the water sector reform in the areas of regulation, planning and operation[25]; along with another programme aiming at improving the quality of life and sanitary conditions of the population of Port-au-Prince and rural communities through the provision of sustainable water and sanitation services[26].
  • UNDP: Support to capacity building and local governance strengthening, mobilization of partners and knowledge sharing towards sustainable development goals[27].

 

 




[1] World Bank, Haiti - Systematic Country Diagnostic 2015.

[2] United Nations. 2017. World Population Prospects: The 2017 Revision. Department of Economic and Social Affairs. Population Division. New York: United Nations. https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf

[3] World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. 2017.P.46. Available at: https://www.who.int/mediacentre/news/releases/2017/launch-version-report...

[4] Water from an improved source is available on premises.

[5] Water from an improved source is available off premises; or an improved source is on-site, but no water is available.

[6] Unprotected dug well or spring, surface water, or no water source.

[9] Between 22 and 40 percent in three of the communes but in the other 7, between 1 and 6 percent.

[10] Project Appraisal Document for Sustainable Rural and Small Towns Water and Sanitation Project, World Bank, 2015

[11] Republic of Haiti: Ministry of Public Health and Population. National Monitoring Network Report, December 2018.  2018. http://mspp.gouv.ht/site/downloads/Profil percent20statistique percent20Cholera percent2050SE percent202018.pdf

[12] Water, Sanitation and Hygiene in Haiti: Past, Present, and Future. Richard Gelting, Katherine Bliss, Molly Patrick, Gabriella Lockhart, and Thomas Handzel. Am J Trop Med Hyg. 2013 Oct 9; 89(4): 665–670. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795096/

[13] Water, Sanitation, and Hygiene Sector Status and Trends Assessment in Haiti. Final Report. Mohamed Chebaane, Assessment Team Leader, Stéphanie Maurissen, WASH Sector Expert, December 2014. USAID. http://pdf.usaid.gov/pdf_docs/PA00K9CK.pdf

[14] National Adaptation Programme of Action- NAPA. 2006. https://www.preventionweb.net/files/8526_hti01f.pdf

[15] National Adaptation Programme of Action- NAPA. 2006. https://www.preventionweb.net/files/8526_hti01f.pdf

[17] NATHAN 2

[18] UN News Centre. “UN calls for support to recovery plan as Haiti loses $2.7 billion in Hurricane Matthew.” http://www.un.org/apps/news/story.asp?NewsID=56294#.WYseP-nRaUl

[19] AECID. Spanish Agency for International Development Cooperation. Bilateral Program.

Bilateral Programmes. Partnership with DINEPA. South-East Department. https://www.aecid.ht/fr/secteurs/eau-et-assainissement

[20] CTE-MRPP. Centre Technique d'Exploitation of the Metropolitan Region of Port- au-Prince.

[22] SPIRAL Group; UNICEF; USAID/WATSAN projet; OREPA Ouest; DINEPA/CNRC; Clio-PEPA; DINEPA/Communication; MICT/DCT; Habitat for Humanity; Maltheser International; UNICEF Régional; Helvetas.

[23] Public-Private-Partnerships.

[24] A USD 600,000 cofinance is being provided by DINEPA and USD 500,000 from the Ministry of Environment.

[25] IDB. HA-L1135. Approved. To be executed by DINEPA. North Department. A USD 15,000,000 cofinance is being considered from this project.  https://www.iadb.org/en/project/HA-L1135

[26] IDB. HA-L1103. Executed by DINEPA. Port-au-Prince and West Department. A USD 15,000,000 cofinance is being considered from this project. https://www.iadb.org/en/project/HA-L1103

[27] UNDP provides a USD 200,000 cofinance for this project.

 

Expected Key Results and Outputs: 

Outcome 1: Improved understanding and awareness of the vulnerability of the water sector to climate change

1.1. Improved awareness, knowledge and information management systems for the water sector to plan and respond to the risks of climate change.

1.1.1. Analyses carried out at national level to have climate change scenarios constructed and show their implications for the availability of water to inform communities and government on adaptive water management options,  resilient water supply and implementation of a continued information and knowledge generation system to inform water governance and water related decision-making.

1.1.2. Cost-benefit analyses of alternative adaptation strategies under different climate change scenarios.

1.1.3. Training programmes implemented for regional and national institutions on the magnitude, nature and implications of climate change on freshwater availability, including methodologies and application of vulnerability assessments, and adaptation solutions.

1.1.4. Scientific and technical studies carried out regarding the implications of climate change and options for management and adaptation in the target area, feeding effectively into decision-making on climate change-resilient water supply.

1.1.5. Inventory and quality characterization of subterranean water resources carried out in the area served by OREPA Sud.

1.2. Target communities are prepared to effectively plan their responses to the impacts of climate change on drinking water

1.2.1. Methodologies and instruments developed for Vulnerability Assessment of drinking water supply at community level.

1.2.2. Participatory Vulnerability Assessments carried out in 86 target communities.

1.2.3 Integrated water resource modelling exercises carried out of the projected long-term impacts of climate change on biodiversity, ecosystems, and urban systems, and the interactions between these aspects and drinking water availability at a landscape level.

Outcome 2: Strengthening of the framework of regulations, mechanisms, policies and institutional capacities at national, regional and local levels for the rational management of drinking water under climate change

2.1. Key regulatory and policy instruments take into account the implications of climate change for drinking water supply and promote adaptive community-based management.

2.1.1. Two regulatory instruments adjusted to take into account the evolving needs and conditions resulting from climate change.

2.1.2. Plans (developed by DINEPA OREPA Sud and 60 local Water Supply Action Committees (CAEPA), oriented by the results of evaluations and analyses of climate change and its implications for water supply vulnerability, providing for adaptation and the prioritization of investments in drinking water supply under conditions of climate change

2.1.3. Frameworks and instruments developed and applied for planning and coordination between national, regional and community organizations.

2.2. Increased levels of capacities in priority institutional stakeholders (DINEPA, OREPA, and 60 CAEPA) in relation to technical aspects of water resource management, territorial land use planning, management and application of information (on water resources, climate change and related threats).

2.2.1. Applied programmes implemented for the strengthening of capacities (precise capacity development needs to be confirmed during PPG phase)

2.2.2. Key equipment needs provided (to be defined during PPG phase)

2.3. 86 target communities, with 338,728[1] beneficiary individuals including 90,000 direct beneficiaries, with instruments and mechanisms that ensure the sustainable management of water resources and associated infrastructure.

2.3.1. Community-based strategic and operational plans developed for ensuring the resilience of drinking water access to the impacts of climate change.

2.3.2. Consensus-based community-level territorial planning carried out, providing for permitted land uses in drainage and recharge zones in order to ensure resilience of drinking water access to the impacts of climate change.

2.3.3. Programmes applied for the strengthening of the technical and organizational capacities and awareness of community level stakeholders and organizations, motivating and enabling them to manage water resources and supply infrastructure effectively and equitably under conditions of climate change.

2.3.4. Water consumption metering systems developed and installed in order to improve water use efficiency and distribution, accompanied with awareness-raising and advocacy programme

2.3.5 Programme for treatment of water supplies with hypochlorate in order to reduce pollution-related health risks.

Outcome 3: Identification and promotion of practices for the conservation, management and supply of drinking water adapted to predicted climate change scenarios

3.1. Local communities and households with reliable access to drinking water due to the implementation of climate change resilience measures.

3.1.1     86 water sources and aquifer recharge zones protected and reforested, covering 700 ha, using climate-resilient and locally acceptable species.

3.1.2. Physical measures established to reinforce protection of water distribution systems in disaster-prone areas (either flooding or landslides) (e.g. gabions, contour bunds), in 86 communities.

3.1.3. Roof top water capture and household cisterns installed in 350 households.

 

Contacts: 
UNDP
Simone Bauch
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Improved understanding and awareness of the vulnerability of the water sector to climate change

Outcome 2: Strengthening of the framework of regulations, mechanisms, policies and institutional capacities at national, regional and local levels for the rational management of drinking water under climate change

Outcome 3: Identification and promotion of practices for the conservation, management and supply of drinking water adapted to predicted climate change scenarios

Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
June 2020
Description: 
PIF Approval
Proj_PIMS_id: 
5628
SDGs: 
SDG 6 - Clean Water and Sanitation
SDG 13 - Climate Action

Enhancing the resilience of vulnerable coastal communities in Sinoe County of Liberia

Liberia faces severe development challenges. Climate change, coastal erosion, rising seas and degraded ecosystems are exacerbating risks for communities living on Liberia's coast, derailing efforts to reach the Sustainable Development Goals and reach targets outlined in the country's Nationally Determined Contribution to the Paris Agreement.

Nearly 58 percent of Liberia’s 4 million people live within 40 miles of the coast, putting extensive pressure on coastal ecosystems for food, land, mineral extraction and other resources. This has resulted in habitat loss and degradation. Liberia is a least developed country that has recently emerged from an extended period of civil war. An estimated 64 percent of Liberians live below the poverty line, with 1.3 million living in extreme poverty. Food insecurity affects 41 percent of the population and chronic malnutrition is high. The country has also been afflicted by the outbreak of the Ebola Virus disease and COVID-19 pandemic. The economy, though recovering, is still unable to generate the large-scale employment opportunities essential for absorbing a large pool of unemployed and underemployed young men and women, and the majority of the country’s population is directly dependent on natural resources for their livelihoods.

The 'Enhancing the resilience of vulnerable coastal communities in Sinoe County of Liberia' project builds on previous and ongoing climate resilience projects to localize climate change adaptation actions. The project supports the resilience of 80,000 beneficiaries in coastal communities and will protect, restore and rehabilitate 20,000 hectares of degraded coastal habitats. In developing small, micro, and medium enterprises, the project supports business development and training programmes for 70,000 beneficiaries, with targeted approaches for women and youth. The project also targets 30,000 beneficiaries who will benefit from integrated farming systems, fisheries and compressed stabilized 'earth blocks' and their value chains. 

The project works toward transformational change by moving away from a 'business-as-usual' model to an integrated approach that combines nature-based interventions, hard infrastructure, gender-responsive approaches, capacity, policy, knowledge and information and observational management systems. It enhances coastal resilience to storms, coastal erosion and flooding risks while supporting a range of ecosystem service benefits to support livelihood security and overall climate resilience. These supports will benefit other coastal counties around the country in sea and river defense risk management as well as support for climate adaptation livelihood opportunities.

In building livelihoods and working toward the Sustainable Development Goals, the project enhances entrepreneurial initiatives that build climate resilience, especially those in other value chains such as fisheries and fuelwood, to open up opportunities for women's involvement. At the local level, new technologies in combination with traditional technologies are promoted through the project to ensure that productivity and sustainability of livelihoods are maintained. These adaptation actions and associated technologies or practices will build on the natural resilience and innovativeness of Liberian communities to build their self-reliance and capacity to continue the adaptive process iteratively. Adaptation strategies such as coastal ecosystem-based adaptation solutions, participatory sea and river defense planning approaches, climate-smart integrated farming systems, coastal protected area establishment and diversification of livelihood options will be delivered in combination.

English
Region/Country: 
Coordinates: 
POINT (-9.0856933792992 5.1270550738052)
Financing Amount: 
US$8,932,420
Co-Financing Total: 
US$53,700,000
Project Details: 

The Republic of Liberia has a 565-km-long coastline and claims an economic zone of 13 nautical miles and a territorial zone of 370 km. About 90 percent of the coastline consists of a narrow sand beach 20-25 meters wide, reaching 60-80 meters in some parts of southeastern Liberia, interspersed with lagoons. The coastal area consists of swamp-related vegetation, including mangroves forests and reeds that extend up to 25 miles inland. Mangroves provide important breeding and nursery areas for many West African marine species of fish, crab, shrimp and mollusks and hence deforestation of mangroves is having a direct impact on fish stock.

The country is faced with continued severe development challenges. Nearly 58 percent of Liberia’s 4 million people live within 40 miles of the coast, which puts extensive pressure on coastal ecosystems for food, land, mineral extraction and other resources, resulting in habitat loss and degradation. Populations continue to grow, and new infrastructure (e.g. roads and housing), while desperately needed, will only add additional pressure and increase ecosystem degradation.

Liberia is a least developed country that has recently emerged from an extended period of civil war. It has struggled through two civil wars, one from 1989-1996 and the second from 1999-2003. An estimated 64 percent of Liberians live below the poverty line, of whom 1.3 million live in extreme poverty. Food insecurity affects 41 percent of the population and chronic malnutrition is high. Many people were displaced from their homes during the war and have only recently returned. The war had a devastating impact on the country’s health and education systems and a large portion of the population is illiterate. The country has also been afflicted by the outbreak of the Ebola Virus disease. The economy, though recovering, is still unable to generate the large-scale employment opportunities essential for absorbing a large pool of unemployed and underemployed young men and women. The majority of the country’s population is directly dependent on natural resources for their livelihoods.

Climate projections show a slight increase of total precipitation and a longer Sahelian rainy season (2–3 days per decade) with drier phases within.  In a “business as usual” world, most countries in West Africa will have to cope with less predictable rainy seasons, generalized torrid, arid and semi-arid conditions, longer dry spells and more intense extreme precipitations resulting in flash floods. Such conditions can produce significant stresses on agricultural activities, water resources management, ecosystem services, urban areas planning and coastal processes. Liberia is vulnerable to the impacts of climate variability and change, such as warmer temperatures, changes in precipitation patterns, particularly, increases in the frequency of extreme rainfall events. These climate change impacts present challenges to the country’s socio-economic development. The best estimate of the impact of future climate conditions on temperature is provided by the overall ensemble mean of 16 climate models across 3 emission scenarios which suggests that Monrovia will warm by 1.92°C by 2050 and 2.65°C by 2080 during the dry season (1.61°C by 2050 and 2.60°C by 2080 during the wet season). Regardless of emission scenario, the Atmosphere-Ocean Global Climate Models (AOGCMs) are quite consistent in predicting warmer conditions throughout all of Liberia. Projected precipitation changes in Monrovia range from 36 percent decreases to 21 percent increases in wet season rainfall. The overall ensemble prediction across emission scenarios gives a slight increase in wet season rainfall of 1.54 percent by 2050 and 1.92 percent by 2080. The increased rainfall appears to occur mostly during the early months of the rainy season, beginning in the southeast in May and extending west along the coast in June and July, implying more intense rainfall events (Stanturf et al. 2013). General trends of projected temperature and precipitation changes for 2050 and 2080 are into direction for a warmer and wetter climate in most of the country and especially in the coastal zone.

About 90 percent of Liberia’s coastline consists of a narrow sand beach 20-30 meters wide, reaching 60-80 meters in some parts of eastern Liberia. Climate projections under Representative Concentration Pathway (RCP) 8.5 predict a sea-level rise (SLR) of 75 cm by 2100 along Liberia’s coast, as well as an increase in the frequency of high-intensity storms resulting in an increased offshore significant wave height. The combined effect of these climate impacts will rapidly increase the rate of beach and coastal erosion, storm surge inundation and coastal/fluvial flooding in Sinoe County, threatening local populations and coastal infrastructure. The climate at Sinoe County is similar to most of southern Liberia, which is strongly influenced by the coastal zone, which gives rise to wet and dry seasons. The long wet season usually runs from April to October and the dry season from October to April when ±90 percent of the rainfall occurs. Climate change will impact vulnerable coastal communities in Liberia through: i) degradation of the mangrove ecosystems on which their livelihoods and food security depend ; and ii) inundation of vital infrastructure such as boat-launch sites, dwellings and socio-economic spaces and amenities such as fish markets.

The coastal hazards in Liberia can be generalized by change in two major aspects: change in water level and change in land area. The change in water level can be due to sea/wave action, local tidal variations, current patterns, flooding from rivers and/or combination of those. The change in land area can be due to erosion (or accretion) in the coastal area. These factors lead to a situation where the coastal area is prone to hazards like flooding and erosion. The coast is exposed and dominated, throughout the year, by consistent patterns of long period low to moderate energy swell waves originating from storms a long distance away in the Atlantic Ocean. Therefore, swell waves, with longer periods, can pack a lot more energy than locally generated waves.

About 17 percent of the coastal area is built-up area, under plantation or under some sort of agriculture - all three categories specifically having extremely low resilience. Similarly, great proportion, about 62 percent, of the coastal area is under some type of economically and biodiversity valuable forests and mangroves (with highly valuable ecosystem services) and thus raising the overall vulnerability of the coastal region to a medium range.

Liberia experiences continuous hazard danger coastal area with unfavourable geomorphology and exposure to unobstructed forces of Atlantic Ocean swell waves. Each of the coastal counties has a history of recurring natural hazards. Coastal districts towns are often exposed to flooding and erosion has already swept large number of houses through the years and along the entire coast of Liberia. Along with reviewing Liberia’s disaster profile, understanding the management of risks at national and county level turn out to be obligatory. Recent natural climatic events in Liberia and the increased frequency and magnitude of hazards such as floods and sea erosion have given the impetus for a National Disaster Risk Management Policy for Liberia (2012). This impetus is also driven by a need to reduce the risks related to these hazards as a result of high vulnerability from over fourteen years of war, poverty and low human and physical capacity. Additionally, the risk of economic, social and environmental losses is high, also given the high pressure on resources in areas with a high concentration of population. The coastal areas of Liberia are therefore particularly vulnerable to climate change and its effect on the coast is now becoming clearly evident. This vulnerability is increased where communities are located close to river flood hazard areas (river mouths, swamp areas or wetlands) in light of increasing precipitation predictions for the country coupled with poor land drainage strategies.

Almost 90 percent of the national population is living at risk of flooding from the sea, river system, swampland and clogged drains. In fact, as stated within the National Disaster Risk Management Policy (2012), in 2007, floods affected over 22,000 people in Liberia with the majority or those affected living in the coastal zone or close to the mouths of rivers (estuary areas). More recently, and according to National Disaster Management Agency (NDMA), 2019 floods are reportedly affecting 8,000 people in three coastal counties (including Sinoe County) which increased to 60, 000 people in July 2019.

One of the most serious threats to the coastline and marine environment are solid waste, beach sand mining (unregulated sand mining is causing slight embayment of the shoreline due to localized recession) and beach erosion (causing shoreline recession in some cities such as Greenville in Sinoe County). The continuing pressures of high population densities, poor resource extraction techniques and rapid economic development in or near pristine and vulnerable areas, are further degrading natural coastal infrastructure. Added to these threats are climatic pressures, which have emerged as significant and real risks to the integrity and productivity of these coastal ecosystems. Given that many of the ecosystem services that coastal communities rely on also help them to adapt to climate change, it is important to promote resilient coastal ecosystems to reduce climate stresses, especially in countries with high biodiversity and ample vegetation options. There are currently no alternatives on offer to use other sources of sand (except for beach sand) to help the construction industry for coastal communities and to improve farming strategies that diversify crop rotation production, planting regimes and diversity of crop are offered.

Sinoe is one of Liberia's 15 counties, and has been identified as one of the coastal counties most affected by climate change, and thus an adaptation priority for government. Sinoe, unlike many other counties in Liberia, is undergoing significant social, economic and environmental changes. Palm oil and logging operations are increasing in the area. Wages and labour is considerably low in many villages of Sinoe County with some contribution from government civil service, artisanal mining and harvesting of redundant oil palm.

Liberia’s National Biodiversity Strategy and Action Plan, articulates that Greenville, in particular, is experiencing coastal erosion due to uncontrolled exploitation of the natural resources and other human activities. These pressures are being exacerbated by climate change and in particular the increasing risk of increasing rainfall precipitation coupled with poor land management practices.

Project overview

Building on previous and on-going projects, particularly the GCF-funded project “Advance the NAPs process for medium term investment planning in climate-sensitive sectors (i.e. agriculture, energy, waste management, forestry and health) and coastal areas in Liberia” this project will localize climate change adaptation action and policy at the level in coastal counties, with a specific focus on Sinoe County. The project proposed is designed to move away from the “business-as-usual” model of adapting to climate change towards one that is more integrated, with a focus on Sinoe County for a combination of nature-based interventions, hard infrastructure,  capacity, policy, knowledge and information and observational management systems that will benefit other coastal counties around the country on sea and river defense risk management and supporting climate adaptation livelihood opportunities.

This change is needed as up to now, coastal erosion and flood risk in Liberia has been mostly addressed through the use of standard civil engineering measures (i.e. rockfill revetments and small structures made with timber and old tires). These have worked to a large extent, with effectiveness related to the quality of design and construction. 

A new approach is now however required to resolve these new integrated problems associated with climate change. A combination of tools and approaches are presented within this LDCF-financed project, combining “hybrid” intervention measures (a combination of nature-based, hard and non-structural interventions) with improved policy and regulatory setting, gender responsive livelihood opportunity setting and enhanced capacity development, training and outreach actions to help enhance coastal resilience to storm, coastal erosion and flooding risks whilst supporting a range of ecosystem service benefits. These tools shall be used in combination with landscape management and monitoring systems that provide the environmental and social benefits required to support livelihood security and build climate resilience.

The project will apply integration and innovation approaches to better address climate change risks through sea and river defense management in Liberia. It will also use data generated from, and implement the outcomes of the GCF-funded readiness project which is under implementation in Liberia. The GCF-finaced project will provide critical data on Liberia’s coastal climate risks, hazards and vulnerability as well as adaptation options for different coastal counties. The initiation and implementation of innovative adaptation solutions through sea and river defense planning, adoption of private sector new alternative business models linked to infrastructure techniques for integrated farming practices coupled with encouragement for community entrepreneurship will be considered in the project to reduce climate vulnerability and build resilience. Importantly, the approach shall seek to open the space for other entrepreneurial initiatives that build climate resilience, especially those in other value chains such as fisheries, fuelwood, which will open up opportunities for women’s involvement.

The project will focus on coastal communities within Sinoe County to support integrated coastal adaptation practices for a number of coastal settlements within the County though with the capacity for the project outcomes to benefit other coastal counties in Liberia, while building institutional capacities and policy mainstreaming for Integrated Coastal Zone Management across all coastal counties. The project will therefore seek to empower communities and institutions to better plan and implement coastal adaptation interventions in a deliberate and proactive manner, reducing reliance on the Government of Liberia (GoL) to help provide already scarce resources for climate change adaptation solutions. Building community self-reliance and by providing a community planning focus (with new livelihood alternatives) will enable them to tailor adaptation tools and technologies to their specific needs. It will also build the capacities of the administrations of other coastal counties to design and implement integrated coastal adaptation plans.

At the local level, new technologies in combination with traditional technologies will be promoted to ensure that productivity and sustainability of livelihoods are maintained. These adaptation actions and associated technologies or practices will build on the natural resilience and innovativeness of Liberian communities to build their self-reliance and capacity to continue the adaptive process iteratively. Such adaptation strategies such as coastal ecosystem based adaptation solutions, participatory sea and river defense planning approaches, climate-smart integrated farming systems, coastal protected area establishment and diversification of livelihood options are all in combination critical elements for a long-term adaptation solution in the context of risks and vulnerabilities of Sinoe County. The project shall also seek to learn and upscale some of the well-tested practices that are being undertaken to support community benefit-sharing mechanisms (CBSM) in forest ecosystems for the Production-Protection Approach project of IDH in Sinoe county (2017) which is based on best practices of operational CBSM in Liberia.

Finally, of major concern is the apparent lack of strategic delivery of a sustainable and strategic sea and river defense risk management approach policy to address these concerns. Coastal protection and sea defense structures are currently not planned with regard to their purpose, their outcome and importantly, their long term maintenance costs. Despite the professional efforts of the Ministry of Mines and Energy (MoME) and the Environment Protection Agency (EPA) to address the problems being faced, the approach to shore protection (at present) is reactionary and not anticipatory without long term national planning mechanisms in place.

The preferred solution to the above-mentioned climate hazards is to build long term resilience in coastal Liberia through an integrated approach that involves integration of climate change risks into planning and budgeting, diversifying livelihoods in coastal counties, adopting and financing climate resilient business practices and protecting communities and assets affected by climate hazards such as coastal erosion and flooding. Given the extent of the Liberian coastal zone, an ideal solution would be to create county level and national frameworks that enable and promote investments by a wide variety of actors in the public and private sectors while attending to the immediate needs of the most vulnerable communities.

Given the prioritization of Sinoe county among the different counties, the preferred solution is to: i) protect highly exposed and vulnerable areas of Sinoe County coastline from accelerated coastal erosion, flooding and SLR through the establishment of low impact “hybrid” solutions that embrace the importance of both coastal, estuarine and fluvial systems and associated communities; ii) implement climate-responsive planning through adopting an integrated planning approach in Liberia’s coastal counties; and iii) secure the livelihoods of vulnerable communities who rely on the coastal and riverine areas through the provision of livelihood alternatives that enable them to adapt to climate change and build their resilience (including resource efficient enterprises and technologies such as Compressed Earth Block Stabilisation (CSEB), value chain enhancements,) and through the more effective use of farmlands (Integrated Farming Systems). Due to the complexity of the coastal system (ecological and socio-economic linkages) continuous monitoring, involving affected stakeholders, including local communities, of the short and long term climatic, socio-economic and environmental changes taking place to inform planning is also part of the preferred solution. These will be accomplished by working with public and private sector actors in business and finance (including SMMEs).

Expected Key Results and Outputs: 

Outcome 1: Capacity of all coastal counties’ planning institutions to assess climate change risks and to consider into County Development Agendas strengthened

1.1: County level ICZM Plans prepared for all coastal counties to address climate hazard risks on infrastructure, livelihoods, health, and enable adaptation planning and monitoring, protection and maintenance of sea/river defense.

1.2: Identified climate-related risks and adaptation priorities are incorporated into Coastal County Development Agendas, and incorporated into county and national planning and budgeting processes.

1.3: Cross-sectoral climate change information and risk focal points and working groups established and trained for all coastal counties.

Outcome 2: Innovative technologies to support coastal adaptation introduced, including response planning and communication mechanisms

2.1: Coastal flood and erosion early warning and risk management systems supported to provide climate information, products and services that meet the needs of end-users.

2.2: County level knowledge hubs to collect and disseminate lessons learned on sea and river defense information to support ICZM supported in all coastal counties, based on Sinoe pilot.

2.3: Community Action Plans developed and implemented in all districts of Sinoe County (informed by adaptation options developed under NAPs project, encouraging coastal communities to adopt new practices and adopt new livelihood opportunities to embrace new adaptation to sea level rise risks).

2.4: Guidance manuals for integrated coastal adaptation practices developed and disseminated to all coastal and riverine counties.

Outcome 3: Reduced vulnerability of Sinoe County coastal communities to climate-induced sea level rise impacts through hybrid solutions (nature-based and engineering)

3.1: Viable solutions to address climate vulnerabilities in Sinoe County developed and designed using multi-criteria and processes for identifying, prioritizing and planning adaptation and resilience solutions, in consultation with local stakeholders.

3.2: Coastal and catchment level adaptation solutions implemented to improve resilience of communities to the impacts of climate change in Sinoe County, targeting 80,000 beneficiaries and 20,000 hectares

3.3: Best practices on adaptation solutions documented and disseminated to other coastal counties for adoption and scaling up including through the engagement of private sector.

Outcome 4: Gender-responsive options for climate-resilient income and livelihood diversification introduced to climate-vulnerable communities in coastal counties

4.1: Business identification, development and management training programmes designed and delivered to communities and Small Micro and Medium Enterprises in coastal counties targeting youths and women’s groups targeting 70,000 beneficiaries.

4.2: Integrated Farming Systems, Fisheries and Compressed Stabilized Earth Blocks and their value chains – opportunities for coastal communities are created and implemented targeting 30,000 beneficiaries.

4.3: Access to finance and technologies to develop livelihood and income diversification enterprises of coastal livelihoods and resources facilitated in collaboration with national and county financial institutions.

Contacts: 
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Capacity of all coastal counties’ planning institutions to assess climate change risks and to consider into County Development Agendas strengthened

Outcome 2: Innovative technologies to support coastal adaptation introduced, including response planning and communication mechanisms

Outcome 3: Reduced vulnerability of Sinoe County coastal communities to climate-induced sea level rise impacts through hybrid solutions (nature-based and engineering)

Outcome 4: Gender-responsive options for climate-resilient income and livelihood diversification introduced to climate-vulnerable communities in coastal counties

Project Dates: 
2020 to 2027
Timeline: 
Month-Year: 
June 2020
Description: 
PIF Approval
Proj_PIMS_id: 
6470
SDGs: 
SDG 1 - No Poverty
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Strengthening the resilience of smallholder agriculture to climate change-induced water insecurity in the Central Highlands and South-Central Coast regions of Vietnam

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability. Every year the country is affected by a range of hydro-meteorological and climatological hazards, from droughts and forest fires to storms, floods and extreme temperatures.

Small-scale farmers with plots of less than one hectare, who are dependent on one or two rain-fed crops per year, are the most vulnerable to changes in water availability and its effect on agricultural productivity.

This project (2020 - 2026) will empower smallholder farmers in five provinces of the Central Highlands and South-Central Coast regions of Vietnam (Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa) – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (105.68847653638 21.135745258119)
Primary Beneficiaries: 
222,412 direct beneficiaries and 335,252 indirect beneficiaries
Funding Source: 
Financing Amount: 
Green Climate Fund: US$ 30,205,367
Co-Financing Total: 
Asian Development Bank: $99,590,000 (loan under WEIDAP project); Government of Viet Nam: $22,060,000 (WEIDAP project); Government of Viet Nam (MARD Central Govt): $ 406,277 (grant); Government of Viet Nam (MARD Central Govt): $77,550 (in-kind); Government
Project Details: 

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability and change. Every year the country is affected by a range of hydro-meteorological and climatological hazards: droughts and forest fires during January-April; tropical, hail and wind storms; coastal, riverine, and flash floods; heavy rainfall and landslides in June-December and extreme temperatures (cold and heat waves) throughout the year.

Increased exposure of people and economic assets has been the major cause of long-term increases in economic losses from weather- and climate-related disasters.

Changes in precipitation are leading to hotter and wetter wet seasons and hotter and drier dry seasons, resulting in periods of increasing deficits in surface and ground water availability for agricultural production with longer periods of severe water scarcity during the dry season and increased frequency and intensity of droughts.

As a consequence, overall agricultural productivity is falling, with the corresponding declines in yields and incomes particularly harmful to small-scale farmers vulnerable to reduced water availability on rain fed lands and within this group, poor and near- poor, ethnic minority and women farmers. 

Two of the regions most vulnerable to climate risks are the Central Highlands and South-Central Coast.

Agriculture and water resources are the foundation of the livelihoods of about 64% of the people in the Central Highlands, especially ethnic minorities accounting for 36.4 – 39.1% of the region’s population. The Central Highlands are susceptible to changes in water availability in the dry season when there is little rain and low river flow. Only about 27.8% of the region’s agricultural land is irrigated, and farmers are forced to exploit groundwater for irrigation.

The Central Highlands region constitutes Vietnam’s largest perennial crop zone, where smallholders produce coffee, pepper, cashew, rubber, tea, and a variety of fruit, primarily for market. In addition, they produce rice, maize and cassava, chiefly for local consumption, especially by the poorest.

Farmers in the region currently intercrop perennial crops or combinations of perennial and annual crops as a strategy to mitigate the risk of drought and market price fluctuation. However, under increasingly extreme climate change-induced drought, farmers’ coping strategies are progressively less effective. During droughts, groundwater levels can plunge throughout the region from 80-100 m in depth. Many farmers drill three or four wells but are still unable to obtain sufficient water, augmenting their dependence on increasingly variable rainfall. 

Around 48% of the people in the South-Central Coast region of Vietnam rely on agriculture for their livelihoods, with ethnic minorities comprising from 5.7% of the population in Khanh Hoa province to 23.1% in Ninh Thuan. Sufficient, reliable water sources are particularly critical as the South-Central Coast is the driest area of the country with a long dry season, the lowest rainfall, and a relatively small river system. Only around 30% of agricultural land is irrigated, leaving many farmers reliant on rainfall. Under climate change, droughts in the region are becoming more extreme, and it’s anticipated that many of the poor/near-poor are likely to face food insecurity and increasing poverty.

The objective of this project, then, is to empower vulnerable smallholders in five provinces of the Central Highlands and South-Central Coast regions  – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

To achieve its objective, the project will enable smallholder farmers to adapt to climate-driven rainfall variability and drought through implementation of two linked Outputs integrating GCF and co-financing resources from the Asian Development Bank and the Government of Vietnam: 1) improved access to water for vulnerable smallholder farmers for climate-resilient agricultural production in the face of climate-induced rainfall variability and droughts, and 2) strengthened capacities of smallholder farmers to apply climate and market information, technologies, and practices for climate-resilient water and agricultural management.

While this project will use GCF financing to specifically target ethnic minority, women and other poor/near poor farmers, it will use GCF and co-financing resources to build the capacities of all farmers in climate vulnerable areas; as such the project will reach 222,412 direct individual beneficiaries in the five provinces of Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa.

The project was developed as part of an integrated programme funded through multiple sources, as envisaged by the Government of Vietnam (GoV), that was aimed at enhancing water security and building the climate change resilience of the agriculture sector focusing on Vietnam’s Central Highland and South-Central Coastal Regions.

In alignment with this programme, the project will enable the GoV to adopt a paradigm shift in the way smallholder agricultural development is envisioned and supported through an integrated approach to agricultural resilience starting with planning for climate risks based on identification and analysis of agroecosystem vulnerabilities; enhancing water security and guaranteeing access; scaling up adoption and application of climate-resilient agricultural practices and cropping systems; and creating partnerships among value chain stakeholders to ensure access to market and credit.

This approach directly addresses climate risks while also establishing or strengthening institutional capacities for long-term multi-stakeholder support to vulnerable smallholders.

The project was designed to achieve smallholder adaptation to climate change in the most vulnerable districts and communes by complementing and enhancing the activities and results of the Water Efficiency Improvement in Drought Affected Provinces – WEIDAP – project for primary irrigation infrastructure financed through a USD 99.59 million loan from the Asian Development Bank, as well as USD 22.06 million from the Government of Vietnam.

GCF funding will be used a) to achieve last mile connections to this infrastructure by poor/near-poor smallholders, with a particular focus on ethnic minority and women farmers; and b) to attain adoption by all farmers in WEIDAP-served areas of climate-resilient agricultural practices, co-development and use of agro-climate information for climate risk management, and multi-stakeholder coordination for climate- resilient value chain development through climate innovation platforms.

This project will advance the implementation of priority activities in Viet Nam’s Nationally Determined Contribution (NDC). These include: support livelihoods and production processes that are appropriate under climate change conditions and are linked to poverty reduction and social justice; implement community-based adaptation, including using indigenous knowledge, prioritizing the most vulnerable communities; implement integrated water resources management and ensure water security; ensure food security through protecting, sustainably maintaining and managing agricultural land; and adopt technology for sustainable agriculture production and the sustainable use of water resources.

Expected Key Results and Outputs: 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

1.1.1 185 km of new pipe systems taking water from canals or reservoirs, and supplying hydrants located at a reasonable distance from a farmer’s field

1.1.2 19,200 ha served through modernization of main system including canal lining, control structure, balancing storage and installation of flow control and measurement devices with remote monitoring

1.1.3 Provision of new and improved weirs replacing farmer constructed temporary weirs, permanent ponds/storage for irrigating HVCs, and upgrades of upstream storage and supply systems.

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

1.2.1 Design and construct 4,765 connection and distribution systems including installation and maintenance of irrigation equipment to cope with climate variability on 1,430 hectares

1.2.2 Train 4,765 poor and near poor farmers (one connection/distribution system per farmer) on climate-risk informed utilization of irrigation equipment and system maintenance

1.2.3 Establish Water Users Groups for O&M of communal or shared systems, including structures and agreements on potential funding mechanisms

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

1.3.1 Construct or upgrade 1,159 climate-resilient ponds (based on site-specific designs construct 675 new ponds and upgrade 484 existing ponds)

1.3.2 Train over 16,000 poor and near-poor farmer beneficiaries in climate- resilient water resource management to enhance supply

1.3.3 Establish 185 pond- management groups for O&M, including structures and agreements on potential funding mechanisms

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

1.4.1 Train 30 DARD staff and champion farmers in 14 districts (one course in years 2, 4 and 6) to support farmers’ groups in co-design, costing and O&M of climate-resilient, water efficient technologies

1.4.2 Train over 21,200 farmers through 900 Farmer Field Schools on soil and biomass management to enhance moisture-holding capacity, recharge of groundwater, and water productivity to cope with evolving climate risks on water security (in conjunction with Activity 2.1)

1.4.3 Install on-farm water efficiency systems for 8,621 poor/near-poor smallholders linked to performance-based vouchers (linked to Activity 2.1)

 1.4.4 Train smallholder farmers in five provinces on climate-risk informed O&M of water efficiency technologies

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

2.1.1 Sensitize smallholders to establish/re-activate 900 Farmer Field Schools

2.1.2 Train DARD personnel and lead (champion) farmers, as well as other interested parties (NGOs, Farmers and Women’s Unions, etc.) to build a cadre of farmer champions to galvanize adoption and application of CRA packages (15 provincial level workshops for 30 DARD staff in years 2,4 and 6; 28 district and 120 commune level trainings for 30 lead farmers in years 2 and 6)

2.1.3 Train over 21,200 farmers and value chain actors – particularly private sector input providers, buyers, processors, transporters - through 900 FFS on scaling up of climate resilient cropping systems and practices. (Each FFS will conduct 1-day trainings twice per year)

2.1.4 investment support to 8,621 targeted poor/near poor smallholders to acquire inputs and technologies for implementation of the CRA packages through performance-based vouchers.

2.1.5 Participatory auditing of implementation of voucher systems for climate resilient cropping systems and practices (One 1-day meeting for 100 participants in each of the 60 communes in Years 2, 4 and 6)

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

2.2.1 Establish and operationalize multi- stakeholder Climate Innovation Platforms (CIP) in each province and at the level of agro-ecological zones (Annual stakeholder meetings organized once every two years in each of the 5 provinces)

2.2.2 Provide technical assistance and training to enable market linkages with input, information and technology providers and buyers for climate-resilient agricultural production (two trainings, two networking workshops and three trade fairs in each of the 14 districts over four years)

2.2.3 Provide technical assistance and train farmers to enable access to credit through financial intermediaries (One workshop in each of the 60 communes in years 2 and 4)

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

2.3.1 Train 50 hydromet and DARD staff on generating and interpreting down-scaled forecasts for use in agricultural planning (eight training over four years for 50 participants)

2.3.2 Provide technical assistance for the formation ACIS technical groups and training of 420 participants at district level (1-day workshops for 30 participants in each of the 14 districts)

2.3.3 Co-develop, through Participatory, Scenario Planning (PSP) of seasonal and 10-day/15-day agro-climate advisories with smallholder farmers (20 provincial level trainings for 30 staff and 56 district level trainings for 60 participants over four years)

2.3.4 Disseminate advisories to 139,416 households in the 60 communes

Monitoring & Evaluation: 

Project-level monitoring and evaluation will be undertaken in compliance with the UNDP POPP and  UNDP Evaluation Policy.

The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager.

The UNDP Country Office supports the Project Manager as needed. Additional M&E, implementation quality assurance, and troubleshooting support will be provided by the UNDP Regional Technical Advisor. The project target groups and stakeholders including the NDA Focal Point will be involved as much as possible in project-level M&E.

A project implementation report will be prepared for each year of project implementation. The final project PIR, along with the terminal evaluation report and corresponding management response, will serve as the final project report package.

Semi-annual reporting will be undertaken in accordance with UNDP guidelines for quarterly reports that are produced by the project manager.

An independent mid-term review, equivalent to an Interim Review in GCF terminology, will be undertaken and the findings and responses outlined in the management response will be incorporated as recommendations for enhanced implementation during the final half of the project’s duration.

An independent terminal evaluation will take place no later than three months prior to operational closure of the project and will be made available on the UNDP Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure.

Contacts: 
UNDP
Yusuke Taishi
Regional Technical Advisor, Climate Change Adaptation
UNDP Viet Nam
Dao Xuan Lai
Assistant Resident Representative, Head of Environment and Climate Change Department
Climate-Related Hazards Addressed: 
Location: 
Funding Source Short Code: 
GCF
News and Updates: 

  

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

Project Dates: 
2020 to 2026
Timeline: 
Month-Year: 
March 2020
Description: 
Green Climate Fund approval
Month-Year: 
June 2020
Description: 
FAA Effectiveness
Proj_PIMS_id: 
6117