Private sector partners
Taxonomy Term List
Increased resilience and adaptive capacity of the most vulnerable communities to climate change in Forested Guinea
The Republic of Guinea is a coastal country situated in West Africa, on the Atlantic Coast, sharing its northern border with Guinea-Bissau, Senegal and Mali and its southern border with Sierra Leone, Liberia, and Ivory Coast. Its geographical location situates it at the crossroads of the major West African climatic groups, including the Guinean coastal climate, the Sudanese climate and the humid tropical climate at the edge of the equatorial climate.
The country is likely to be heavily impacted by climate change, and some effects are already being observed. For example, the seasonal distribution of rainfall and its intensity has changed in recent decades. Rising temperatures and changes in regional rainfall may continue to lead to flooding and have the potential to bring drought and extended dry spells in some regions.
The natural region of Forested Guinea, covering 23% of the country, is particularly fragile. Communities are especially vulnerable due to several deep-rooted factors such as; highest rate incidence of poverty in the country (~67% against a national average of 43,7 %); poor levels of financial and technical capacities of the farming communities and the institutions mandated to support rural development; dependence on rain fed agriculture (~97% of cultivated lands are rainfed) which is the primary source of livelihood and critical for food security; and poor agriculture/land management practices that contribute to degradation of agricultural landscapes, contribute to climate change and have negative effects on the overall crop productivity.
Forest Guinea, however, has a strong potential for agricultural development: out of 700,000 ha of agricultural lands that can be developed, including 400,000 ha of inventoried and geo-referenced lowlands, only 30,200 ha are partially developed and 1,000 ha in total water control in the finishing phase in Koundian.
The proposed long-term solution of this project is to strengthen the resilience and adaptive capacities of the most vulnerable local communities (with a focus on youth and women) in Forested Guinea, to face climate change and improve self-sufficiency in basic living needs of rural communities and create conditions to enable its replication.
The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation. The project monitoring and evaluation plan will also facilitate learning and ensure knowledge is shared and widely disseminated to support the scaling up and replication of project results.
Project-level monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in the UNDP POPP (including guidance on GEF project revisions) and UNDP Evaluation Policy. Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.
Minimum project monitoring and reporting requirements, as required by the GEF:
- Inception Workshop and Report
- Annual GEF Project Implementation Report (PIR)
- Independent Mid-term Review (MTR)
- Terminal Evaluation (TE)
The project’s terminal GEF PIR along with the Terminal Evaluation report and corresponding management response will serve as the final project report package. The final project report package shall be discussed with the Project Board during an end-of-project review meeting to discuss lesson learned and opportunities for scaling up.

Advancing medium and long-term adaptation planning in Côte d'Ivoire


Advancing medium and long-term adaptation planning in Guinea-Bissau

- Outcome 1: Coordination mechanisms and processes for adaptation planning at the national and sectoral levels established
- Outcome 2: Capacity for adaptation planning at the national and sectoral levels strengthened; and
- Outcome 3: Evidence base for adaptation planning supported.

Outcome 1: Coordination mechanisms and processes for adaptation planning at the national and sectoral levels established
Outcome 2: Capacity for adaptation planning at the national and sectoral levels strengthened
Advancing medium and long-term adaptation planning in Kyrgyz Republic

- Strengthened coordination and institutional arrangements for adaptation planning. This result will overcome weaknesses in knowledge management and ensure the improvement of cross-sectoral planning to include adaptation components.
- Priority sector-focused adaptation plans developed. This result will be achieved through targeted support to the four sector’s relevant government agencies. Addressing these gaps in institutional capacity will enable the agencies to begin to mainstream climate change adaptation into planning and governance.
- Sub-national climate change adaptation capacities strengthened. Provincial and subnational governments need strengthened capacities and better tools to ensure climate change adaptation is considered in planning and budgeting processes. This adaptive capacity at the local level is a priority for the national government and fundamental for local action.

Advancing medium and long-term adaptation planning in Madagascar


Enhancing Climate Resilience in Thailand through Effective Water Management and Sustainable Agriculture
While Thailand has made remarkable progress in social and economic development over the last four decades, rising temperatures and more frequent and extreme droughts and floods driven by climate change pose an increasing threat to the country’s economy. Water management has emerged as a leading concern.
This project will help build the resilience of farmers in the Yom and Nan river basins (Sukhothai, Phitsanulok and Uttaradit provinces) through improved climate information and forecasts, the introduction of more climate-resilient agricultural practices, and expanded access to markets and finance.
At the same time, it will work with subnational and national agencies to improve risk-informed planning and decision-making, promote cross-sectoral coordination, and upgrade critical infrastructure such as irrigation canals and floodgates, taking advantage of ecosystem-based adaptation approaches.

Thailand’s extreme vulnerability to climate change is shaped by an extensive coastline, a large rural population highly dependent on agriculture, and extensive populous urban areas located on flood prone plains.
Severe rain, flood and drought events are expected to increase in the near and longer-term future. The country’s agricultural sector will be particularly impacted by changing patterns of precipitation, with implications for agricultural livelihoods and local and national economies. Between 2040 and 2049, the projected negative impacts on agriculture are estimated to induce losses of between $24 billion and $94 billion.
In 2011, 66 out of the country’s 77 provinces were affected by flooding, with over 20,000 square kilometres of agricultural land damaged, and nearly 900 lives lost. The following year, Thailand suffered $46.5 billion in damages and loss, and required an estimated $14 billion in loans for rehabilitation and reconstruction as a result.
The recent drought in 2015-2016 is estimated to have resulted in losses of $3.4 billion.
Poor households will suffer disproportionately from the impacts of climate change. Poverty in Thailand has a predominately rural profile, which fluctuates according to vulnerabilities in the agricultural sector, such as faltering economic growth, falling agricultural prices, and droughts.
Proportionally, the Central and Northern Regions of Thailand have the highest levels of poverty. Sukhothai, Phitsanulok, and Uttaradit provinces – those covered by the project – have higher poverty levels compared with other parts of the country.
Climate-informed water management and climate-resilient water infrastructure are critical to Thailand’s preparedness and response to climate change. Thailand’s National Adaptation Plan 2018, highlighted flood control and drought management as key priorities, with a focus on Chao Phraya River Basin.
Given the cost of upgrading existing water infrastructure across the country, the Royal Thai Government is seeking to complement its grey infrastructure with ecosystems-based adaptation measures. As agriculture households are the most vulnerable to changing climatic conditions, an integrated solution which brings together water management and agriculture is key.
This project therefore focuses on adapting water management and agricultural livelihoods in the Yom and Nan river basins to climate change induced extreme weather events (droughts and floods), through interventions across three outputs:
· Output 1: Enhancing climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination
· Output 2: Improving water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts
· Output 3: Reducing volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets
Better integration of ecosystem-based adaptation (EbA) measures will have environmental benefits, while capacity-building interventions will support cost-efficient and effective water and agriculture planning.
The project design – which includes artificial intelligence to support climate-informed planning, precision agriculture for efficient water use and applies the internet of things (IoT) concept for sharing and applying data – has been guided by Thailand 4.0, which aims to shift Thailand’s agriculture sector towards an innovation-driven and interconnected sector.
At the same time, the project also supports low-tech interventions to help farmers respond to changing rainfall patterns. These include on-farm ecosystem-based adaptation measures (for example, farm ponds), small-scale equipment to support water saving farming practices (for example, system for rice intensification) and community nurseries.
Training will be provided to ensure that extension services can support farmers with adaptation measures, and the project will provide support to market access for products resulting from climate resilient practices.
The project builds on existing initiatives, including work by the Ministry of Agriculture and Cooperatives to enhance Thailand’s agriculture sector adaptation planning (supported by UNDP and FAO through a BMU funded project) and work by the Ministry to implement the Agricultural Strategic Plan on Climate Change 2017-2021 whereby the Royal Irrigation Department takes the lead for the Strategy 2 (Adaptation Actions).
The Office of National Water Resources – which functions as the regulating agency in proposing policies, formulating master plan on water resources management, responsible for management and supervision as well as integration on the implementation plan of water related-agencies in accordance with the Water Resource Management Act (2018) – has developed the 20-year Master Plan on Water Management (2018-2037), aimed at solving Thailand’s chronic drought, flood and wastewater problems. The Master Plan also stresses the importance of the need to bring in new ideas and technologies to address water related challenges which are exacerbated by climate change.
Output 1: Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination
Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning
Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning
Activity 1.3. Expand access to climate information for application at the household level
Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts
Activity 2.1. Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure
Activity 2.2. Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning
Output 3: Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets
Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services
Activity 3.2. Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture
Activity 3.3. Capacity building for farmers to support market access for climate resilient agriculture products
UNDP will perform monitoring, evaluation and reporting throughout the reporting period, in compliance with the UNDP POPP, the UNDP Evaluation Policy.
The primary responsibility for day-today project monitoring and implementation rests with the Project Manager. UNDP’s Country Office will support the Project Manager as needed, including through annual supervision missions.
Key reports include annual performance reports (APR) for each year of project implementation; an independent mid-term review (MTR); and an independent terminal evaluation (TE) no later than three months prior to operational closure of the project.
The final project APR along with the terminal evaluation report and corresponding management response will serve as the final project report package and will be made available to the public on UNDP’s Evaluation Resource Centre.
The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.

Output 1: Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination
Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning
Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning
Activity 1.3. Expand access to climate information for application at the household level
Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts
Activity 2.1. Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure
Activity 2.2. Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning
Output 3: Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets
Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services
Activity 3.2. Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture
Activity 3.3. Capacity building for farmers to support market access for climate resilient agriculture products
Ecosystem-based Adaptation (EbA) for Resilient Natural Resources and Agro-Pastoral Communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal
The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).
The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.
In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

Impacts of climate change
The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.
The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.
In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.
The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).
COVID-19
In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.
In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.
The Ferlo Biosphere Reserve (FBR)
The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.
The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented.. In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.
The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.
Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.
The City of Thies and surrounding area
The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).
The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).
Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.
Project overview
The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.
An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.
The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding.
However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:
· Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;
· Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;
· Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;
· Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.
The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels
The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.
This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.
To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.
*References available in project documents.
Component 1: Developing regional and local governance for climate resilience through EbA
Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.
By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.
An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).
Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods.
A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.
Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.
These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.
Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.
Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;
Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;
Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;
Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;
Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas
Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making
Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services
By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.
Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.
This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation, re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.
Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).
Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.
An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.
Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.
In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.
Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.
Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated
Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;
Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers
Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.
Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies
Component 3: Investment in climate-resilient value chains
Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).
More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.
Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.
In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters. The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.
Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected. The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.
Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).
The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project. These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)
Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context.
Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;
Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;
Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources
Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change
Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.
Output 3.2.3. SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems
Component 4: Knowledge management, and monitoring and evaluation
This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:
ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.
In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.
An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.
A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.
Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.
Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;
Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented
Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;
Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Component 1: Developing regional and local governance for climate resilience through EbA
Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services
Component 3: Investment in climate-resilient value chains
Component 4: Knowledge management, and monitoring and evaluation
Advancing medium and long-term adaptation planning in Uzbekistan

- identify barriers to integration of climate change adaptation into development planning and budgeting, and subsequently build capacity of key stakeholders to effectively plan for and monitor adaptation in Uzbekistan;
- consolidate existing climate information and put in place a system for science-based, economic analysis of adaptation options, to enable informed decision making in climate change adaptation in the country; and
- identify options to sustainably finance the NAP process in Uzbekistan, and engage the private sector in supporting adaptation.
- agriculture and water management sector;
- the social sector;
- the disaster impacts that could occur from the deteriorating health of the Aral Sea;
- ecosystems; and
- strategic infrastructure and production facilities.
- Reduction of specific greenhouse gas emission per unit of GDP by 10% of the level of the baseline year 2010;
- Twice increase of energy efficiency and reduction of carbon intensity of GDP;
- Greater use of renewable energy sources to increase their share in the electrical energy mix by at least 25 percent;
- Ensuring an access of 100 percent of population and economy sectors to affordable, modern and stable energy supply; Increasing energy efficiency of industries by at least 20 percent through infrastructure modernization and utilization of clean and environment friendly technologies;
- Increasing energy efficiency and reducing air pollutions and greenhouse gases from transport as well as development of electric transport;
- Significant increase of efficiency of water resources use in all sectors of economy through use of drip irrigation at up to 1 million hectares to increase yield of agricultural crops by 20-40 percent; and
- Achievement of neutral balance of land degradation (to halt land degradation); Increase of average productivity of the key agricultural food products by 20-25 percent.

Integrated Water Resource Management and Ecosystem-based Adaptation in the Xe Bang Hieng river basin and Luang Prabang city, Lao PDR
Lao PDR is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.
Increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase with climate change.
Led by the Government of Lao PDR with support from the UN Development Programme, this proposed 4-year project will increase the resilience of communities in two particularly vulnerable areas – Xe Bang Hieng river basin in Savannakhet Province and the city of Luang Prabang – through:
- Strengthened national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction;
- Ecosystem-based Adaptation (EbA) interventions with supporting protective infrastructure and enhanced livelihood options;
- Community engagement and awareness-raising around climate change and adaptation opportunities, as well as knowledge-sharing within and outside Lao PDR; and
- The introduction of community-based water resource and ecological monitoring systems in the Xe Bang Hieng river basin.

General context
The Lao People’s Democratic Republic is a landlocked Least Developed Country in Southeast Asia. It has a population of ~7.1 million people and lies in the lower basin of the Mekong River, which forms most of the country’s western border with Thailand.
Its GDP has grown at more than 6% per year for most of the last two decades and reached ~US$ 18 billion in 2018 (~US$ 2,500 per capita). Much of this economic growth has been dependent on natural resources, which has placed increasing pressure on the environment. Agriculture accounts for ~30% of the country’s GDP and supports the livelihoods of 70–80% of the population.
Impacts of climate change
The country is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.
In 2018, for example, floods across the country resulted in ~US$ 370 million (~2% of GDP) in loss and damage, with agriculture and transport the two most affected sectors. Floods in 2019 — the worst in 4 decades — affected 45 districts and ~768,000 people country-wide floods, resulting in US$162 million in costs.
An increase in the frequency of these climate hazards, including floods and droughts, has been observed since the 1960s, as well as an increase in the average area affected by a single flood.
Following the floods, the Government identified several priorities for responding to flood risk in the country, including:
- Improving flood and climate monitoring and early warning systems;
- Public awareness raising to respond to disasters and climate change;
- Building resilience at community level; iv) improved risk and vulnerability mapping; and
- Strengthening the capacity of government at the provincial, district and community level for better climate change-induced disaster response.
In addition, average increases in temperature of up to 0.05°C per year were observed in the period between 1970 and 2010. These trends are expected to continue, with long-term climate modelling projecting: i) an increase in temperature between 1.4°C and 4.3°C by 2100; ii) an increase in the number of days classified as “Hot”; iii) an increase of 10–30% in mean annual rainfall, particularly in the southern and eastern parts of the country and concentrated in the wet season (June to September); iv) an increase in the number of days with more than 50 mm of rain; v) a 30–60% increase in the amount of rain falling on very wet days; and vi) changing rainfall seasonality resulting in a longer dry season.
The increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase as a result of the projected increase in extreme rainfall events — associated with changes iv) and v) described above.
About the project under development
The proposed project focuses on strengthening integrated catchment management (ICM) and integrated urban flood management within the Xe Bang Hieng river basin in Savannakhet Province – a major rice-producing area and particularly important for the country’s food security, as well as one of the areas in the country which is most vulnerable to droughts and experienced severe flooding in 2017, 2018 and 2019 – and the city of Luang Prabang – one of the cities in Lao PDR which is most vulnerable to flooding, as well as being an important cultural heritage site – for increased climate resilience of rural and urban communities.
The approach will ensure that water resources and flood risks are managed in an integrated manner, considering the spatial interlinkages and dependencies between land use, ecosystem health and underlying causes of vulnerability to climate change.
The protection and restoration of important ecosystems will be undertaken to improve the provision of ecosystem goods and services and reduce the risk of droughts, floods and their impacts on local communities, thereby increasing their resilience to the impacts of climate change.
Improved hydrological and climate risk modelling and information systems will inform flood management as well as adaptation planning in the Xe Bang Hieng river basin and Luang Prabang. This information will be made accessible to national and provincial decision-makers as well as local stakeholders who will be trained to use it.
Using the ICM and integrated urban flood management approaches and based on integrated adaptation planning, on-the-ground interventions to improve water resource management and reduce vulnerability to floods and droughts will be undertaken, including ecosystem-based adaptation (EbA).
These interventions will be complemented by capacity development and awareness raising as well as support for rural communities to adopt climate-resilient livelihood strategies and climate-smart agricultural practices.
Addressing gender equality
The proposed project will promote gender equality, women’s rights and the empowerment of women in several ways.
First, the proposed activities have been designed taking into account that in Lao PDR: i) women’s household roles should be considered in any interventions concerning natural resource management, land-use planning and decision-making; ii) conservation incentives differ for men and women; iii) gendered division of labour needs to be understood prior to the introduction of any livelihood interventions; and iv) women need to have access to, and control over, ecosystem goods and services.
Second, an understanding of gender mainstreaming in relevant sectors and associated ministries will be developed, and gaps in gender equality will be identified and addressed in all aspects of project design.
Third, women (and other vulnerable groups) will be actively involved in identifying environmentally sustainable activities and interventions that will support them in safeguarding natural resources and promoting their economic development, with specific strategies being developed to target and include female-headed households. To ensure that the project activities are both gender-responsive and designed in a gender-sensitive manner, a gender action plan will be developed during the project preparation phase.
Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction
Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area
Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience
Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement
Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management
Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure
Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements
Component 3: Knowledge management and monitoring, evaluation and learning
Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities
Outcome 3.2: Community-based water resource and ecological monitoring systems in place
The overall monitoring and evaluation of the proposed project will be overseen by the Department of Planning under the Ministry of Planning and Investments, which carries out M&E for all planning processes in the country.

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction
Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area
Output 1.1.1: Central and Provincial training program implemented to enable climate risk-informed water management practices in target urban and rural areas
Output 1.1.2: Current and future zones of the Xe Bang Hieng River catchment at risk of climate change-induced flooding and drought mapped, based on hydrological models produced and protective infrastructure optioneering conducted
Output 1.1.3. Economic valuation of urban ecosystem services in Luang Prabang and protective options conducted.
Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience
Output 1.2.1: Fine-scale climate-resilient development and land-use plans drafted and validated for Luang Prabang and in the headwater and lowland areas of the Xe Bang Hieng and Xe Champone rivers.
Output 1.2.2: Current Xe Bang Hieng river basin hydrological monitoring network — including village weather stations — assessed and updated to improve efficiency.
Output 1.2.3: Early-warning systems and emergency procedures of vulnerable Xe Bang Hieng catchment communities (identified under Output 1.1.2) reviewed and revised
Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement
Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management
Output 2.1.1: Xe Bang Hieng headwater conservation zones restored to ensure ecological integrity is improved for delivery of ecosystem services
Output 2.1.2: Headwater conservation zone management supported to improve resilience to climate change
Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure
Output 2.2.1: Protective infrastructure constructed to reduce flood (cascading weirs and drainage channels) and drought (reservoir networks and rainwater harvesting) risk
Output 2.2.2: Implementation and distribution of communication and knowledge management tools and technologies (e.g. mobile phone apps, community radio) to increase climate resilience of agricultural communities to floods and droughts
Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements
Output 2.3.1: Market analysis conducted, including; i) analysing supply chains for climate-resilient crops, livestock, and farming inputs; ii) assessing economic impacts and market barriers; and iii) drafting mitigating strategies to address these barriers.
Output 2.3.2: Community Conservation Agreements process undertaken to encourage climate-resilient agriculture, fisheries, and forestry/forest-driven livelihoods and practices
Output 2.3.3: Diversified activities and opportunities introduced through Community Conservation Agreements (developed under Output 2.3.2) in agriculture (livestock and crops, including vegetable farming) as well as fisheries, non-timber forest products (NTFP), and other off-farm livelihoods.
Component 3: Knowledge management and monitoring, evaluation and learning
Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities
Output 3.1.1: Training and awareness raising provided to Xe Bang Hieng and Xe Champone headwater and lowland communities on: i) climate change impacts on agricultural production and socio-economic conditions; and ii) community-based adaptation opportunities and strategies (e.g. water resources management, agroforestry, conservation agriculture, alternatives to swiddening ) and their benefits
Output 3.1.2: Project lessons shared within Lao PDR and via South-South exchanges on strengthening climate resilience with regards to: i) catchment management; ii) flash flood management; and iii) EbA.
Output 3.1.2: Awareness-raising campaign conducted in Luang Prabang for communities and the private sector on urban EbA and flood management.
Outcome 3.2: Community-based water resource and ecological monitoring systems in place
Output 3.2.1: Community-based monitoring systems developed and implemented to measure changes in key ecological determinants of ecosystem health and resilience in the Xe Bang Hieng river basin
Strengthening the Resilience of Smallholder Agriculture to Climate Change-Induced Water Insecurity in the Central Highlands and South-Central Coast Regions of Vietnam
Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability. Every year the country is affected by a range of hydro-meteorological and climatological hazards, from droughts and forest fires to storms, floods and extreme temperatures.
Small-scale farmers with plots of less than one hectare, who are dependent on one or two rain-fed crops per year, are the most vulnerable to changes in water availability and its effect on agricultural productivity.
This project (2020 - 2026) will empower smallholder farmers in five provinces of the Central Highlands and South-Central Coast regions of Vietnam (Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa) – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability and change. Every year the country is affected by a range of hydro-meteorological and climatological hazards: droughts and forest fires during January-April; tropical, hail and wind storms; coastal, riverine, and flash floods; heavy rainfall and landslides in June-December and extreme temperatures (cold and heat waves) throughout the year.
Increased exposure of people and economic assets has been the major cause of long-term increases in economic losses from weather- and climate-related disasters.
Changes in precipitation are leading to hotter and wetter wet seasons and hotter and drier dry seasons, resulting in periods of increasing deficits in surface and ground water availability for agricultural production with longer periods of severe water scarcity during the dry season and increased frequency and intensity of droughts.
As a consequence, overall agricultural productivity is falling, with the corresponding declines in yields and incomes particularly harmful to small-scale farmers vulnerable to reduced water availability on rain fed lands and within this group, poor and near- poor, ethnic minority and women farmers.
Two of the regions most vulnerable to climate risks are the Central Highlands and South-Central Coast.
Agriculture and water resources are the foundation of the livelihoods of about 64% of the people in the Central Highlands, especially ethnic minorities accounting for 36.4 – 39.1% of the region’s population. The Central Highlands are susceptible to changes in water availability in the dry season when there is little rain and low river flow. Only about 27.8% of the region’s agricultural land is irrigated, and farmers are forced to exploit groundwater for irrigation.
The Central Highlands region constitutes Vietnam’s largest perennial crop zone, where smallholders produce coffee, pepper, cashew, rubber, tea, and a variety of fruit, primarily for market. In addition, they produce rice, maize and cassava, chiefly for local consumption, especially by the poorest.
Farmers in the region currently intercrop perennial crops or combinations of perennial and annual crops as a strategy to mitigate the risk of drought and market price fluctuation. However, under increasingly extreme climate change-induced drought, farmers’ coping strategies are progressively less effective. During droughts, groundwater levels can plunge throughout the region from 80-100 m in depth. Many farmers drill three or four wells but are still unable to obtain sufficient water, augmenting their dependence on increasingly variable rainfall.
Around 48% of the people in the South-Central Coast region of Vietnam rely on agriculture for their livelihoods, with ethnic minorities comprising from 5.7% of the population in Khanh Hoa province to 23.1% in Ninh Thuan. Sufficient, reliable water sources are particularly critical as the South-Central Coast is the driest area of the country with a long dry season, the lowest rainfall, and a relatively small river system. Only around 30% of agricultural land is irrigated, leaving many farmers reliant on rainfall. Under climate change, droughts in the region are becoming more extreme, and it’s anticipated that many of the poor/near-poor are likely to face food insecurity and increasing poverty.
The objective of this project, then, is to empower vulnerable smallholders in five provinces of the Central Highlands and South-Central Coast regions – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.
To achieve its objective, the project will enable smallholder farmers to adapt to climate-driven rainfall variability and drought through implementation of two linked Outputs integrating GCF and co-financing resources from the Asian Development Bank and the Government of Vietnam: 1) improved access to water for vulnerable smallholder farmers for climate-resilient agricultural production in the face of climate-induced rainfall variability and droughts, and 2) strengthened capacities of smallholder farmers to apply climate and market information, technologies, and practices for climate-resilient water and agricultural management.
While this project will use GCF financing to specifically target ethnic minority, women and other poor/near poor farmers, it will use GCF and co-financing resources to build the capacities of all farmers in climate vulnerable areas; as such the project will reach 222,412 direct individual beneficiaries in the five provinces of Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa.
The project was developed as part of an integrated programme funded through multiple sources, as envisaged by the Government of Vietnam (GoV), that was aimed at enhancing water security and building the climate change resilience of the agriculture sector focusing on Vietnam’s Central Highland and South-Central Coastal Regions.
In alignment with this programme, the project will enable the GoV to adopt a paradigm shift in the way smallholder agricultural development is envisioned and supported through an integrated approach to agricultural resilience starting with planning for climate risks based on identification and analysis of agroecosystem vulnerabilities; enhancing water security and guaranteeing access; scaling up adoption and application of climate-resilient agricultural practices and cropping systems; and creating partnerships among value chain stakeholders to ensure access to market and credit.
This approach directly addresses climate risks while also establishing or strengthening institutional capacities for long-term multi-stakeholder support to vulnerable smallholders.
The project was designed to achieve smallholder adaptation to climate change in the most vulnerable districts and communes by complementing and enhancing the activities and results of the Water Efficiency Improvement in Drought Affected Provinces – WEIDAP – project for primary irrigation infrastructure financed through a USD 99.59 million loan from the Asian Development Bank, as well as USD 22.06 million from the Government of Vietnam.
GCF funding will be used a) to achieve last mile connections to this infrastructure by poor/near-poor smallholders, with a particular focus on ethnic minority and women farmers; and b) to attain adoption by all farmers in WEIDAP-served areas of climate-resilient agricultural practices, co-development and use of agro-climate information for climate risk management, and multi-stakeholder coordination for climate- resilient value chain development through climate innovation platforms.
This project will advance the implementation of priority activities in Viet Nam’s Nationally Determined Contribution (NDC). These include: support livelihoods and production processes that are appropriate under climate change conditions and are linked to poverty reduction and social justice; implement community-based adaptation, including using indigenous knowledge, prioritizing the most vulnerable communities; implement integrated water resources management and ensure water security; ensure food security through protecting, sustainably maintaining and managing agricultural land; and adopt technology for sustainable agriculture production and the sustainable use of water resources.
Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam
Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions
1.1.1 185 km of new pipe systems taking water from canals or reservoirs, and supplying hydrants located at a reasonable distance from a farmer’s field
1.1.2 19,200 ha served through modernization of main system including canal lining, control structure, balancing storage and installation of flow control and measurement devices with remote monitoring
1.1.3 Provision of new and improved weirs replacing farmer constructed temporary weirs, permanent ponds/storage for irrigating HVCs, and upgrades of upstream storage and supply systems.
Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought
1.2.1 Design and construct 4,765 connection and distribution systems including installation and maintenance of irrigation equipment to cope with climate variability on 1,430 hectares
1.2.2 Train 4,765 poor and near poor farmers (one connection/distribution system per farmer) on climate-risk informed utilization of irrigation equipment and system maintenance
1.2.3 Establish Water Users Groups for O&M of communal or shared systems, including structures and agreements on potential funding mechanisms
Activity 1.3: Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought
1.3.1 Construct or upgrade 1,159 climate-resilient ponds (based on site-specific designs construct 675 new ponds and upgrade 484 existing ponds)
1.3.2 Train over 16,000 poor and near-poor farmer beneficiaries in climate- resilient water resource management to enhance supply
1.3.3 Establish 185 pond- management groups for O&M, including structures and agreements on potential funding mechanisms
Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought
1.4.1 Train 30 DARD staff and champion farmers in 14 districts (one course in years 2, 4 and 6) to support farmers’ groups in co-design, costing and O&M of climate-resilient, water efficient technologies
1.4.2 Train over 21,200 farmers through 900 Farmer Field Schools on soil and biomass management to enhance moisture-holding capacity, recharge of groundwater, and water productivity to cope with evolving climate risks on water security (in conjunction with Activity 2.1)
1.4.3 Install on-farm water efficiency systems for 8,621 poor/near-poor smallholders linked to performance-based vouchers (linked to Activity 2.1)
1.4.4 Train smallholder farmers in five provinces on climate-risk informed O&M of water efficiency technologies
Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets
Activity 2.1: Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools
2.1.1 Sensitize smallholders to establish/re-activate 900 Farmer Field Schools
2.1.2 Train DARD personnel and lead (champion) farmers, as well as other interested parties (NGOs, Farmers and Women’s Unions, etc.) to build a cadre of farmer champions to galvanize adoption and application of CRA packages (15 provincial level workshops for 30 DARD staff in years 2,4 and 6; 28 district and 120 commune level trainings for 30 lead farmers in years 2 and 6)
2.1.3 Train over 21,200 farmers and value chain actors – particularly private sector input providers, buyers, processors, transporters - through 900 FFS on scaling up of climate resilient cropping systems and practices. (Each FFS will conduct 1-day trainings twice per year)
2.1.4 investment support to 8,621 targeted poor/near poor smallholders to acquire inputs and technologies for implementation of the CRA packages through performance-based vouchers.
2.1.5 Participatory auditing of implementation of voucher systems for climate resilient cropping systems and practices (One 1-day meeting for 100 participants in each of the 60 communes in Years 2, 4 and 6)
Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors
2.2.1 Establish and operationalize multi- stakeholder Climate Innovation Platforms (CIP) in each province and at the level of agro-ecological zones (Annual stakeholder meetings organized once every two years in each of the 5 provinces)
2.2.2 Provide technical assistance and training to enable market linkages with input, information and technology providers and buyers for climate-resilient agricultural production (two trainings, two networking workshops and three trade fairs in each of the 14 districts over four years)
2.2.3 Provide technical assistance and train farmers to enable access to credit through financial intermediaries (One workshop in each of the 60 communes in years 2 and 4)
Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production
2.3.1 Train 50 hydromet and DARD staff on generating and interpreting down-scaled forecasts for use in agricultural planning (eight training over four years for 50 participants)
2.3.2 Provide technical assistance for the formation ACIS technical groups and training of 420 participants at district level (1-day workshops for 30 participants in each of the 14 districts)
2.3.3 Co-develop, through Participatory, Scenario Planning (PSP) of seasonal and 10-day/15-day agro-climate advisories with smallholder farmers (20 provincial level trainings for 30 staff and 56 district level trainings for 60 participants over four years)
2.3.4 Disseminate advisories to 139,416 households in the 60 communes
Project-level monitoring and evaluation will be undertaken in compliance with the UNDP POPP and UNDP Evaluation Policy.
The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager.
The UNDP Country Office supports the Project Manager as needed. Additional M&E, implementation quality assurance, and troubleshooting support will be provided by the UNDP Regional Technical Advisor. The project target groups and stakeholders including the NDA Focal Point will be involved as much as possible in project-level M&E.
A project implementation report will be prepared for each year of project implementation. The final project PIR, along with the terminal evaluation report and corresponding management response, will serve as the final project report package.
Semi-annual reporting will be undertaken in accordance with UNDP guidelines for quarterly reports that are produced by the project manager.
An independent mid-term review, equivalent to an Interim Review in GCF terminology, will be undertaken and the findings and responses outlined in the management response will be incorporated as recommendations for enhanced implementation during the final half of the project’s duration.
An independent terminal evaluation will take place no later than three months prior to operational closure of the project and will be made available on the UNDP Evaluation Resource Centre.
The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure.

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam
Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions
Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought
Activity 1.3: Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought
Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought
Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets
Activity 2.1: Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools
Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors
Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production