Drought/Water Scarcity

Taxonomy Term List

Enhancing climate resilience in Thailand through effective water management and sustainable agriculture

While Thailand has made remarkable progress in social and economic development over the last four decades, rising temperatures and more frequent and extreme droughts and floods driven by climate change pose an increasing threat to the country’s economy. Water management has emerged as a leading concern.  

This project will help build the resilience of farmers in the Yom and Nan river basins (Sukhothai, Phitsanulok and Uttaradit provinces) through improved climate information and forecasts, the introduction of more climate-resilient agricultural practices, and expanded access to markets and finance.    

At the same time, it will work with subnational and national agencies to improve risk-informed planning and decision-making, promote cross-sectoral coordination, and upgrade critical infrastructure such as irrigation canals and floodgates, taking advantage of ecosystem-based adaptation approaches.  

 

 

 

 

 

English
Region/Country: 
Coordinates: 
POINT (100.54687496761 13.768731166253)
Primary Beneficiaries: 
This project will directly benefit 62,000 people in the provinces of Phitsanulok, Sukhothai, and Uttaradit in the northern region of Thailand of the Greater Chao Phraya River Basin, at the confluence of the Yom and Nan Rivers. Approximately 471,561 people in the project districts are also expected to indirectly benefit, with wider benefits for 25,000,000 people living in the Greater Chao Phraya River Basin.
Funding Source: 
Financing Amount: 
US$17,533,500 GCF grant
Co-Financing Total: 
US$16.264 million from the Royal Thai Government through the Royal Irrigation Department | $113,000 Krungsri Bank | Bank for Agriculture and Agricultural Cooperatives $16 million line of credit to help farmers invest in adaptation measures
Project Details: 

Thailand’s extreme vulnerability to climate change is shaped by an extensive coastline, a large rural population highly dependent on agriculture, and extensive populous urban areas located on flood prone plains.

Severe rain, flood and drought events are expected to increase in the near and longer-term future. The country’s agricultural sector will be particularly impacted by changing patterns of precipitation, with implications for agricultural livelihoods and local and national economies. Between 2040 and 2049, the projected negative impacts on agriculture are estimated to induce losses of between $24 billion and $94 billion.

In 2011, 66 out of the country’s 77 provinces were affected by flooding, with over 20,000 square kilometres of agricultural land damaged, and nearly 900 lives lost.  The following year, Thailand suffered $46.5 billion in damages and loss, and required an estimated $14 billion in loans for rehabilitation and reconstruction as a result. 

The recent drought in 2015-2016 is estimated to have resulted in losses of $3.4 billion. 

Poor households will suffer disproportionately from the impacts of climate change. Poverty in Thailand has a predominately rural profile, which fluctuates according to vulnerabilities in the agricultural sector, such as faltering economic growth, falling agricultural prices, and droughts. 

Proportionally, the Central and Northern Regions of Thailand have the highest levels of poverty. Sukhothai, Phitsanulok, and Uttaradit provinces – those covered by the project – have higher poverty levels compared with other parts of the country.   

Climate-informed water management and climate-resilient water infrastructure are critical to Thailand’s preparedness and response to climate change. Thailand’s National Adaptation Plan 2018, highlighted flood control and drought management as key priorities, with a focus on Chao Phraya River Basin. 

Given the cost of upgrading existing water infrastructure across the country, the Royal Thai Government is seeking to complement its grey infrastructure with ecosystems-based adaptation measures. As agriculture households are the most vulnerable to changing climatic conditions, an integrated solution which brings together water management and agriculture is key. 

This project therefore focuses on adapting water management and agricultural livelihoods in the Yom and Nan river basins to climate change induced extreme weather events (droughts and floods), through interventions across three outputs: 

·       Output 1:  Enhancing climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

·       Output 2:  Improving water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

·       Output 3:  Reducing volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Better integration of ecosystem-based adaptation (EbA) measures will have environmental benefits, while capacity-building interventions will support cost-efficient and effective water and agriculture planning. 

The project design – which includes artificial intelligence to support climate-informed planning, precision agriculture for efficient water use and applies the internet of things (IoT) concept for sharing and applying data – has been guided by Thailand 4.0, which aims to shift Thailand’s agriculture sector towards an innovation-driven and interconnected sector. 

At the same time, the project also supports low-tech interventions to help farmers respond to changing rainfall patterns.  These include on-farm ecosystem-based adaptation measures (for example, farm ponds), small-scale equipment to support water saving farming practices (for example, system for rice intensification) and community nurseries.  

Training will be provided to ensure that extension services can support farmers with adaptation measures, and the project will provide support to market access for products resulting from climate resilient practices.   

The project builds on existing initiatives, including work by the Ministry of Agriculture and Cooperatives to enhance Thailand’s agriculture sector adaptation planning (supported by UNDP and FAO through a BMU funded project) and work by the Ministry to implement the Agricultural Strategic Plan on Climate Change 2017-2021 whereby the Royal Irrigation Department takes the lead for the Strategy 2 (Adaptation Actions). 

The Office of National Water Resources – which functions as the regulating agency in proposing policies, formulating master plan on water resources management, responsible for management and supervision as well as integration on the implementation plan of water related-agencies in accordance with the Water Resource Management Act (2018) – has developed the 20-year Master Plan on Water Management (2018-2037), aimed at solving Thailand’s chronic drought, flood and wastewater problems. The Master Plan also stresses the importance of the need to bring in new ideas and technologies to address water related challenges which are exacerbated by climate change.

Expected Key Results and Outputs: 

Output 1:  Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning

Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning

Activity 1.3. Expand access to climate information for application at the household level

Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

Activity 2.1.   Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure 

Activity 2.2.  Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning

Output 3:  Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services

Activity 3.2.  Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture

Activity 3.3.  Capacity building for farmers to support market access for climate resilient agriculture products

Monitoring & Evaluation: 

UNDP will perform monitoring, evaluation and reporting throughout the reporting period, in compliance with the UNDP POPP, the UNDP Evaluation Policy.  

The primary responsibility for day-today project monitoring and implementation rests with the Project Manager.  UNDP’s Country Office will support the Project Manager as needed, including through annual supervision missions.

Key reports include annual performance reports (APR) for each year of project implementation; an independent mid-term review (MTR); and an independent terminal evaluation (TE) no later than three months prior to operational closure of the project.

The final project APR along with the terminal evaluation report and corresponding management response will serve as the final project report package and will be made available to the public on UNDP’s Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.

Contacts: 
UNDP
Charles Yu
Regional Technical Advisor - Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Programme Meetings and Workshops: 

Inception workshop, 2022 TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1:  Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning

Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning

Activity 1.3. Expand access to climate information for application at the household level

Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

Activity 2.1.   Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure 

Activity 2.2.  Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning

Output 3:  Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services

Activity 3.2.  Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture

Activity 3.3.  Capacity building for farmers to support market access for climate resilient agriculture products

Project Dates: 
2022 to 2027
Timeline: 
Month-Year: 
October 2021
Description: 
GCF Board Approval
Proj_PIMS_id: 
5923
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation and Infrastructure
SDG 10 - Reduce Inequalities
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land
SDG 17 - Partnerships for the Goals

Enhancing climate resilience of rural communities and ecosystems in Ahuachapán Sur, El Salvador

The main project objective is reducing the vulnerability of communities and productive ecosystems in the Municipality of San Francisco Menendez to drought risk, soil erosion, and flash floods due to climate change and climate variability. The project will integrate forest landscape restoration as a climate change adaptation strategy targeted towards increasing forest cover, improving the hydrological cycle, increasing the amount of available water, and regulating surface and groundwater flows, while maintaining and improving water supply and quality. The project landscape approach will ensure that land degradation is reduced (or reversed) and that productivity is maintained and made resilient to climate change impact, thus contributing to better food security and community resilience. By ensuring and enabling institutional and governance environment, the project will generate coordinated and informed actors with the capacity to address appropriate adaptation measures in the medium and long term thus resulting in a genuine local resilience to climate change.

The project will meet its objective by restoring 3,865Ha of forest landscape within San Francisco Menendez, through a landscape-based ecosystem intervention that will focus on the restoration of critical landscapes and enhance its capacity to manage droughts, soil erosion and flash floods; promoting and implementing climate resilient and economically viable productive alternatives in the region that address the economic vulnerability being faced in the region as traditional agricultural systems have become less productive due to climate change; generating climate and hydrological information products in the region to identify and monitor the impact of climate change in the landscape and also the effectiveness of ecosystem based interventions in their management to improve local and national responses; and enhancing local capacity to take concerted action in addressing climate change impact, prioritizing adaptation interventions and mobilizing the financing necessary for their implementation.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-88.395996099475 13.433791341118)
Funding Source: 
Financing Amount: 
US$8.4 million
Project Details: 

National Background

  1. El Salvador has been identified by the International Panel on Climate Change (IPCC) as one of the countries with the highest sensitivity to climate change[1]. According to the Fifth Assessment Report of the IPCC, the country is characterized by a high exposure to geoclimatic threats, resulting from its location and topography, exacerbating climate change induced risk and vulnerability of human settlements and ecosystems[2]. The Global Climate Risk Index for the period between 1997 to 2016, covering both human and economic impacts, ranks El Salvador 16th in the world, emphasizing the country’s high vulnerability to extreme climate events[3]. There is ample evidence of climate change and variability affecting all sectors of society and economy, at different spatial and temporal scales, from intra-seasonal to long-term variability as a result of large-scale cyclical phenomena[4]. A study from The Economic Commission for Latin America and the Caribbean (ECLAC) found that between 1980 to 2008, an average of 1.5 natural disasters per year resulted in nearly 7,000 human casualties, affecting 2.9 million people, and costing US $470 million to the central government (amount that is equivalent to 4.2% of the Gross Domestic Product). The country of El Salvador spends an equivalent to 1.1% of its total GDP with dealing with climate change related impacts and infrastructure every year on average.

 

  1. El Salvador is the most densely populated country in Central America (342 people per km²) with a population of approximately 6.46 million inhabitants, of which 52.9% are women[5]. The country’s territory totals 21,040 km², with a rugged topography (50% of total land mass has slopes of over 15%), highly erodible soils and the lowest per capita availability of freshwater in Central America5. According to the measurement of compound poverty[6], 35.2% of the total Salvadoran households are poor, equivalent to 606,000 homes to approximately 2.6 million people. Similarly, the multidimensional poverty rate in rural areas is 58.5%, and 22.5% in urban areas. Thirty-eight percent of the country’s population resides in rural or non-urban areas, of which 20% are women[7]. In all the departments, other than one, over 50% of rural households are multidimensionally poor and as such are more vulnerable to the effects of climate change (Figure 1). Homes with this condition have the following deprivations: 37% food insecurity; 49% lack of access to drinking water; 83.7% no access to public health.

 

  1. Sixty percent of the national territory is devoted to agriculture, which is the main source of livelihood for the rural population in the country. About 36% of the total country territory is arable land, with corn as the main subsistence crop, followed by rice, beans, oilseeds, and sorghum, and with the cultivation of coffee and sugar cane as major cash crops The effects of climate change, as observed over recent years, have directly affected the productivity across the whole spectrum of the agricultural sector, with significant impacts on smallholder farming[8].  According to the last agricultural census, there are more than 325,000 producers of basic grains who work in land parcels of sizes ranging between 0.7-3 hectares. Not surprisingly, 52.4% of the farmers organize their agricultural activity in parcels averaging 0.7 hectares, with an average corn production of 1.427 kg/ha. This production may satisfy the immediate needs of a family household (requiring only 1,300 kg of corn per year), but is significantly lower than the national average production (2,575 kg/ha). Impact from extreme weather such as the tropical storm Mitch (1998) caused damages and total loss of US $388.1 million, with US $158.3 million (40.8% of the total) impacting the agricultural sector. The 2001, drought reported damages and loss for US $31.4 million and 81% for the farming industry. Hurricane Stan (2005) caused US $355.6 million in damages and loss, US $48.7 million and 13.7% of the total for the agricultural sector. The Tropical Depression Twelve-E (DT 12-E) in 2011 carried a price tag of US $306 million in damages and losses in the agricultural sector. Between 2014 and 2015, losses in agriculture, as a result of severe drought, costed the country more than US $140 million, with greater impact felt on subsistence crops (corn and beans), as well as in the dairy industry which lost more than 10% of its production. The sustained dry spell followed by high temperatures, has also caused severe damage to the health of human populations, to the broader agricultural sector, and the natural environment. Furthermore, the reduction or deficiency in rainfall over the period has also affected the availability and quality of superficial and underground water resources.

 

Extreme weather hazards and climate change in El Salvador

  1. El Salvador is currently impacted by the effects of climate variability and change, with highly variable rainfall patterns, both spatial and temporal, which is leading to an increase in the number of extreme climatic events (i.e. tropical cyclones, floods and droughts). Over time, El Salvador has passed from experiencing one event per decade in the sixties and seventies, two in the eighties, four in the nineties, to eight extreme events in the last decade. This shows a shift from previous decades, when extreme events hitting the country would originate mostly from the Atlantic Ocean, and had its first wave of impacts mitigated by the land mass of neighbouring countries. This is no longer the case, since the frequency and intensity of tropical cyclones originating from both the Atlantic and the Pacific Oceans has increased over the past two decades.

 

  1. Studies from the National Service of Territorial Studies (Servicio Nacional de Estudios Territoriales, SNET) reveal that at least 10% of the country is prone to floods, 20% percent is exposed to landslides, 50% is affected by drought. The poorest segments of the population are particularly hit by natural disasters, as they are more likely to live in hazardous parts of the territory, such as flood plains, river banks, steep slopes, and fragile buildings in densely populated zones.

 

  1. In 2014, the average accumulated rain for July ended as the lowest in the last 44 years[9] on record, and in 2015 the average accumulated rain during the rainy season was the lowest ever recorded, reaching only 63% of what should be expected given normal historic climate conditions (Figure 4). Extended drought periods in the country, have traditionally been followed by high temperatures, hindering progress and functioning of important sectors of the economy, including agriculture, health, water resources, and energy. According to the Food & Agriculture Organization of the United Nations (FAO), approximations from Central America’s main the prima harvest for 2015 showed a decline of 60% in the total maize harvest, and 80% in the total beans harvest due to drier than normal weather conditions.

 

  1. Consecutive dry years, in which the dry spells last for extended periods of time, have become more frequent due to climate change. This has had wide spread effect across different sectors, consequently increasing risk and vulnerability of populations in El Salvador. Most importantly, this causes reduction on the availability of food (also affecting its access and use), due to impacts on income and basic goods availability in certain regions of the country, with serious social and economic impacts in the long-term. Furthermore, extended drought periods in the region has made landscapes more susceptible to soil erosion, floods and landslides, especially in the advent of localized rainfall in excess. Droughts in El Salvador are also known for causing fluctuations in food prices, plant pests epidemic, animal disease propagation, financial and political instability.

 

National Climate Scenarios

  1. The climate change scenarios indicate that in the coming years, El Salvador will experience more intense, and more frequent, extreme events. According to the projected scenarios, the country will consistently face reductions in precipitation and constant increases in temperature (Figure 5). The National Climate Scenarios produced by the Ministry of Environment and Natural Resources (MARN) show that over the course of this century, the average temperatures (maximum and minimum averages) will increase considerably, with the magnitude of the change being most marked for the period 2071-2100.

 

  1. Average and minimum temperature will shift considerably between the periods 2021-2050 and 2071-2100 under all climatic scenarios. This represent changes between 1 °C and 3 °C and up to 4.5 °C towards the end of the century. These projected changes in temperature for El Salvador, are most in line with the changes projected by the IPCC. Temperature increases of such magnitude, will have direct effect on the temperature of the Pacific coast. When breaking and zooming into the time series of projections, the data shows that, in the near future (between 2021-2030 and 2031-2041), all scenarios point out to shifts between 0.7 °C and 1.5 °C, which is higher than what its observed today. The last decade in the period under consideration, presents the greatest changes in temperature with values ​​between 1.5 °C and 2 °C in the country. These projections reveal that, in the future, 90% of the national territory will be subject to average temperature values above 27 °C.

 

  1. All scenarios point to a decrease in precipitation between 10% to 20%, across the country between 2021-2050, with some regions being expected to see a reduction above 20% (under a high emissions scenario). This would represent a reduction of no less than 200 mm per year in precipitation. Comparably, towards 2041-2050 the magnitude of rainfall reduction will remain on the mark between 10% to 20%, similar to the previous period. It is worth noting that projected changes between 2031-2040 can be attributed to already ongoing climate change and variability processes in El Salvador, and that these changes are within the scope of the IPCC projections for the region.

 

  1. The projected scenarios for the period between 2071-2100, show even more drastic changes in precipitation patterns in the country, with values ranging between 20 to 26% under the high emissions pathway. When looking at each decade in detail, for example, between 2071-2080 the changes represent a decrease of 15-25% in rainfall, under a low emissions scenario, followed by 20-25% reduction in rainfall under a high emissions scenario. By the same token, the decade of 2081-2090 will experience reductions between 20% to 30%, with even higher depletion of rainfall under the high emissions scenario. During the last decade of the 21st century between 2091-2100, the projected scenarios reveal a decrease in rainfall ranging between 20% -35% (low emissions scenario) when compared to current observed values. At the century approaches end, the scenarios reveal reduction in precipitation that are considerably more pronounced, intense and drastic if compared to the period between 2021-2050. This represents a reduction of 300 mm a year in precipitation in the country.

 

  1. These scenarios represent a complete range of alternative futures for climate in El Salvador. Taking into account the cascading effects that may accompany the climate change scenarios, the country’s economy, society and nature, finds itself having to deal with greater risk and effective occurrence of natural disasters. Not surprisingly, as a result of current climate variability and change, in the form of higher temperatures, reduced rainfall, erratic local, regional and global climate controls, the country is already and will continue to need to manage increased social, economic and environmental pressures across vastly degraded landscapes.

 

The South Ahuachapán landscape

  1. The South-Ahuachapán area, located in the department of Ahuachapán, includes the municipalities of San Francisco Menendez, Jujutla, Guaymango and San Pedro Puxtla (Figure 9), covering an area of 591.73 Km2, with a population of 98,016 people from which 51% are women, and with the majority of the population (77%) residing in rural areas[10].

 

  1. The MARN estimates the South-Ahuachapán as an area of high vulnerability to climate change. Considering its environmental and social characteristics at the landscape level, this part of the country finds itself highly susceptible to the destructive effects of climate variability together with lacking of necessary resources to adequately prepare, respond and recover from natural disasters. This region, contains a significant amount of the population exposed to frequent meteorological drought, while at the same time it is one of El Salvador’s main regions for the production of staple food items (basic grains), as well as other cash crops (sugarcane, coffee).

 

  1. According to the climate change scenarios produced by the MARN, climate variability and change in the region will become more and more evident. This will be reflected through significant increases in average temperatures, erratic rainfall patterns, and increased frequency and intensity of extreme weather events.
  2. Tree cover accounts for 68% of its total territorial area, distributed as 33% Forest, 29% Shaded coffee and 6% shrubs. Agricultural land accounts for 26% of total area, and it is used for the production of staple grains (maize and beans). The Landscape features strategic natural assets for the country, such as El Imposible National Park, the Apaneca-Ilamatepec Biosphere Reserve, and the RAMSAR site Barra de Santiago comprising an extraordinary biological diversity of ecosystems, species and genes, and their conservation deserve special attention. The primary ecological zones are the humid subtropical forest to the south, very moist subtropical forest, and humid subtropical forest.

 

  1. The area has a complex hydrographic network. Of the 11 hydrographic basins that drain the territory, four of the most important: the rivers La Paz, Banderas, Lempa and Grande in Sonsonate are part of this area. There are 32 rivers in the Barra de Santiago Basin - and the Sub-basins of Cara Sucia and Culiapa. Among the main rivers of the Cara Sucia Sub-basin are El Sacramento, Huiscoyol, El Corozo, Cara Sucia, Mistepe, the Izcanal, Maishtapula, and the Aguachapio rivers. Between the main rivers of the Cuilapa Sub-basin are the Guayapa, Cuilapa, El Naranjo, El Rosario, Cubis, San Antonio, Tihuicha and El Negro rivers. However, a Hydro Analysis of this area carried out in 2007, showed that domestic demand represented 7.41% of total demand, against an irrigation demand of 92.59%, with signs of over-exploitation of the resource in the lower parts of ​​the Cara Sucia Sub-watershed.         

 

  1. Since 1974, the Paz River has abandoned old drainages of the El Aguacate, La Danta and Río Seco channels, causing a process of desiccation and transformation of the wetlands and marshes, with an alteration of the salinity gradients, the reduction of the freshwater flows and the closure of the mangrove swamps of Garita Palmera. This leads to a high susceptibility to flooding in the southern part of the Department. The situation will be further aggravated by the climate change impacts projected to take place in what is already degraded land. Ineffective agricultural and livestock practices have led to high levels of contamination by agrochemicals, which, together with erosion, lead to a deterioration of mangroves with sedimentation and silting of channels, with loss of mangrove hydrodynamic regulation. This situation, threatens and affects artisanal and industrial fishing and local livelihoods. The lack of opportunities leads to migration and weakening of the social fabric in an already vulnerable part of the country.

 

  1. In this region, the mangroves in the lower basin of the river belong to the mangrove ecoregion of the Pacific dry coast (Olson et al., 2001), which extend in patches along the coastal zone of Guatemala and El Salvador. The mangroves and marshes dominate the coasts of estuaries in the coastal plain. The coastal wetlands of Garita Palmera and El Botoncillo are possibly the least known and certainly the most degraded on the coast of El Salvador (MARN - AECI, 2003), and the population that inhabits these ecosystems have livelihoods intimately related to their services. The current conditions of the mangroves in the lower basin of the river are a consequence of the high rate of deforestation and the change in land use throughout the basin, as well as alterations in its hydrological regime, such as decrease of annual flow, flow seasonal shifts, and significant decrease in water budget of River Paz, causing a reduction in the productivity of ecosystems and in their capacity to provide services and benefits to local communities (further contributing to flooding, increased runoff and soil loss).

 

  1. This region is important also for aquifer recharge, specifically for the recharge of the aquifer ESA-01, localized in alluvial materials in south Ahuachapán, in the municipalities of San Francisco Menendez, Jujutla and Acajutla.

 

  1. During the last eight years, this landscape has suffered the adverse impacts of extreme hydro-meteorological events, in some years it experienced Tropical Depressions and Hurricanes, and in other years it suffered meteorological drought with significant damages to infrastructure, agriculture and crops, functioning of ecosystems, and livelihoods. The loss of coverage and inadequate agricultural practices on slopes, have caused a decrease in water regulation capacities with increased runoff, which in turn led to a severe increase in soil erosion rates in the high and middle parts of the basins, an increased risk of landslides and floods; and a decrease in infiltration capacities and aquifer recharge with a decrease in the water supply for different uses. All this has been reflected in large damages to infrastructure and crop loss.

 

  1. The pressure exerted on the forest remnants of the highlands, riparian forests, secondary forests, agroforestry systems and mangroves has also increased the region’s vulnerability to climate change. The reduction of habitat, the loss of ecological connectivity and of critical ecosystem services (i.e. water provision, climate regulation) have caused a chain of processes and negative impacts that increase the vulnerability of this area in the face of more frequent events of heavy rainfall, and prolonged periods of drought. Thus, the loss of natural vegetation cover and the poor land use practices in agriculture, are leading to a continuous decrease in surface and ground water availability, excessive runoff, and a decrease in other water regulation ecosystem services, leading to a significant increase in soil erosion rates. A recent assessment of damages to the agricultural sector in Ahuachapán, pointed out that, due to an extended drought period, the average numbers observed for the harvest of corn and beans (June/July 2015) had a reduction of 94%.

 

  1. Degrading of natural ecosystems, with wide spread effects at the landscape level (including depletion of riparian forests and grasslands) threatens the provision of a wide range of ecosystem services to local communities in the South Ahuachapán. Long and short-term effects of degradation of these ecosystems include:
  1. increased soil erosion as a result of reduced vegetation cover;
  2. reduced infiltration of water in degraded watersheds and catchment areas, thereby resulting in reduced recharge of groundwater and an increased incidence of flooding; 

 

  1. Interventions in the are thus need to focus on helping the landscape to adapt and build resilience to the impacts of climate change, through the protection of the ecosystems and the rehabilitation and conservation of the mosaic of interdependent land uses thus enhancing the landscape’s capacity to manage extreme hydro-meteorological events as well as increased projected temperatures and erratic rainfall patterns. The goods and services generated by healthy or under restoration landscapes, have the potential to mitigate these threats by providing multiple benefits to local communities in the region of South-Ahuachapán, such as the provision of natural resources (food and water)  and regulatory functions, including flood mitigation, water filtration and waste decomposition.

 

Landscape approach to build resilience and adapt to climate change

  1. In 2012, El Salvador developed the National Environmental Policy to help regulate, manage, protect the country’s natural resources, and reverse environmental degradation, while reducing the country’s vulnerability to climate change, which feeds directly into the country’s plans on long-term economic growth and social progress outcomes. A key instrument of the National Environmental Policy is the National Program for the Restoration of Ecosystems and Landscapes (PREP), which is organized in three strategic areas: 1) Restoration, reforestation and inclusive conservation of critical ecosystems such as gallery forests, water recharge areas, slopes, mangroves and other forest ecosystems; 2) The restoration of degraded soils, through the forestation of agricultural systems, the adoption of resilient agroforestry systems and the development of sustainable and climate-resilient and biodiversity-friendly agriculture; 3) Synergistic development of physical infrastructure and natural infrastructure.  Forest landscape restoration is a key part of the country’s Nationally Determined Contribution, and the main strategy to contribute to climate change adaptation, by increasing productivity of landscapes, enhancing the resilience of forest ecosystems, landscapes, agroecosystems, watersheds, and forest‐dependent communities.

 

  1. The PREP comprises immediate and strategic activities, such as the conservation of forest remnants; the restoration of forest ecosystems and agroecosystems, recovering tree coverage in critical sites, working to rehabilitate the landscape; and the maintenance and increase of tree cover in critical areas, particularly in high altitude agroecosystems, and at the watershed level (to control water supply and flow, reducing runoff, landslides and floods). The application of techniques to reduce the speed of the water flow and to increase the capacity of the water retention in the upper sections of the basins and the high zones of the mountain ranges and the protection of the plant cover, have the potential to reduce erosion and the transport of sediment as well as floods. Consequently, it enables to reduce risks associated to extreme hydro-meteorological events. Furthermore, it is expected that the reforestation of the agricultural areas will improve the soil with an increase in organic matter and moisture retention, and therefore, increasing the resistance during water shortage and drought.

 

Identification of priority sites for EBA through restoration in South Ahuachapán 

  1. Information from the PREP was used o  update National Land Use Map, allowing for the identification of key the restoration sites of the country based on the following six criteria: soil conservation and food production; biodiversity and wildlife conservation; protection of ground water and adaptation to drought; adaptation to extreme events and protection against floods and storms; firewood supply and climate regulation.

 

  1. A particular focus was provided to key agroecosystems sites (these account for 60% of the national territory) with the potential land use/cover transitions[11] for restoration also being identified taking into account the different current uses of the soil to allow the recovery of prized ecosystems, through the restoration of their relevant environmental goods and services for adaptation. The potential areas for each transition type comprise a total of 1,001,405 hectares comprising eleven proposed transitions pointing to the high potential for restoration areas in South Ahuachapán.

 

  1. The analysis by MARN has allowed the project to identify the municipality of San Francisco Menendez located in the South Landscape of Ahuachapán, as the target intervention area for restoration investments. The municipality has a territory of 226.13 km2 and a total population of 42,062 of which 30,211 reside in rural areas. The identification of the Municipality of San Francisco Menendez as the area of intervention, was based on an exhaustive analysis of available time series of satellite remote sensing data, together with data and information collected by MARN in-situ.[12]

 

  1. To further characterize the imbalances observed in the region, coming as consequence of intense rainfall and longer dry periods, the prioritization exercise used data from the Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces Dataset (TerraClimate) to better understand the runoff patterns in San Francisco Menendez.[13] The analysis revealed an upward trend in surface runoff in San Francisco Menendez, starting in 2006 and progressing steadily,  affecting negatively agricultural activities and exacerbating the already damaging effects of extended periods of drought, scarce and localized rainfall patterns in the intervention area. The data and analysis revealed that the lower Rio Paz presents a remarkably consistent pattern of low precipitation and high temperatures over time. Such characteristics have been followed by an increase in the number of extreme whether events (such as heavy rainfall and droughts), leading to below average soil moisture, increased surface runoff, and soil loss. This has been pointed out by an increasing number of recent reports by MARN and international agencies such as USAID, FAO, GIZ, which have identified the Municipality of San Francisco Menendez (entirely located in the Central America Dry Corridor) as extremely susceptible to the Effects of CC. The impacts pointed out by MARN and international organizations working in the area, have been immediately felt in the form of changes in water flow patterns (in the Lower Rio Paz), higher than normal temperatures, erratic rainfall, and low fresh water input into the ocean. This has created an imbalance that will only be exacerbated by CC, affecting agriculture, the natural environment, as well as local livelihoods in the project intervention areas.

 

  1. In San Francisco Menendez, the land under exploitation is dominated by cultivation of crops (46%), followed by seasonal grasslands (30%) and permanent grasslands (15%). The local development plan for the municipality has identified 4,569 Ha of critical ecosystems for restoration by 2030 of which 1,569Ha are agroforestry systems, 2,000 Ha tropical forests and 1,000 Ha being mangrove systems. According to the 2007 Census in the agriculture and livestock sector, the land under exploitation is mainly owned by producers (75%) while 18% of land is leased (Figure 13). There are 80 cooperatives of small producers present in San Francisco Menendez, from those 16 are women led cooperatives.

 

  1. San Francisco Menendez municipality is part of the broader South Ahuachapán landscape that includes the municipalities of Jujutla, Guayamango and San Pedro Puxtla. These municipalities are administratively grouped together through the Association of Municipalities of Microregión Sur with the objective of establishing synergies for their development and for environmental management through concerted actions. Actions along these municipalities is also strategic as these also share access to the same aquifers (Figure 12) thus linking them, at a landscape, administrative and hydrological level. Population for this larger region is 98,016 (49,899 women) of which 75,515 people reside in rural areas.



[1] D. L. Hartmann, a. M. G. K. Tank, and M. Rusticucci, “IPCC Fifth Assessment Report, Climatie Change 2013: The Physical Science Basis,” Ipcc AR5, no. January 2014 (2013): 31–39, https://doi.org/10.1017/CBO9781107415324.

[2] IPCC, “Climate Change, Adaptation, and Vulnerability,” Organization & Environment 24, no. March (2014): 1–44, https://doi.org/http://ipcc-wg2.gov/AR5/images/uploads/IPCC_WG2AR5_SPM_A....

[3] Sönke Kreft and David Eckstein, “Global Climate Risk Index 2014,” Germanwatch, 2013, 28, http://germanwatch.org/en/download/8551.pdf.

[4] (Cai et al., 2015; Harger, 1995; Neelin et al., 1998; Takahashi et al., 2011; Torrence and Webster, 1999; Wolter and Timlin, 2011)

[5] Ministry of Economy; General Directorate of Statistics and Census –DIGESTyC; El Salvador: 2014; Estimates and Trends of Municipal Population 2005-2025

[6] STPP and MINEC-DIGESTYC (2015). Multidimensional Measurement of poverty. El Salvador. San Salvador: Technical and Planning Secretariat of the Presidency and the Ministry of Economy, through the General Directorate of Statistics and Census.

Compound Poverty: Takes into account the essential areas for human development and well-being. A total of twenty indicators around five essential well-being dimensions: a) education; b) housing conditions; c) work and social security; d) health, basic services and food security; and e) quality of the habitat.

[7] STPP & MINEC-DIGESTYC, “Medición Multidimensional de La Pobreza. El Salvador.,” San Salvador: Secretaría Técnica y de Planificación de La Presidencia y Ministerio de Economía, a Través de La Dirección General de Estadística y Censos., 2015.

[8] Minerva Campos et al., “Estrategias de Adaptación Al Cambio Climático En Dos Comunidades Rurales de México y El Salvador,” Adaptation Strategies to Climate Change in Two Rural Communities in Mexico and El Salvador, no. 61 (2013): 329–49, http://www.boletinage.com/61/16-CAMPOS.pdf.

[9] For example, accumulated rainfall in the southeast area of the country was less than 10 mm, representing a 95% deficit from average rainfall

[10] Almanaque 262. State of human development in the municipalities of El Salvador, 2009.

[11] Defined as the non-linear land use change process associated with societal and biophysical system changes.

[12] The analysis was conducted using Google Earth Engine, allowing the production of wall-to-wall spatially explicit information at multiple spatial scales. The analysis included Climate models generated by both long-term climate predictions and historical interpolations of surface variables, including historical reanalysis data from NCEP/NCAR, gridded meteorological datasets such as the NLDAS-2, and GridMET, and climate model outputs like the University of Idaho MACAv2-METDATA and the NASA Earth Exchange’s Downscaled Climate Projections. The prioritization also included the analysis of spatially-explicit land surface variables over time, such as: Evapotranspiration/Latent Heat Flux product (8-day composite product produced at 500 meter pixel resolution), providing information on the hydrologic cycle, which has direct and significant influence on agriculture cycles in the region, as well as the amount of solar radiation, atmospheric vapor pressure, temperature, wind, and soil moisture available. The prioritization also included analysis of salinity anomalies using the Hybrid Coordinate Ocean Model, Water Temperature and Salinity (HYCOM) (Revealing that salinity has not been decreasing as result of local meteorological processes over the past several years). The analysis also included Long-Term drough Severity estimations using the Palmer Drought Severity Index (PDSI), which has been effective in effective in determining long-term drought in the intervention area. The PDSI data and analysis considers surface air temperature and a physical water balance models, taking into account the observed effects of increasingly warm temperatures, and high evapotranspiration, leading to systemic imbalances affecting local hydrological cycles (refer back to Figure 13).

[13] This dataset and analysis considers runoff as the excess of liquid water supply (precipitation) used by monthly Evapotranspiration and soil moisture recharge and is derived using a one-dimensional soil water balance model and it correlates well to measured streamflow from a number of watersheds globally.

 

Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1. Ecosystem-based adaptation for enhanced resilience at a territorial level

Component 2. Alternative and adapted livelihoods identified and made viable for resilient livelihoods

Component 3. Regional Climate and Hydrological Monitoring for Enhanced Adaptation Planning

Component 4. Strengthening of inter-institutional coordination and local governance for landscape management in the face of climate variability and change

 

 

 

Project Dates: 
2021 to 2024
Timeline: 
Month-Year: 
June 2021
Description: 
Project Launch
Proj_PIMS_id: 
6238
SDGs: 
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Advancing Climate Resilience of Water Sector in Bhutan (ACREWAS)

Bhutan is highly vulnerable to the adverse impacts of climate change. This landlocked least developed country has a fragile mountainous environment and is highly dependent on agriculture. Hydropower plays a significant role in the country’s economic development, placing increased challenges for the management and use of water. The country also faces increasing threats from climate hazards and extremes events such as flash floods, glacial lake outburst floods, windstorms, forest fires, landslides, and the drying-up of streams and rivulets.

As a result of climate change, summer months are predicted to become wetter and warmer while winter months are expected to be drier. These result in the abundant availability of water in warmer months but decreased accessibility during winter months. Despite being endowed with the highest per capita water availabilities, Bhutan suffers from chronic water shortages, and access to water is a key determinant of people’s vulnerability. Given the mountainous terrain, climate-induced hazards like flashfloods and dry spells during winter, are likely to deteriorate the quality and quantity of water required to meet hygiene and sanitation needs. Inability to meet the demand is likely to further accentuate the impacts of climate change on the local communities.  The COVID-19 pandemic reinforces the need for access to adequate and clean water for health as well as food and nutrition security.

In the face of water scarcity there are opportunities to enable adequate, clean, and assured water supply to the population and increase climate resilience for rural and urban communities. The Royal Government of Bhutan has prepared a water flagship programme to provide assured drinking and irrigation water for the country in the face of climate change.

The proposed “Advancing Climate Resilience of Water Sector in Bhutan (ACREWAS)” project will form a core part of the national plan to provide integrated water supply for four Dzongkhags (districts) in Bhutan that comprise the major parts of the upper catchments of the Punatsangchhu River Basin management unit. The project interventions will increase the climate resilience of rural and urban communities. Considering the spatial interlinkages and dependencies between land use, ecosystem health, and underlying causes of vulnerability to climate change, this approach will ensure that targeted catchment watersheds are managed to protect and restore their capacity to provide sustainable ecosystem services and bring about efficiency, effectiveness and climate resilience within the drinking and irrigation water infrastructure network. The project will support critical catchment protection by adopting climate-resilient watershed management principles. Such practices are anticipated to reduce threats from climate-induced hazards such as floods, landslides and dry spells, while at the same time improving the overall adaptive capacity of project beneficiaries. Additionally, these measures will also ensure that downstream climate-resilient infrastructure development works are managed in tandem with upstream initiatives.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (90.560302667852 27.451739763379)
Primary Beneficiaries: 
34,029 direct beneficiaries, 38,660 ha of land managed for climate resilience
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$25.1 million
Project Details: 

Country profile

Bhutan is a small, landlocked country with an area of 38,394 km2 in the Eastern Himalayas located between China in the north and India in the south, east, and west. The dominant topographic features consist of the high Himalayas in the north with snowcapped peaks and alpine pastures; deep north-south valleys and hills created by fast-flowing rivers forming watersheds with temperate forests in the mid-range; and foothills alluvial plains with broad river valleys and sub-tropical forests in the southern part. With about 50% of the geographical area under slopes greater than 50% and about 52.45% of the land area lying above 2600 meters above mean sea level (RNR Statistics, 2019), Bhutan’s topography is almost entirely mountainous and rugged. The mountainous landscape also makes the delivery of infrastructure and services difficult and expensive. Due to its fragile mountainous ecosystem, the country is highly vulnerable to impacts of climate change and extreme weather events. The situation is further worsened by the country’s low adaptative capacity, poor economic status constrained by limited financial, technical, and human capacity.

It is one of the least populated countries in mainland Asia with a total population of 727,145 with a growth rate of 1.3% out of which 47.7% and 56.71% of the population under the age of 29 (PHCB, 2017). About70.77 % of the total land area is under forest cover and 51.44% of the total area is designated as protected areas comprising of national parks, four wildlife sanctuaries, a strict nature reserve, biological Corridors, and a botanical park (FRMD 2017). The Constitution of the Kingdom of Bhutan (2008) mandates 60% of the country to remain under forest cover for all times to come. Some of the rarest flora and fauna on earth flourish within its high forest cover and pristine environment supported by strong conservation efforts and a good network of Protected Areas. The country’s biodiversity includes 15 vulnerable, 20 endangered, and 13 critically endangered seed plants; 13 vulnerable, 11 endangered, and two critically endangered mammal species; 22 vulnerable, four endangered, and four critically endangered bird species; eight vulnerable and three endangered fish species; 11 vulnerable, five endangered and two critically endangered amphibians, and one vulnerable butterfly (MoAF, 2018).

Agriculture is a very important economic activity for Bhutan. The agriculture sector comprises of farming, livestock, and forestry which continues to be a major player in the country’s economy. With only 2.75% of the total land area used for agriculture, the sector accounted for 15.89% of GDP in 2018 and employs about 48.63% of the total economically active population. With the majority of the population relying on agriculture, the sector is highly vulnerable to climate change. Also, characterized by remoteness and inaccessibility, marketing and large-scale commercialization are significant challenges for Bhutan. About 56% of the economically active population engaged in agriculture are female rendering women more vulnerable to impacts of water shortages in agriculture (RNR Statistics, 2019). Hydropower and tourism are the other key economic drivers.

The proposed project will intervene in four Dzongkhags (districts) that form a major part of Punatsangchhu river basin, one of the five main river basin management units in Bhutan as well as the largest in terms of geographical area and among the most climate-vulnerable watersheds in the country. The project area covering 883,080 Hectares comprising 23  percent of the total land cover of Bhutan, and 22 percent of all water bodies in the country. The project area covers 16,693 hectares or 16 percent of cultivated area in Bhutan (Agriculture Statistics, 2019). The majority of the population within the project Dzongkhags are engaged in agriculture. Overall, the agriculture sector has engaged 47 percent of the total employed population in the project area comprising 67.71 percent of the female population and 34.34 percent of the male population. Other major sectors of employment include construction which engages 13 percent of the population and electricity/gas/water which engages 10.72 percent of the population. These two sectors employ only 2.5 percent of the female population and 19.4 percent and 15.7 percent of the male population respectively. Agriculture, the main sector of employment in the project area is dominated by women. The project areas have a total population of 97,254 comprising 45.5 percent females. The population of the project area constitutes 13.4 percent of the national population (PHCB, 2017). The Dzongkhags in the project areas include Gasa, Punakha, Wangduephodrang and Tsirang.

Gasa Dzongkhag is spread from elevations between 1,500 and 4,500 meters above sea level. The Dzongkhag experiences extremely long and hard winters and short summers. The Dzongkhag has four Gewogs namely Goenkhatoe, Goenkhamae, Laya and Lunana. The people of Laya and Lunana are mostly nomads. Over a hundred glacial lakes in the Dzongkhag feed some of the major river systems in the country, including the Phochhu and the Mochhu rivers which join further downstream to form the Punatsangchhu river basin. The whole Dzongkhag falls under the Jigme Dorji Wangchuck National Park. Dzongkhag is popular for its hot springs and series of other springs which are considered for their medicinal properties (Menchus). The region’s high altitude and extreme climate make it difficult to practice agriculture but livestock is a mainstay, particularly the rearing of yaks.

Punakha Dzongkhag is located south of Gasa and is bordered with Wangduephodrang to the east and south and is part of the Punatsangchhu river basin. The Dzongkhag has eleven gewogs, namely Baarp, Chhubu, Dzomi, Goenshari, Guma, Kabjisa, Lingmukha, Shengana, Talo, Toepisa and Toedwang ranging from 1100 - 2500 m above sea level. Punakha is well known for rice, vegetables and fruits.

Wangdue Phodrang is one of the largest dzongkhags in Bhutan and has fifteen Gewogs which are Athang, Bjena, Daga, Dangchu, Gangtey, Gasetshogom, Gasetshowom, Kazhi, Nahi, Nysho, Phangyuel, Phobjkha, Ruebisa, Sephu, and Thedsho. The Dzongkhag ranges from 800 - 5800 m above sea level and has varied climatic conditions ranging from subtropical forests in the south to cool and snowy regions in the north. The Dzongkhag forms parts of Wangchuck Centennial Park in the north, Jigme Dorji Wangchuck National Park in northwestern pockets, and Jigme Singye Wangchuck National Park in the southeastern end. One of the most notable sites in the district is Phobjikha Valley which is the habitat of the rare and endangered black-necked cranes during winters. The Gewogs of Phangyuel & Ruebisa are included as part of the project area.

Tsirang is noted for its gentle slopes and mild climates suitable  and well-known for agriculture as well as livestock products. It is one of the few dzongkhags without a protected area. The Dzongkhag has twelve gewogs which are Barshong, Dunglagang, Gosarling, Kikhorthang, Mendrelgang, Patshaling, Phuentenchu, Rangthaling, Semjong, Sergithang, Tsholingkhar and Tsirangtoe.

The problem

As a result of climate change, summer months are predicted to become wetter and warmer while winter months are expected to be drier (See para 13, 14, 15, 16, and 17). These result in abundant availability of water in warmer months but decreased accessibility due to flooding and erosions exacerbated by the hostile terrain (See para 18, 19, and 21) and scarce availability and accessibility of water in winter months due to drying of water sources (See para 18). Therefore, despite being endowed with the highest per capita water availabilities, Bhutan suffers from chronic water shortages as follows. Water is a key determinant of people’s vulnerability. Given the terrain climate-induced hazards like flashfloods, dry spells during winter, are likely to deteriorate the quality and quantity of water required to meet hygiene and sanitation needs. Inability to meet the demand is likely to further accentuate the impacts of climate change on the local communities.  The COVID-19 pandemic reinforces the need for access to adequate and clean water for health as well as food and nutrition security. Frequent handwashing is widely recommended by WHO to stop the spread of COVID-19. Reliable water, sanitation, and hygiene (WASH) facilities are essential to containing the spread of the virus.  The stocktaking for National Adaptation Plan (NAP) formulation process in Bhutan carried out in 2020 clearly recommends instituting indicators, among others, such as number of people permanently displaced from homes as a result of  floods, dry spell or other climate events, number of surface water areas/ springs subject to declining water quality/quantity due to extreme temperatures. In an agrarian and predominantly rural nature of the Bhutanese communities, inadequate access to water can further accentuate the vulnerability  to climate change. Climate-smart and resilient agriculture is particularly  dependent on adequate water. The project, by instituting and ensuring climate-resilient practices in the whole supply chain of water (sourcing, supply, maintenance, governance, and ownership), will address the current problems caused as results of climate change.

Drinking water shortages and Degrading water quality: A 2014 inventory of rural households carried out by the health ministry found that 17% of rural households (13,732) across the country faced drinking water problems and 18% of regular households (29,340) in Bhutan reported that the source of drinking water is unreliable[1]. According to the National Environment Commission’s 2018 Water Security Index, more than 77.5% of households in the urban areas of Thimphu have resorted to portable water supply as the taps are running dry. Most of the urban areas have access to only intermittent water supply. The duration of supply generally ranges from 4 to 12 hours daily. More than 46% of the urban population have 8 to 12 hours and 11% have less than 8 hours of water supply. According to the National Water Flagship Program, 58 rural communities comprising 751 households in the country have no water source, and 49 villages comprising 1,051 households have inadequate water source. These households depend on water harvested during rainy days. Dried up sources have also been reported in 29 communities, comprising 527 households where the Rural Water Supply Schemes have been implemented. Drying up of water sources is attributed to the extended period of the drier winter season with high evaporative demand. The Water Act of Bhutan, 2011 and as well as the Bhutan Water Policy, 2003 consider water for drinking and sanitation for human survival as the first order of priority in water allocation.

Water contamination is considered to occur at water sources due to seepage from agriculture and household effluents as well as due to lack of standard water treatment and quality assurance leading to poor water quality levels across the country, particularly in urban areas. As agriculture expands upstream, farm runoff could become a consideration for water quality downstream.

About 50% of the geographical area of Bhutan is under slopes greater than 50% (RNR Statistics, 2019). The predominant mountainous and rugged topographic features render the country highly vulnerable to climate change-induced disasters, mainly in the form of landslides, erosions, and siltation which also seriously impact on water availability and quality. Climate change, through erratic rainfall and flooding in steep slopes, exacerbates water quality as running streams and rivulets tend to become muddy affecting drinking water quality. A rapid assessment of rural drinking water quality in 2012 indicates that 17% of the stream water sources and 28% of the spring water sources are safe for consumption (RCDC, 2012). The test is conducted through the assessment of microbiological parameters. Domestic sewage and improper disposal of waste oil and other vehicle effluents from workshops located close to rivers are also a serious environmental concern, especially in places like Thimphu and Phuentsholing. While the use of pesticides and herbicides is also a potential source of water pollution, RGOB has a dedicated program on organic agriculture which is expected to address this in the long run while also improving agro-ecosystems. Further, the COVID-19 pandemic reinforces the need for access to adequate and clean water for health as well as food and nutrition security. Frequent handwash is widely recommended by WHO to stop the spread of COVID-19. Reliable WASH facilities are essential to containing the spread of the virus.

Irrigation water shortages: Of the 900 schemes surveyed at the national level, only 372 schemes have an abundance of water, 272 schemes got adequate irrigation water. About 27% of the total schemes suffer from either “inadequate” or “acute shortage” of irrigation water[2]. Assessment has shown that water shortages for agriculture, and hence even for drinking, is likely to become critical, as historical data clearly demonstrate that the evaporative demand of the atmosphere has been significantly increasing, decreasing the amount of rainfall available for growing crops during both in the months of December to February (DJF) and March to April (MAM). The assessment also shows that it will likely no longer be feasible to plant rice, a staple crop, without supplemental irrigation during DJF. The findings reinforce and validate the reported water shortages noted by farmers during the dry season. These climatic changes during the dry season are expected to continue and are consistent with climate change projections, reinforcing that it will become increasingly difficult for farmers to grow crops without suitable adaptation measures.

According to RNR Statistics (2019), of the 976 irrigation schemes across the nation, 88% are functional, 2% are semi-functional and 10% are non-functional. This is largely attributed to damage to the infrastructure due to landslides and flooding due to extreme weather events. A study in Punakha, Wangdue, Tzirang, Paro, Sarpang, and Samtse carried out from March-May in 2019 indicated that the most important consequence of climate change impacts on crop production was the drying of irrigation water sources[3]. The farming communities reported on experiencing significant frequency and severity of extreme weather events in the form of untimely rain and drought. The farmers in the study districts felt that the irrigation sources were affected the most as a consequence of climate change impacts. The study also documents data over last over the last 20 years (1996–2017) in the study area which shows a decreasing rainfall and an increase in temperature.

The COVID-19 pandemic

COVID-19 pandemic has affected Bhutan like any other country. The science-based response measures and early recognition of its impact have managed to contain without major health impact on the Bhutanese. However, the economic repercussion continues to be severe. For a country, that relies heavily on the importation of essential goods such as food items and fuels, prices have risen by manifolds. In particular, the COVID-19 pandemic has seriously constrained food imports. (Imported food accounts for 16.0 percent of total imported value amounting to Nu. 66.92 billion in the year 2017[4]). It disrupted  supply chains due to higher transport costs caused by the reduced volume of imports and establishment of additional safety protocols through supply chains. COVID-19 has also triggered reverse urban-rural migration, where urban dwellers have started to move to rural homesteads to pursue agriculture resulting in further pressure on irrigation water needs in rural agriculture areas. The pandemic reinforces the need for access to adequate and clean water for health as well as food and nutrition security. Frequent handwash is widely recommended by WHO to stop the spread of COVID-19. Reliable, WASH facilities are essential to containing the spread of the virus. Further, the challenge posed by the pandemic has underscored the need to build a resilient domestic and local agriculture system with a shorter supply chain, efficient water management and irrigation system, etc to adapt to the impending crisis of climate change.

The proposed alternative

In the face of water scarcity there are opportunities to enable adequate, clean, and assured water supply to the population and increase climate resilience of rural and urban communities. The RGOB has prepared a water flagship program to provide assured drinking and irrigation water for the country in the face of changing climate. This proposed intervention will form a core part of the national plan to provide integrated water supply for four Dzongkhags. The project interventions will enable adequate, clean, and assured water supply to the population of four Dzongkhags of Gasa, Punakha, Wangduephodrang (two gewogs of Phangyuel and Rupisa), and Tsirang. These four Dzongkhags from major parts of the upper catchments of Punatsangchhu river basin management unit. The project interventions will increase the climate resilience of rural and urban communities in these Dzongkhags. Considering the spatial interlinkages and dependencies between land use, ecosystem health, and underlying causes of vulnerability to climate change, this approach will ensure that targeted catchment watersheds are managed to protect and restore their capacity to provide sustainable ecosystem services and bring about efficiency and effectiveness and climate resilience of infrastructure network for drinking and irrigation water supplies. The Project will support critical catchment protection by adopting climate-resilient watershed management principles. Such practices are anticipated to reduce threats from climate-induced hazards such as floods, landslides, and dry spells and overall improvement of the adaptive capacity of the project beneficiaries. Additionally, these measures will also mean the downstream climate-resilient infrastructure development works are in tandem with upstream catchment protection.


[1] Population and Housing Census of Bhutan (PHCB), 2017

[2] Report on the National Irrigation Database and Canal Alignment Mapping, 2013,  DoA, MoAF.

[3] Ngawang Chhogyel,  Lalit Kumar and Yadunath Bajgai; Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan, Sustainability, 25 May 2020 (

[4] Imported food control in Bhutan, National Situational Report, FAO, 2019


 

 

Expected Key Results and Outputs: 

Outcome 1: Strengthened water governance, institutions, and financing mechanism in support of climate-resilient water management.

In order to address the issues related to institutional and governance structure on water resource management, services and its associated barriers, the project will aim to strengthen climate resilient water governance and coordination systems including the establishment of an agency for water utilities and one that will pursue integrated water sector development, management and provision of water related utility services. Based on an Institutional and analysis including feasibility assessment of the proposed national agency during PPG phase, the establishment of such an agency will be proposed with clear mandates, organizational structure and clarified linkages with the NECS, competent authorities and local governments.

Further, the component will also support institutional arrangements to enable establishment of River Basin Management Committees (RBMCs), Dzongkhag Water Management Committees (DWMCs) and Water User Associations (WUAs).

Through this, the project will support clarifying on policies, regulations & planning processes as well as on financing of operations of RBMCs and DWMCs as it relates to water sector planning, development and management, promoting community participation, monitoring and reporting and resolving cross-sectoral issues to fully embed climate risk considerations. The project support will include review of the Water Act of 2011 to incorporate the changes in the mandate and institutional setup within the water sector that will enable climate risk management policies and functions across mandated institutions. It will support integration of Key Results Areas (KRAs) for water security and Key Performance Indicators (KPIs) based on national Integrated Water Resources Management Plan (IWRMP) in the national and local planning guidelines with appropriate responsibility and accountability frameworks so that NIWRMP and RBMPs can be mainstreamed into sectoral and local development plans. Through this, the project will support enabling appropriate institutions and clarify on policies, regulations & planning processes as well as on financing of operations of RBMCs and DWMCs as it relates to water sector development and management, promoting community participation, monitoring and reporting and resolving cross-sectoral and cross- administrative boundary issues.

The lack of capacity for climate-smart operation and maintenance of water supply systems, water conservation/efficiency technologies, and adoption of IWRM approaches have been bottlenecks in building resilience in the water sector. To overcome the barriers related to limited capacity on climate-resilient water/watershed management this component will support effective capacity for climate-resilient water and watershed management as well as for taking forward the concept of IWRM at various levels including institutional & community level capacity.

The project will also test and demonstrate financing instruments or models engaging private sector through PPP and PES to embed sustainability dimensions in watershed and water infrastructure management. To promote water conservation as an adaptation mechanism and reduce overconsumption and water, a water pricing policy will be supported.

The main deliverables under this outcome will include:

Support to the Government’s priority to establish an autonomous national government agency for water to provide access to adequate, safe, affordable and sustainable water for drinking, sanitation, waste water and irrigation services considering climate change impacts on hydrological systems. The agency will operate and function on a corporate mode and will sustain its operations on service fee/tariff on water utilities and services in the long term on Government budgetary support in the short term. The project support in this will include the design of the organizational setup and capacity building to ensure that the new agency has  organizational profile and human resources competency to consider climate change impacts on hydrological systems. Clear mandates, organizational structure and clarified linkages with the NECS, competent authorities and local governments for planning, development, coordination and management of water utilities and services. The water agency will be a corporate entity owned by the government, sustaining on government grant initially and on service fee/tariff on water utilities and services in the longer term. The Government contribution in this will include establishment of the agency and provide operational mandate, resources, and legitimacy.

Entities that represent the stakeholders to be engaged actively in the development of watershed management plans through RBCs, DWMCs and WUAs.

Adequate and gender-balanced human capacity and skills available for climate-resilient water resources and water management at central, local, community levels including the private sector.

A revised water act, water policy and regulations supported and policy environment for sustainable and climate-resilient water management

While climate change clearly impacts the supply-side affecting availability of water resources. Human demands for water also interact with climate change to exacerbate the pressures on the water supply. In order to rationalize water use and reduce the demand-side pressures on water, the project will promote water thrifting as an adaptation mechanism through a water pricing policy. The policy will consider better access to water, improved quality of water, reduce over consumption and reflect the actual cost of production including ecological costs. It will also consider appropriate pricing for rural households and lower-income households in urban areas.

Conducive environment for corporate and private sector engagement, enterprise development, and public-private partnerships demonstrated. Private sector participation in drinking water and irrigation management initiated in at least 4 water infrastructure operations and maintenance. Green Bhutan Corporation Limited (GBCL) engaged in plantation and agroforestry activities with support from the project establishing a modality for  GBCL to collaborate with the Druk Green Power Corporation (DGPC). Post project, the DGPC will support plantation activities of GBCL for watershed restorations.

Beneficiaries/users of ecosystem services pay to the provider of services contributing to sustainable watershed management and sustenance of ecosystem services. The project results will include establishment of PES schemes contributing to sustainable watershed management in water catchment areas.

Outcome 2: Vulnerable natural water catchments in the target river basin (Punatsangchu River Basin) restored, sustainably managed, protected and their ecosystem conditions improved.

This outcome will support participatory assessment, identification & declaration of critical water sheds/catchment areas/spring recharge areas. The project will support soil & water conservation interventions, bio-corridors/setbacks and wetlands/spring augmentation activities for water catchment /spring recharge areas including soil/moisture retaining agro-practices and climate-resilient crops in settlements near catchments. These interventions will aim to restore and improve ecosystem conditions of vulnerable natural water catchments.

Further, implementation of afforestation, reforestation and agroforestry interventions will improve forest and/or ground cover and enhance water infiltration in catchments. Overall, this component will address the problem related to drying up upstream water sources and reduced/erratic downstream water availability by improving the catchment watershed conditions and enabling sustainable and resilient watersheds yielding stable spring/stream flows.

 The main deliverables under this outcome will include:

Improved water security as and biodiversity/ecosystems safeguards with additional co-benefits in carbon sequestration and storage, improved soil fertility, biodiversity conservation, and improved community livelihoods. Catchment watersheds restored with vegetation to enhance infiltration, reduce run-off and peak flows, and stabilize slopes, soil fertility improved over 37,530 hectares of forest land/watersheds

Improved ecosystem conditions of 42 watershed areas as well as 147 spring sources to improve water availability and quality at source.

Local sites for nature-based solutions identified and at least 12 start-up enterprises on based solutions promoted to incentivize and enhance watershed conservation such as fodder development, catch and release fishing, water sports, tourism, hot stone bath, etc. These enterprises can operate as per the framework developed through the GEF ecotourism project and provide concessions for these nature-based enterprises (private sector) to participate in watershed management activities.

Outcome 3: Enhanced adaptive capacity of water infrastructure to climate-induced water shortages and quality deterioration through climate-proofing, private sector engagement, and technology deployment.

This outcome will address barriers related to inefficient and inadequate surface water storage and distribution, breakage and leakage of water pipelines and tank overflows, illegal tapping of waterlines and breakdown of pumps and blackout of electricity during summer, lack of standard water treatment and quality assurance in drinking water supply systems and water contamination are major issues leading to irrigation and drinking water shortages as well as poor water quality. The component will focus on establishment and demonstration of adequate climate-smart and efficient water infrastructure. The water tapping, storage, and distribution system under this component will integrate multi-purpose water storage and distribution to the extent possible. In order to improve monitoring of infrastructure failures for both volume and quality of water supplies, the project will support on boarding of new/improved technologies to be deployed so that vulnerability of the infrastructure to failures due to climate-induced hazards or through man-made disturbances on the system are detected and solutions provided in a timely manner. The project support under this component will include supporting startups to install and manage efficient technologies in the operation and management of the infrastructure. The collaboration with the DRIVE center of the InnoTech Department of the Druk Holding & Investments Ltd (DHI[1]) will be leveraged to promote private start-up enterprises with IT-based solutions for water management (See box below). Overall, the outcome through this output will enable efficient, adequate, and sustainable supply and distribution of water.

Flooding and erosion due to hostile terrain exacerbated by climate change in the form of landslides, erosions and siltation seriously impact on water availability and quality. For drinking water, the project will aim to improve water quality as affected by water pollution through flooding and siltation and enable meetin Bhutan Drinking Water Quality Standard, 2016 and WHO guidelines for drinking water quality.

 The main deliverables under this outcome will include:

Community resilience improved covering 2,567 households with access to adequate irrigation water and be able to bring about additional area of 559.9 Hectares of agriculture land under sustainable agriculture production.

Source of water supply would have extended beyond surface water to include ground water and rainwater enhancing resilience of water sources and human hygiene and sanitation improved covering 7,435 households with access to 24x7 drinking water of quality that meet Bhutan Drinking Water Quality Standard, 2016 and WHO guidelines for drinking water quality.

Outcome 4: Strengthened awareness and knowledge sharing mechanism established.

The limitations in public awareness on the impacts of climate change on water resources, communities and on overall on climate-resilient water/watershed management practices are a concern. To overcome the barriers related to limited awareness programs and lack of data on climate-resilient water/watershed management practices, the project support under this component will include documentation and sharing of knowledge and practices as well as effective capacity for climate-resilient water and watershed management. A Communication strategy developed and implemented on water conservation and sustainable management developed and implemented which will lead to publication of a State of the Basin Report (SOBR) for the Punatsangchu River Basin. This component will enable meeting the requirements of the National Environment Protection Act and the Water Act of Bhutan to regularly publish information on the environment, including periodic state of the environment reports and to provide access to water and watershed-related information. The publication of a State of the Basin report (SOBR) for the five river basins at the national level. The SOBR will include;

Overall situation of river basin in terms of its ecological health and the social and economic circumstances including water security index and impact of climate change on water sector in Bhutan

Highlight of key issues faced in establishment and functioning of  the agency for water utilities  at national level, River Basin Management Committees (RBMCs), Dzongkhag Water Management Committees (DWMCs) and Water User Associations (WUAs)

Establish gaps and needs for the development of relevant River Basin Management plans and its effective implementing.


[1] DHI is the commercial arm of the Royal Government of Bhutan established to hold and manage the existing and future investments of the Royal Government for the long-term benefit of the people of Bhutan. DHI, the largest and only government-owned holding company in Bhutan. Its InnoTech Department is responsible for strategizing technology and innovation pathways to enhance access and diffusion of the technologies across DHI. To address the national socio-economic challenges, the department is also undertaking applied and fundamental research and development in the field of science and technology to create ventures and start-ups, build national intellectual property and establish a platform for innovation, creativity and jobs for the next generation. The Department’s division called DHI Research and Innovation Venture Excellence Center (DRIVE), has  developed a prototype on IT based solution for water management. The PIF process has consulted with the management of the InnoTech Department based on which it has been agreed to test, validate and upscale the technology in the proposed project. Youth based enterprises can be engaged to on-board of this technology into the project area so that these youth-based enterprises can be engaged as private entities to handle the monitoring and providing advisory on maintenance of the infrastructure.


 

 

Contacts: 
UNDP
Jose Padilla
Regional Technical Advisor
UNDP Bhutan
Mr. Chimi Rinzin
Portfolio Manager
UNDP Bhutan
Mrs. Sonam Rabgye
Programme Analyst
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Strengthened water governance, institutions, and financing mechanism in support of climate-resilient water management.

Outcome 2: Vulnerable natural water catchments in the target river basin (Punatsangchu River Basin) restored, sustainably managed, protected and their ecosystem conditions improved.

Outcome 3: Enhanced adaptive capacity of water infrastructure to climate-induced water shortages and quality deterioration through climate-proofing, private sector engagement, and technology deployment.

Outcome 4: Strengthened awareness and knowledge sharing mechanism established.

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
June 2021
Description: 
Project Approval
SDGs: 
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards

Frequent and more intense floods, mudflows, landslides, avalanches and other climate change-related disasters in Uzbekistan are putting lives and livelihoods at risk and slowing progress to reach targets outlined in the Paris Agreement and Sustainable Development Goals.

To address these challenges, the Green Climate Fund-financed “Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards” project will respond to a critical need in Uzbekistan to modernize its early warning system into an impact-based Multi-Hazard Early Warning System (MHEWS ). The MHEWS will improve early warnings on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions, an essential element of the country’s climate risk management framework.

Several climate change-induced hazards (such as floods) have caused significant economic damages and led to the loss of lives. For example, it is estimated that 7.6 million people are vulnerable to flooding in Uzbekistan. The economic impact of flooding due to climate change is estimated to be about US$236 million. These hazards related to heavy rainfall and temperature extremes are either already increasing in frequency and/or intensity or are expected to do so under climate change, particularly over the eastern mountainous regions of Uzbekistan. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards. The improved early warning systems will inform future planning and reduce risks for vulnerable communities, support resilient livelihoods, good health and well-being, and improve food and water security for the people of Uzbekistan.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, and improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (63.720703099213 41.483205853498)
Primary Beneficiaries: 
311 million direct beneficiaries, 2 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$9.9 million
Co-Financing Total: 
US$30.6 million (Uzhydromet and MES)
Project Details: 

The Government of Uzbekistan through its Ministry of Emergency Situations (MES) implements a state program to modernize the early warning system for natural disasters[1]. This GCF project will provide the critical technical and financial resources, access to innovative technologies and expertise for the implementation and scale-up of this national initiative. The GCF-financed project will promote the transformation of climate hazard forecasting and warning from a reactive (ex-post) hazard-based system to one that is proactive (ex-ante), user-oriented and impact-based.

The project puts a strong focus on strengthening the “last mile” delivery of disaster-related communication and interaction with end users, including vulnerable communities. The improved capacity of Regional crisis management centers (RCMCs) and local communities to use and interpret climate risk information into practical early responses will directly benefit at least 11 million people (34% of total population) currently at risk from climate hazards and enhance the community resilience as a whole.

Uzhydromet’s capacity as a WMO Regional Specialized Meteorological Centre (RSMC) will be strengthened, building on the CAHM[2] (World Bank/WMO) project. The proposed GCF investment will develop automated procedures and modelling capacity that can serve as an example for other developing Central Asian countries, as well as being the driver of significant institutional change, catalysing increased efficiency in climate hazard warning generation and dissemination and developing new operational procedures between MES and Uzhydromet.

Climate change has been leading to more frequent and more intense hydrometeorological disasters in Uzbekistan and to a greater exposure to these disasters across the country. Uzbekistan sets climate change adaptation as a priority in its first Nationally Determined Contribution (NDC)[3] under the Paris Agreement. In particular, the NDC clearly highlights the need to establish a Multi-Hazard Early Warning System (MHEWS).

This project will respond to a critical need of Uzbekistan to modernize its early warning system into an impact-based MHEWS (initially focused on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions), an essential element of the country’s climate risk management framework. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

The GCF grant is required to upgrade the existing hazard forecasting and warning system in Uzbekistan so it can effectively deal with the additional pressure brought about through increases in climate variability and change. This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.




[1] Cabinet Resolution No. 242 of the Republic of Uzbekistan "On further improvement of state system for warning and emergency applications of the Republic of Uzbekistan” from 24 August 2011

[2] Central Asian Hydro-Meteorological project

 

Expected Key Results and Outputs: 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities

The proposed intervention will create a more efficient monitoring network for weather, climate, hydrology and cryosphere, through both upgrading existing (automating) and installing new monitoring equipment (automatic weather stations (AWS), automatic hydrological stations, upper air sounding stations, and strategically placed low cost radars. This equipment and other existing data streams will be integrated into high availability/redundant single databases. Hazard-specific forecasting procedures will be developed and operationalized for climate-induced hazards. Training of Uzhydromet staff to undertake forecasting, operation and maintenance and data QA/QC/archiving procedures will also accompany these activities. Activities follow the GFCS and in this output are designed to address aspects related to: i) observations and monitoring; and ii) research, modelling and prediction. Uzhydromet will be the immediate beneficiary under all activities of Output 1, while their end beneficiaries include all the users of the upgraded hydro-meteorological observation network, modelling and forecasting capacities.

Activity 1.1 Upgrading and modernization of the meteorological and hydrological Observation System. This will include upgrading/automation of 25 meteorological observation stations and equipment (software, workstations etc), modernizing the ground-based infrastructure (telemetry processing, hydrogen generators etc) for 2 upper-air stations (Uzhydromet/GoU will support the establishment of 2 more), installing 2 online X-band doppler radar systems to cover current gaps in mountainous areas, upgrading and technical equipment of 90 hydrological stations , and establishing benchmarks and up to date equipment for instrument calibration (vacuum chambers, mobile laboratory etc). AWS and hydrological stations will be installed/upgraded at existing facilities and premises of key locations in the mountains above hazardous valleys and in the areas of high precipitation/landslides/mudflow risks, not already covered by investments through the CACILM and CAMP4ASB projects, as shown in Figure 46 (page 66) of the FS. Uzhydromet is strongly engaged with the WMO and maintains its standards and compatibility with existing systems. In particular it requires that goods and service comply with WMO 2003 Guidelines on Climate Observation Networks and Systems (TD No. 1185) and WMO Guide to Meteorological Instruments and Methods of Observation (the CIMO Guide No. 8, 2014 edition / 2017 update). These requirements will be taken into account during project implementation, and demonstrated compatibility with existing systems is part of any procurement (ITB/RFQ) tender documents under UNDP processes. All equipment will report data to central servers at Uzhydromet and will conform to WMO standards, including reporting to the Global Climate Observing System (GCOS), Global Basic Observing Network (GBON) and Global Telecommunication System (GTS). The project will also assist the government to identify long-term requirements and to enable budgeting and planning for the maintenance of all observing systems.

Activity 1.2 Upgrading Uzhydromet’s capacity to store, process and develop hazard products, as well as to communicate hydrometeorological data to regional divisions. This is a climate services information system (as described in GFCS) and involves the establishment of an operations centre, ICT servers and networking equipment to integrate data streams (hydrometeorological and satellite-based observations) and automate processes and analyses (including hazard forecasts). Software and processing routines will enable data and maps to be exported in common formats for sharing with partners and importing into the MES risk management system (see activity 2.1 below). A local cloud-based solution will be implemented to store and manage data that will benefit from offsite backups and easier access for the MES risk management system. Specifically this activity will: i) Integrate hydrometeorological data (from both automatic and manually operated stations) into a single database as a basis for developing products based on all available observed data. Automatically transmitted data from different providers/manufacturers will be integrated and undergo quality control/assurance within a single database in real time and will be available for interrogation via geo-visualization software. This activity will also: i) Expand the hydrological drought early warning system for Amu Darya (developed by the UNDP/AF project) to the Syr Darya and Zeravshon rivers. All historical streamflow and flood data for the two rivers will be collected and forecast models, with data ingestion and data processing routines, will be derived;  ii) Develop automatic procedures for calculating avalanche risk in real time. Software and code will be developed to automatically update avalanche hazard maps based on snow accumulation from satellites (and AWS) and established procedures for estimating avalanche extent; iii) Develop code and procedures for automatically calculating mudflow risk maps based on precipitation observations and forecasts for 2-3 days lead time; iv) Develop a landslide risk model for Eastern Uzbekistan based on geophysical and geotechnical characteristics, including subsurface water and extreme rainfall. The skill of all developed forecast systems will be assessed using retroactive forecasts and used to assess their utility for forecast based actions in activity 2.1 and 2.2.

Activity 1.3 Re-training and advanced training of Uzhydromet staff on monitoring and forecasting technologies and procedures (training of MES staff is covered in output 2 below). International experts will train weather forecasters to work with new products of the KOSMO model (with a resolution of 13 km and 2 km). Refresher courses and advanced training will be provided for new software and equipment, including the introduction of new methods for the analysis and prediction of hydrometeorologically important variables and climate hazards. The project will facilitate organization of on-the-job trainings, engagement with universities, courses and seminars with the involvement of foreign specialists. Training of IT specialists of Uzhydromet will be conducted for work with the computer center and operation of the KOSMO model, the UNIMAS, MITRA information reception and transmission system, workstation software (for weather forecasters, agrometeorologists, GIS-METEO, etc.) and EU Copernicus programme on satellite data, all of which will be used for impact-based forecasting where needed. Trainings on AWS installation, general user training and technical support will be provided. These increased capacities will also assist Uzhydromet in fulfilling its regional role as a WMO RMSC, in accordance with the GFCS capacity development, and help improve their capacity for regional cooperation.


Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness

The proposed intervention will integrate and develop ICT systems to use the hydro-meteorological hazards predicted in output 1, and combine these with vulnerability data to identify risks and provide information for planning and mitigating their impacts. It will improve the efficiency of the current early warning system by automating the sharing and production of risk-related data, as well as the communication of warnings. The project will also develop methodologies for and support hazard and risk mapping and risk zoning for key climate-induced hazards (floods, landslides, mudflows, droughts and  avalanche). Specifically it will introduce an advanced, impact-based information management system for combining data on socio-economics (population, livelihoods, poverty indicators), infrastructure (roads, utilities, buildings, bridges etc) and the natural environment (landcover, vegetation, soils etc) in order to operationally assess the risks associated with each hazard forecast. This information will be transmitted and shared with RCMCs in key hazard-prone districts in Uzbekistan so that regional teams have the most up to date information available for planning their operations. Building on the existing mobile-based public dissemination platforms, the project will develop geographically specific risk based warnings tailored to the areas affected by each hazard (e.g. mudflows, avalanches, landslides and flooding). Based on the user interaction guideline of GFCS, inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will inform the design and dissemination of warnings and alerts to communities at risk.  MES and its RCMCs will be the immediate beneficiaries under all activities of Output 2, while their end beneficiaries include all the users of the Multi-Hazard Early Warning System.

Activity 2.1 Developing and installing a modernised and efficient system for assessing climate risks based on dynamic information on both hazards and vulnerabilities, including socio-economic risk models for decision making and prioritization of resilience building long-term/future investments. This would enable establishing an impact-based MHEWS, where hazard forecasting is linked to the risk and exposure information (socio-economic risk model).  This involves installing both hardware and software to enable an advanced, impact-based information management system to be built, which will combine data on current vulnerabilities (e.g. indicators of poverty, education, health, housing etc), public and private assets (including infrastructure, roads, railways, housing, mines, airports, hospitals, schools etc), the environment (crops, lakes, rivers, tourism areas etc) and hazard impacts (input from Output 1) to operationally assess the risks associated with each hazard forecast. Based on evaluated risks and the skill of each impact-based forecast, a set of feasible ex-ante actions will be identified for different lead times. This activity will also develop software and standard operating procedures to automatically ingest hydrological and meteorological observations, weather and seasonal forecasts, and derived drought/avalanche/mudflow/landslide forecasts from Uzhydromet (through activity 1.2) into the system to be combined with available vulnerability data. Traning to MES staff will be delivered on risk assessment, operations and maintenance of the systems. The system will also import long-term climate change scenarios to be used for forward planning and evaluation of future risks.

Activity 2.2 Developing and introducing technical guidance, institutional and coordination frameworks to increase the efficiency of: i) data collection and archiving (activities 1.1 and 1.2); ii) hazard mapping and modelling (activity 1.2); iii) risk assessment (activity 2.1); iv) impact-based warning and forecast-based actions (activity 3.2); and v) dissemination of information to RCMCs (activity 2.3). These protocols are also required to ensure that new climate information sources (e.g. AWS, AWLS, radar and satellite observations – activity 1.1) are translated into products that are useful for decision making and investment by MES and Uzhydromet (based on feedback obtained through activities 3.1 and 3.3). Thus, under this activity the project will explore and facilitate promotion of forecast-based-financing (FBF) by developing draft SOPs and prototype FBF protocols/decision-making systems.  This activity will include development of SOPs (both for ingesting and sharing data, as well as for forecast based actions to be undertaken when specific risk-related triggers/thresholds are reached), a national to regional EWS protocol, and communication protocols to accompany introduction of the new technologies. Guidance and procedures will be developed to support the application of socio-economic risk models and enhanced risk zoning in development planning and decision-making (activity 2.1). Corresponding training to MES staff will be delivered.

Activity 2.3 Designing and implementing a system for information dissemination to RCMCs and area specific mobile alerts including an information visualization system for RCMCs with software. This involves setting up information visualisation and analysis systems (video walls, telecommunication systems, servers and ICT storage) at 7 RCMS, to enable them to visualise the maps and impact forecast information provided through the risk analysis and warning system (activity 2.1) and combine it with local (regionally available) information on current vulnerabilities and field-based information. This will enable them to better target advice and direct regional response teams. This activity will further develop (improving the existing MES dissemination system) area-specific mobile and SMS based warnings for mudflows, avalanches, landslides and flooding. This will reduce the chance of false alarms sent to those not at risk, as well as improve the content based on information from the improved MES risk and impact-based forecast system (activity 2.1 and 2.2). Inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will be used to design the dissemination system, following the co-design and co-production user interaction guideline of GFCS.

Output 3: Strengthened climate services and disaster communication to end users

The proposed intervention will strengthen the effectiveness of delivering climate information services and disaster warnings to users in Uzbekistan at two levels. On the overall national level, the project will initiate the establishment of the National Framework of Climate Services as a mechanism to systematically bring together producers and users of hydrometeorological and climate information and to ensure that information and services reach their end recipients both in the various sectors of the government and the society and at the different geographic levels down to local communities. Disaster-related information and services being the specific focus of the project, it will work with the various public and private stakeholders to reorient the existing financial / economic model behind the provision of such services to make it more cost-efficient and sustainable in the long-term, i.a. using private investment and partnership opportunities on the domestic and the international markets. Finally, on the warning dissemination and communication aspect, updated communication technolgoies will be utilised to support real-time risk evaluation by Regional disaster managemen agencies (RCMCs) and first responders and ensure ‘last-mile’ delivery of early warning risk information to the communities at risk and population at large. In collaboration with  Red Crescent Society and other community-level NGOs, RCMC will organize trainings and annual community forums to help communities at risk better interpret, understand and react to those warnings, as well as facilitate forecast-based actions and responses. Uzhydromet (and, in the long run, other parts of the Government of Uzbekistan, as well as other providers and users of climate services) will be the beneficiaries under Activity 3.1, as the NFCS provides a platform where the various service providers and end-users are engaged in the co-designing, testing and co-production to improve the content and delivery of products and services. Uzhydromet and MES (and Uzbekistan’s Government in the long run) will be the beneficiaries of Activity 3.2, as the development and promotion of a sustainable business model for disaster-related information and services in Uzbekistan will provide additional operational funding to the two institutions which currently to a large extent rely on government budgets. MES and its RCMCs as well as the communities in the 15 targeted districts as well as Uzbekistan’s population at large will be the beneficiaries under Activity 3.3.

Activity 3.1  Establishing National Framework for Climate Services for Uzbekistan

The Global Framework for Climate Services (GFCS), promoted and facilitated by the World Meteorological Organization in cooperation with GFCS partner organisations, is a framework that envisions better risk management and more efficient adaptation to climate variability and change through improvements in the quality, delivery and use of climate-related information in planning, policy and practice. GFCS, i.a. endorsed by the GCF Climate Services Strategy, focuses on developing and delivering information services in agriculture and food security, disaster risk reduction, energy, health and water, and organises its work around observations and monitoring; climate services information systems; research, modelling and pre- diction; user interface platforms; and capacity development. A strong focus of GFCS is on a multi-stakeholder approach to the definition and the actual delivery of services, thus bringing users and co-producers of climate and hydrometeorological information together and to the centre of the design and production process as opposed to more traditional supply-driven approaches. The establishment of the NFCS would typically involve:

i) an assessment of gaps, needs and user perspectives (i.a. through interviews) with respect to the current and desirable climate services;

ii) based on this assessment, the drafting of NFCS Uzbekistan concept and action plan;

iii) extensive consultations regarding the concept with the various sectors, users and co-producers of climate services; and

iv) reaching a broad agreement and Governmental endorsement for NFCS implementation.

Following an accepted WMO blueprint for the conceptualising and establishment of a NFCS, the project will undertake a baseline assessment of climate services in Uzbekistan, followed by multi-stakeholder consultations and the participatory development of the country's NFCS concept and Action Plan to be endorsed both by stakeholders and at the high executive level, ready for implementation once supplementary NFCS-earmarked funds become available as a follow-up to the project.

As part of this activity, a platform will be set up to engage end users in the design and testing of new disaster-related climate information services and products. Similarly, a National Climate Outlook Forum will be established and supported as one mechanism to help shape and deliver climate services with longer time horizon, i.a. with a particular focus on disasters such as hydrological droughts. A connection will then established between the Forum and WMO’s Regional Climate Fora operating in Europe (NEACOF) as well as Asia (FOCRAII).  Both the NFCS user dialogue platform and the National Climate Outlook Forum will (as well as the NFCS process at large) will be managed by Uzhydromet.

Activity 3.2  Designing sustainable business model for disaster-related information and services

While it may not be realistic to expect any significant level of private financing during project implementation given the existing public service management model and the time required for transition, there is long-term potential for private sector investment in climate information services and for expanded service provision to private sector based on enhanced hydrometeorological and climate information in Uzbekistan, including those related to natural disasters and early warning. Linked to the NFCS process above, the project will conduct a comprehensive analysis and discussion of long-term sustainable financing options for disaster-related services in Uzbekistan beyond current state-funding model, in particular drawing on blended finance through dedicated national funds and public-private partnership opportunities.  This will include seeking financing, from both public and private sources, for forecast based (ex-ante) actions identified in activities 2.1 and 2.2. Based on the analysis and consultations, a sustainable value chain-based business model for disaster-related information will be developed and agreed with the key stakeholders, and the necessary legal and organisation changes will be outlined and planned on the national (adjustment of legislation) and the inter-institutional levels (Uzhydromet, Ministry of Emergency Situations, users of the services, private investors).

Activity 3.3 Strengthening disaster warning dissemination and communication with end users

The project will significantly strengthen interaction with the end users with the aim to communicate and facilitate proactive responses to disaster information and warnings in Uzbekistan. Within the 15 RCMCs, outdoor communication boards[1] will be set up in identified communities at highest risk to alert and inform the population in real time about threats or emergencies, following which, through cooperation between MES RCMCs and the Red Crescent Society, communities will be trained to interpret and use information on climate hazards and early warnings. Printed visual information (leaflets) will be provided to RCMCs and Uzbekistan’s communities on climate hazards and associated early warnings. With expected increase of user interaction level, regional staff of MES RCMCs will be further trained in the effective use of this information to suppport community interactions (crowd sourcing and survey data) and formulate forecast-based actions following the guidelines developed in Activity 2.2. Similarly, easy-to-understand and visual information will be channelled to mass media through existing agreements between them and MES / Uzhydromet, as well as to national NGOs. Finally, this activity will also complement the prior Activity 2.3 in the development of region-specific (as opposed to the currently used national-wide) broadcasting of early warnings, with the use of other modern communication channels such as social media and electronic messenger subscription groups. In addition, the project will establish a platform for organizing annual community forums on community-based EWS engaging target communities and representatives of vulnerable groups to exchange information, lessons learned, successes and opportunities. Through such platforms regular competitions will be organized engaging both youth and the most active community representative to advocate for structural and non-structure mesures and ensure their inclusiveness.  


[1] These are physical boards used to relay warnings and messages, to be installed/set up by MES in targeted districts (including in hazard-prone areas with limited mobile receptions or not immediately reachable by a Regional Crisis Management Center). Boards will be installed in popular public places used by communities or on regular commuter transport routes.


 



 

Contacts: 
UNDP
Nataly Olofinskaya
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities
Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness
Output 3: Strengthened climate services and disaster communication to end users

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 13 - Climate Action

Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’

The Green Climate Fund-financed “Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’” project responds to the coastal adaptation needs of Cuba due to climate-change related slow onset events such as sea level rise and flooding arising from extreme weather events. Impacts from these climate drivers are a matter of national security for the people of this small-island state and pose an existential threat to coastal settlements and communities. Projections show that if no intervention is made by 2100, up to 21 coastal communities will disappear with a further 98 being severely affected by climate related threats (flooding, coastal erosion and saline intrusion).

Cuba’s Southern Coast has been selected due its high vulnerability to climate change particularly in the form of coastal flooding and saline intrusion. 1,300 km of coastline, 24 communities, and 1.3 million people will directly benefit from the project. In protecting life on land and below the water, 11,427 ha of mangroves, 3,088 ha of swamp forest and 928 ha of grass swamp will be restored, which in turn will improve the health of 9,287 ha of seagrass beds and 134 km or coral reef crests.

The project will enhance adaptive capacity by holistically rehabilitating coastal land-seascapes, their interlinked ecosystems and hydrology. This will be achieved by rehabilitating ecosystem functions and connections within mangroves and swamp forests and reducing anthropic pressures to marine coastal ecosystems, thus enhancing the services supplied by integrated coastal ecosystems (particularly protection from saline flooding and erosion, and channelling freshwater to coastal areas and aquifers). It will also strengthen the adaptive capabilities of coastal governments and communities´ by building their capacity to utilize and understand the benefits of ecosystem-based adaptation, enhancing information flow between stakeholders and strengthening the regulatory framework for territorial management in coastal areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-78.594726920422 20.988793500139)
Funding Source: 
Financing Amount: 
US$23,927,294
Co-Financing Total: 
US$20,371,935 (US$16,242,488 MINAG, US$2,696,376 CITMA, US$1,435,071 INRH)
Project Details: 

Climate change impacts and threats

The Cuban archipelago’s location in the Caribbean, places it in the path of frequent tropical storms, and the long, narrow configuration of the country is such that no part of the country is very far from the sea (over 57% of the population lives in coastal municipalities).*

Coastal municipalities and their respective settlements are also extremely vulnerable to climate change (CC) due to increased storms and rising sea levels, resulting in increased coastal flooding caused by extreme meteorological phenomena such as tropical cyclones, extratropical lows, and strong winds from surges. From 2001 to 2017, the country has been affected by 12 hurricanes 10 which have been intense (category 4 or 5), the highest rate in a single decade since 1791. In the past 10 years the percentage of intense hurricanes affecting the country has risen from a historical average of 26% to 78% with accompanying acute losses. These intense hurricanes impacting Cuba since 2001 coincide with very high sea surface temperatures (SSTs) in the tropical Atlantic recorded since 1998.

The coasts of Cuba in the past three decades have also seen an increase in the occurrence of moderate and strong floods as a result of tropical cyclones and of extratropical systems; with extratropical cyclones being associated with the highest rates of flooding in the country.  Furthermore, warm Pacific El Niño events lead to an increase in extra-tropical storms which increase the risks of flooding along the coastline.

CC induced Sea Level Rise (SLR) will aggravate coastal flooding affecting in particular low-lying coastal areas. It is expected that through SLR, mean sea level will increase by 0.29 m by the year 2050 and between 0.22m and 0.95m by the year 2100 impacting 119 coastal settlements in Cuba. Combining increased storm surge and projected SLR, flooding of up to 19,935 km² (CC + Category 5 hurricane) and 2,445 km² (CC + normal conditions) can be expected by the year 2050.

These estimates could be higher when compounded by the impact of surface water warming on the speed of storms, and new research that links it to increased wave heights in the Caribbean. Under this scenario, storms could be more frequent and move at a slower pace thus increasing the impact on island states such as Cuba.

CMIP5 projections indicate that by 2050, mean annual temperature in Cuba will rise by a median estimate of 1.6°C; total annual extremely hot days (temperature >35°C) will rise by a median estimate of 20 days (RCP 4.5) and 20.8 days (RCP 8.5). Associated increases in potential evapotranspiration will further lead to more frequent severe droughts, as already observable in eastern Cuba.

Cuban coastal seascapes and landscapes are a succession of ecosystems that have coevolved under current climatic conditions, including current distributions of extreme events. The progression of coral reefs, seagrass meadows, beaches, coastal mangroves and forest or grassland swamps represents an equilibrium that confers resilience to each ecosystem separately but also to the coast as a whole. The current resilience of Cuban coastal ecosystems to extreme events and SLR, is being undermined by both climate change effects (increased extreme events) and other anthropogenic pressures, tempering their capacity to provide their protective services. Mangroves have further suffered high levels of degradation affecting their ability to colonize new areas, reduce wave impacts, accrete sediments and stabilize shorelines. Additionally, coral reefs have shown signs of bleaching and degradation that have been attributed to mangrove and sea grass degradation (including the alteration of hydrological natural flows, presence of invasive species, water contamination, and habitat destruction), climate-related increases in surface water temperature and to increased impacts of hurricanes.

SLR will further increase current vulnerabilities and stresses on ecosystems due to increases in water depth and wave energy which will increase coastal erosion, coastal flooding and saline intrusion risks.

Coastal erosion

Current coastal erosion rates are attributed to a combination of natural dynamics (waves, currents, extreme events, hurricanes, etc.) and human interventions (natural resources extraction, wetlands filling, coastal infrastructure construction excluding natural dynamics, habitat loss, water diversion, etc). An increase in the magnitude of extreme events and increasing SLR will accelerate erosion related to natural processes, which currently averages 1.2 m/year (calculated between 1956-2002). This erosion rate poses a danger to communities, infrastructure and natural habitats that are not tolerant to saline intrusion and provide services to landward communities.

Flooding

Coastal flooding as a combination of high rainfall, high sea levels and storm surges has been identified as one of the primary climate change related threats to Cuba. Trends in the frequency of coastal floods during the period 1901-2011 have been observed in Cuba with the past three decades seeing an increase in the occurrence of moderate and strong floods, regardless of the meteorological events that generate them. Specific impacts and the extent of resulting damages depend on local bathymetry and topography, seabed roughness and coastal vegetation coverage and conditions, with the coastal regions of La Coloma- Surgidero de Batabano and Jucaro-Manzanillo being particularly vulnerable.

Hurricanes have also extensively damaged infrastructure. Hurricane Matthew, which crossed the eastern end of Cuba in October 2016, caused USD 97.2 million of damages (approximately 2.66% of GDP), making it the third most devastating hurricane to hit the island in the last decade, only behind Ike (2008) and Sandy (2012), with equivalent costs of USD 293 million (12.05% of GDP) and USD 278 million (9.53 % of GDP) respectively.

Saline intrusion

Saline intrusion into aquifers is the most common and extensive cause of freshwater degradation in Cuba’s coastal zones. Most of these aquifers, located near and beneath the northern and southern coasts, are open to the sea, making them very susceptible and exposed to saline intrusion as a result of SLR, and potentially leading to water that is too saline for human consumption and increasing the salinization of agricultural fields.  It is estimated that approximately 544,300 ha in the area of proposed interventions are already affected by saline intrusion.

Drought

Drought has been identified among the most important climate risks for all Caribbean islands, including Cuba. There has been an increase in drought events in the period 1961-1990 when compared to 1931-1960.  Severe droughts have been increasing in eastern Cuba and are projected to increase in the future. Future projections indicate a general reduction in rainfall by 2070 (particularly along the Eastern Coastline), along with an average reduction in relative humidity between 2% and 6% between 2030 and 2070, respectively. Reduced rainfall occurring mostly during the summer rainy season, with relatively smaller increases in winter and dry season rainfall. This situation adds an increase pressure on the aquifers, which cannot be filled by just one tropical storm, or during the rainy season.

Vulnerability Southern Coast of Cuba, project target site 

Cuba’s coastal ecosystems have been extensively studied through extensive research led by The Ministry of Science, Technology and Environment (CITMA), the Environmental Agency (AMA) and the Scientific Institute for the Sea (ICIMAR). ICIMAR’s research on coastal dynamics and vulnerability is the foundation for Cuba’s National Environmental Strategy (NES) and its State Plan for Facing Climate Change (“Tarea Vida”, 2017) which outlined coastal areas in eminent danger as national priority.

A research-based CC vulnerability ranking (high, medium, and low) was designed considering a combination of factors: geological, geomorphological and ecosystem degradation highlighting that vulnerability to sea-level rise and associated events is higher in the country’s low-lying coasts. Settlements in these areas are more vulnerable to SLR and more likely to be affected by extreme weather events (hurricanes, tropical storms) because of their low elevation, largely flat topography, extensive coastal plains and the highly permeable karstic geology that underlies it; hence more exposed and susceptible to flooding and saline intrusion. These areas have been targeted as the project’s area of intervention, prioritized within “Tarea Vida,” with attention being paid to two coastal "stretches" totaling approximately 1,300 km of coastline and 24 municipalities covering 27,320 km2.

Main localities for direct intervention of EBA include settlements with high vulnerability to coastal flooding, facing saline intrusion and with a contribution to economic life including those with major fishing ports for shrimp and lobster. Settlements with coastal wetlands that represent a protective barrier for important agricultural production areas to reduce the effects of saline intrusion on the underground aquifers and agricultural soils where also considered.

Southern Coastal Ecosystems

Coastal ecosystems in the targeted coastal stretches are characterized mainly by low, swampy and mangrove-lined shores surrounded by an extensive, shallow submarine platform, bordered by numerous keys and coral reefs. In these areas mangroves and marshes could potentially act as protective barriers against storm surges, winds and waves and therefore reduce coastal erosion, flooding and salt intrusion associated risks. These ecosystems can keep pace with rising seas depending on sediment budgets, frequency of disturbances, colonization space, and ecosystem health.

There are numerous reported functional relationships between coastal and marine ecosystems, including sediment binding and nutrient absorption, which combined with water retention, create equilibrium dynamics and coastal stability. Freshwater infiltration is favored by swamp forests reducing saline intrusion risk and organic matter exchange facilitates favorable conditions for healthy seagrass beds and coral reefs. Restoration of these fluxes and connections is required to increase these ecosystems resilience to a changing climate and strengthening their protective role.

Coastal ecosystems and their complex interconnections provide a variety of services to communities, including coastal protection and disaster risk reduction. These services can be enhanced with healthy ecosystems, functional connections and when adequately integrated into land/marine planning policies.

Project focus

The project will focus on actions along Cuba’s Southern Coast that has been selected due its high vulnerability to climate change (open aquifers, low lying coastal plain, degraded ecosystems and concentration of settlements), particularly to storms, drought and sea level rise, which result in coastal flooding and saline intrusion.

Targeted shores cover approximately 89,520 hectares of mangroves (representing 16.81% of the country's mangroves) followed by 60,101 hectares of swamp grasslands and 28,146 hectares of swamp forests. These in turn will contribute to improving 9,287 ha of seagrass and 134 km of coral reefs and their respective protective services.

There is evidence of reef crests degradation which in turn could cause significant wave damage in both mangroves and sea grasses reducing further their ability to offer protection against the effects of CC on the coast of Cuba.

Restoration of degraded red mangrove (Rhizophora mangle) strips along the coastal edges, in stretches 1 and 2, is crucial. During wind, storms and hurricane seasons, the sea has penetrated more than 150 meters inland in these areas, exposing areas dominated by black or white mangroves, which are less tolerant to hyper-saline conditions, potentially becoming more degraded. During stakeholder consultations, communities highlighted the consequent loss of infrastructure and reduced livelihood opportunities (both fisheries and agriculture).

Coastal Stretch 1: La Coloma – Surgidero de Batabanó (271 km – 13,220 km2)

This stretch is made up of  3 provinces (Pinar del Rio, Artemisa and MAyabeque) and 13 municipalities (San Juan y Martinez, San Luis, Pinar del Rio, Consolacion del Sur, Los Palacios, San Cristobal, Candelaria, Artemisa, Alquizar, Guira de Melena, Batabano, Melena del Sur and Guines). The main localities along this stretch are: (1) La Coloma in Pinar del Rio Province; (2) Beach Cajío in Artemisa province; and, (3) Surgidero Batabanó in Mayabeque Province.  

The vulnerability assessment concluded that, by 2100, 5 communities in this stretch could disappeared due to SLR. Extreme events, waves’ strength and salinity have also been identified in this area; hence appropriate adaptation measures need to be in place to reduce the impact.

These risks are being exacerbated by the impacts of ecosystem degradation related to changes in land use, pollution past logging, grey infrastructure and inappropriate measures of coastal protection in the past, urbanization, and the reduction of water and sediments flows.

The impact of saline intrusion into the karstic aquifer is particularly troubling along this coastal stretch with important implications at a national level, as the main aquifer, in the southern basin which supplies water to the targeted coastal communities and agriculture, is also an important source of fresh water to the capital, Havana. To address the issue of saline intrusion in this area, the GoC has experimented with grey infrastructure (The Southern Dike), a 51.7 km levee built in 1991 aiming to accumulate runoff fresh water to halt the infiltration of saline water in the interior of the southern aquifer. The USD 51.3 million investment, with maintenance costs of USD 1.5 million every 3 years and a once-off USD 15 million (20 years after it was built), had a positive effect in partially containing the progress of the saline wedge. However, the impact of the dike resulted in the degradation of mangroves in its northern shore reducing the mangroves function to protect the coastline.

Coastal Stretch 2: Jucaro- Manzanillo (1029 km – 14,660 km2)

This stretch is comprised by 4 provinces (Ciego de Avila, Camaguey, Las Tunas and Granma) and 11 muncipalities (Venezuela, Baragua, Florida, Vertientes, Santa Cruz del Sur, Amancio Rodriguez, Colombia, Jobabo, Rio Cauto, Yara and Manzanillo).The main localities to intervene along this stretch include (1) Júcaro in Ciego de Avila Province; (2) Santa Cruz del Sur in Camagüey Province; (3) Manzanillo in Gramma Province (4) Playa Florida.

The communities in this coastal area are located within extensive coastal wetlands dominated by mangroves, swamp grasslands and swamp forest.

Water reservoirs for irrigation have reduced the water flow towards natural ecosystems, it has also been directed towards agricultural lands altering the natural flow indispensable for ecosystems.

Mangroves have been highly impacted by degradation and fragmentation, which has undermined their role in protecting the beach and human populations from extreme hydro-meteorological events, saline intrusion and coastal erosion. Only 6% of mangroves are in good condition, while 91% are in a fair state, and 3% are highly degraded. Wetlands in the prairie marshes have begun to dry due to a combination of climate drivers and land use management with a direct impact in reducing their water retention and infiltration capacity.

Coral crests of the area’s broad insular platform, have been classified as very deteriorated or extremely deteriorated and it is predicted that if no intervention on the sources of degradation from the island, is made, they will disappear by 2100. Reef elimination will increase communities’ flood risk to potentially settlements disappearing.

Saline intrusion is becoming increasingly significant in this area due to a combination of CC-related SLR and the overexploitation of aquifers.

Climate change vulnerability is exacerbated by construction practices (such as people building small shops and walkways) along the shoreline where fully exposed infrastructure can be found within flood zones, between the coast and the coastal marsh. This situation is aggravated by the limited knowledge of local actors and a false sense of security that was perceived during community consultations.

Baseline investment projects

Traditionally, Cuba´s tropical storms response and management strategies have focused on emergency preparation and attendance rather than on planning for disaster risk reduction. The GoC has successfully introduced early warning mechanisms and clear emergency protocols to reduce the impact of storms in the loss of lives. The development of Centres for Risk Reduction Management (CGRR) has also been successful in mobilizing local actors when storms are predicted to hit ensuring that emergency resources are available to address storms’ immediate impacts. While these are important steps in the face of an immediate emergency, they are insufficient to manage multiple ongoing threats (some of slow consequence of climate change).

In 2017, GoC approved its State Plan to Face Climate Change (“Tarea Vida”) in which identified and prioritized the impacts of saline intrusion, flooding and extreme events to the country coastal zones, focusing strategic actions for the protection of vulnerable populations and of key resources including protective ecosystems such as mangroves and coral reefs. The GoC has begun to look into various strategies to mainstream local adaptation initiatives using existing successful national mechanisms for capacity building and knowledge transfer and international cooperation best practices.

Initial investments made by the GoC have identified the country´s climate vulnerability, including drought and SLR vulnerability and hazard risk assessment maps. The development of the “Macro-project on Coastal Hazards and Vulnerability (2050-2100)”, focused on these areas´ adaptation challenges including oceanographic, geophysical, ecological and infrastructure features, together with potential risks such as floods, saline intrusion and ocean acidification. Cross-sectoral information integration was a key tool to identify climate risks and potential resources (existing instruments, institutions, knowledge, etc) to manage it. While this is an important foundation it has yet to be translated into concrete actions often as a result of lack of technical equipment.

International cooperation has financed projects that have further allowed the GoC to innovate on various institutional mechanisms such as the Capacity Building Centres (CBSCs) and Integrated Coastline Management Zones through active capacity building incorporating municipal and sectoral needs. Table 1 summarizes the most relevant baseline projects and highlights key results, lessons learned, and gaps identified. The proposed project aims to address such gaps, and incremental GCF financing is required to efficiently achieve efficient climate resilience in the target coastal sites.

* Footnotes and citations are made available in the project documents.

Expected Key Results and Outputs: 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

1.1 Assess and restore coastal wetland functions in target sites by reestablishing hydrological processes  

1.2 Mangrove and swamp forest rehabilitation through natural and assisted regeneration for enhanced coastal protection

1.3 Record and asses coastal and marine ecosystems‘ natural regeneration and protective functions based on conditions provided through restored coastal wetlands

1.4 Enhance water conduction systems along targeted watersheds to restore freshwater drainage in coastal ecosystems and aquifers to reduce and monitor saline intrusion in target sites

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

2.1 Develop a climate adaptation technical capacity building program for coastal communities and local stakeholders to enable adaptation actions and capacities

2.2 Integrate project derived information,  from EWS  and national datasets into a Knowledge Management Platform, to provide climate information products to monitor, evaluate and inform coastal communities on local capacity to manage climate change impacts.

2.3 Mainstream EBA approaches into regulatory and planning frameworks at the territorial and national levels for long term sustainability of EBA conditions and investments for coastal protection

Output 3: Project Management

3..1 Project Management

Contacts: 
UNDP
Montserrat Xilotl
Regional Technical Advisor
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

Output 3: Project management.

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
March 2021
Description: 
Project Approval
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Enhancing Whole of Islands Approach to Strengthen Community Resilience to Climate and Disaster Risks in Kiribati

The Republic of Kiribati is a small island state with 33 low-lying and narrow atolls dispersed over 3.5 million km² in the Central Pacific Ocean and a population of approximately 110,000 people. 

Climate change and climate-induced disasters are projected to exacerbate the vulnerability of Kiribati’s people by causing more frequent inundations leading to damage of coastal infrastructure and exacerbating already problematic access to clean water and food.

Despite an existing strong policy framework and previous efforts, several barriers exist that prevent Kiribati from achieving its adaptation goals. 

Implemented with the Office of the President (Te Beretitenti), this project aims to benefit 17,500 people (49% women) on the five pilot islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati.

It is expected to contribute to several Sustainable Development Goals: SDG5 Gender Equality, SDG6 Clean Water and Sanitation, SDG12 Responsible Consumption and Production and SDG13 Climate Action.

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-157.34619142837 1.8735216654151)
Primary Beneficiaries: 
17,500 people (49% women) on the islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati
Financing Amount: 
GEF Least Developed Countries Fund project grant US$8,925,000
Co-Financing Total: 
Co-financing of US$769,667 from UNDP | $47,723,920 from the Government of Kiribati
Project Details: 

Background: Projected impacts of climate change on coastal infrastructure, water and food security in Kiribati

Climate change and climate-induced disasters are projected to cause more frequent inundations leading to damage of coastal infrastructure/ community assets and exacerbating the already problematic access to clean water and food.

Geographically, Kiribati’s narrow land masses and low-lying geography (in average 1-3 meters above mean sea level other than Banaba Island) results in almost the entire population being prone to flooding from storm surges and sea-level rise.

The low-lying atoll islands are already experiencing inundation leading to a loss of land, buildings and infrastructure. Mean sea level is projected to continue to rise (very high confidence) by approximately 5-15 cm by 2030 and 20-60 cm by 2090 under the higher emissions scenario.

Sea-level rise combined with natural year-to-year changes will increase the impact of storm surges and coastal flooding. This will lead to increased risks of damage to coastal homes, community infrastructure (community halls, schools, churches) and critical infrastructure, such as health clinics and roads. Further, increasing damage and interruption to roads, causeways and bridges, might lead to isolation of communities.

Sea-level rise also results in greater wave overtopping risk, and when marine flooding occurs, saltwater infiltrates down into the freshwater aquifer causing contamination. This risk will increase with sea-level rise and increased flooding and impact both water security and food security from agricultural production.

With limited groundwater reservoirs, access to clean water and sanitation is already a serious problem in Kiribati, impacting health and food security. Agricultural crop production can be expected to be increasingly affected by saltwater inundation, more extreme weather patterns, pests and diseases. This negative impact on food security is further exacerbated by the projected impact on coastal subsistence fisheries, affecting the main stable food source and livelihood. 

Barriers and challenges

While Kiribati has a strong policy framework around climate adaptation – with adaptation and disaster risk management recognized as national priorities within the Kiribati Development Plan and Kiribati’s 20-year Vision (KV20), and a national Climate Change Policy and Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 –  several barriers exist that prevent Kiribati from achieving its objectives, including:

  • Limited integration of CCA&DRM in national and sub-national development plans and frameworks;
  • Insufficient institutional coordination at national, sectoral and sub-national levels;
  • Limited technical and institutional capacities at national and sub-national levels;
  • Weak data management, monitoring and knowledge management (due in part to challenges in gathering and analysing data from dispersed and remote island communities without effective communication and information management systems); and
  • Limited community knowledge and adaptive solutions for CCA&DRM at outer island level.

 

Project interventions

This project will address the exacerbation of climate change on coastal infrastructure, water security and food security by increasing community resilience to the impacts of climate change, climate variability and disasters and building capacities at island and national levels, with benefits extended to household level and in community institutions/facilities such as schools, health clinics, community halls, agricultural nurseries, and Islands Councils.

It is expected to deliver adaptation benefits to the entire population on the five islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati, estimated at approximately 17,500 people (49% women).

The Project will address key challenges and vulnerabilities to climate change through four interrelated components:

  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: WoI-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies

 

It is expected to support progress towards the following Sustainable Development Goals:

  • SDG 13: Take urgent action to combat climate change and its impacts;
  • SDG 5: Achieve gender equality and empower women, by ensuring women’s equitable participation in Project planning and implementation and by actively monitoring gender equity and social inclusion outcomes.
  • SDG 6: Ensure availability and sustainable management of water and sanitation for all;
  • SDG 12: Achieve food security and improved nutrition and promote sustainable agriculture

 

Key implementing partners

  • Office of Te Beretitenti (OB – Office of the President) - CC&DM division
  • Kiribati National Expert Group on Climate Change and Disaster Risk Management 
  • Ministry of Internal Affairs 
  • Ministry of Finance and Economic Development 
  • Ministry of Environment, Lands and Agriculture Development 
  • Ministry for Infrastructure and Sustainable Energy 
  • Ministry for Women, Youth and Social Affairs 
  • Ministry of Fisheries and Marine Resources Development
  • Ministry of Commerce, Industry and Cooperatives
  • Ministry of Line and Phoenix Islands Development
  • Ministry of Justice 
  • Ministry of Information, Transport, Tourism and Communication Development (MITTCD)
  • Parliament Select Committee on Climate Change
  • Island Councils
  • Extension officers
  • Village Elders and Leaders  
  • Women and Youth
  • Community-based groups
  • KiLGA (Kiribati Local Government Association)
  • NGO’s
Expected Key Results and Outputs: 

Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge

Outcome 1 Capacities of national government institutions and personnel is strengthened on mainstreaming climate and disaster risks, supporting the operationalization of the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP)

Output 1.1.1 National and sectoral level policy, planning and legal frameworks revised or developed, integrating climate change and disaster risks

Output 1.1.2 National, sectoral and island level monitoring and evaluation (M&E) processes, related data-gathering and communication systems enhanced and adjusted to support KJIP implementation

Output 1.1.3 Coordination mechanism for the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP) enhanced

Output 1.1.4 Tools and mechanisms to develop, stock, and share data, knowledge, and information on climate change and disaster risks enhanced at the national level

Component 2: Island level climate change resilient planning and institutional capacity development

Outcome 2 Capacity of island administrations enhanced to plan for and monitor climate change adaptation processes in a Whole of Islands (WoI) approach

Output 2.1.1 Island and community level vulnerability and adaptation (V&A) assessments revised and/or developed for 5 targeted islands

Output 2.1.2 Island Council Strategic Plans developed/reviewed and complemented with Whole of Islands (WoI)-implementation and investments plans in 5 targeted islands

Output 2.1.3 Tools and mechanisms to develop, stock and share data, knowledge, and information on climate change and disaster risk enhanced at island level to strengthen information, communication and early warning mechanisms

Output 2.1.4 I-Kiribati population on 5 targeted islands receives awareness and technical training on climate change adaptation and disaster risk management

Component 3: Whole of Island implementation of water, food security and infrastructure adaptation measures

Outcome 3 Community capacities enhanced to adapt to climate induced risks to food and water security and community assets

Output 3.1.1 Climate-resilient agriculture and livestock practices (including supply, production and processing/storage aspects) are introduced in 5 outer islands

Output 3.1.2 Water security improved in 5 targeted project islands

Output 3.1.3 Shoreline protection and climate proofing of infrastructure measures implemented at 5 additional islands and communities

Component 4: Knowledge management and communication strategies

Outcome 4 Whole of Islands (WoI)-approach promoted through effective knowledge management and communication strategies

4.1.1 Whole of Islands (WoI)-communication, engagement and coordination strengthened at national, island and community levels

4.1.2 Whole of Islands (WoI)-lessons learned captured and shared with national and regional stakeholders

Monitoring & Evaluation: 

The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation.

Monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in UNDP’s Programme and Operations Policies and Procedures (POPP) and UNDP Evaluation Policy, with the UNDP Country Office responsible for ensuring full compliance with all UNDP project monitoring, quality assurance, risk management, and evaluation requirements.

Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.

The project will complete an inception workshop report (within 60 days of project CEO endorsement); annual project implementation reports; and ongoing monitoring of core indicators.

An independent mid-term review will be conducted and made publicly available in English and will be posted on UNDP’s Evaulation Resource Centre ERC.

An independent terminal evaluation will take place upon completion of all major project outputs and activities, to be made publicly available in English.

The project will use the Global Environment Facility’s LDCF/SCCF Adaptation Monitoring and Assessment Tool to monitor global environmental benefits. The results will be submitted to the GEF along with the completed mid-term review and terminal evaluation.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Results and learnings from the project will be disseminated within and beyond the project through existing information sharing networks and forums.

M&E Oversight and Monitoring Responsibilities

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks.

The Project Board will take corrective action as needed to ensure the project achieves the desired results. The Project Board will hold project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences.

The Implementing Partner is responsible for providing all required information and data necessary for timely, comprehensive and evidence-based project reporting, including results and financial data, as necessary. The Implementing Partner will strive to ensure project-level M&E is undertaken by national institutes and is aligned with national systems so that the data used and generated by the project supports national systems.

The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions.

Contacts: 
UNDP
Azza Aishath
Regional Technical Specialist - Climate Change Adaptation
Location: 
Programme Meetings and Workshops: 

Local Project Appraisal Committee (LPAC) Meeting TBC

Inception workshop TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: Whole-of-Islands (WoI)-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies
Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
GEF CEO endorsement /approval
Proj_PIMS_id: 
5447
SDGs: 
SDG 5 - Gender Equality
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Climate change adaptation in the lowland ecosystems of Ethiopia

Ethiopia is among the most vulnerable countries on the African continent. Small-holder farmers, agro-pastoralists and pastoralists in the Ethiopian lowland ecosystem are particularly and increasingly vulnerable to climate change. Climate change has resulted in food insecurity and dependence on food aid, and limited awareness of its long-term risks hinders efforts to promote climate-smart solutions to build resilience and adaptive capacity.

Due to lack of weather information for the short, medium and long-term and limited knowledge of adaptation measures, land users follow unsustainable livelihood practices. As it currently stands, generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is challenging and faced with capacity limitations. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather prediction, which has proved ineffective in the context of a changing climate. 

The "Climate change adaptation in the lowland ecosystems of Ethiopia" project will strengthen the ability of land users to adapt to the discernible impacts of climate change by disseminating credible weather information and advisory services using locally suitable communication channels to inform the preparation and implementation of actions meant for building resilience and adaptive capacity at a watershed level; reaching a wider audience of land users and government stakeholders across the lowland ecosystem of Ethiopia through a Training-of-Trainers (TOT) approach; conducting a “learning by doing” training to promote clarity and commitment of land users; and by providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas (districts)  across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

The project will promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems.  In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

Undefined
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (39.292967305264 7.8270963920238)
Primary Beneficiaries: 
The project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions
Financing Amount: 
US$5,836,073
Co-Financing Total: 
$10,450,000
Project Details: 

Context

Ethiopia has the second largest population of 102 million (2016) in Africa, making it the second most populous nation in the continent, after Nigeria. Ethiopia’s economy has grown rapidly primarily as a result of increased agricultural production. The agricultural sector in Ethiopia – which accounts for more than 80% of total employment and 45% of the country’s GDP is dominated by smallholder farmers, agro-pastoralists and pastoralists, (here referred to as “Land users”) that rely on rainfall and traditional farming practices. Current practices of cultivating crops and overgrazing of livestock contribute towards large-scale land degradation. Deforestation is taking place at a rate of about 140,000 hectares per year in Ethiopia.

At the national level, temperatures have increased by an average of around 1°C since the 1960s. Rainfall is subject to high variability between years, seasons and regions. Yearly variation around mean rainfall level is 25% and can increase to 50% in some regions. Extreme climate events are also common, particularly droughts and floods. Floods and droughts have resulted in severe losses of crops and livestock, leading to food insecurity. The economic impact depends on the extent of the variability and extreme events but droughts alone can reduce total GDP by 1% to 4%.

The rain in the lowland ecosystem of Ethiopia has often started later than expected over the last decade and has been mostly inadequate and unreliable. In many places water scarcity has increased. The unavailability of water imposes higher demands on women’s and girls’ time which would have otherwise been spent on other productive and human development activities. According to the views of land users, in 2018 alone, women and girls walked an average of 6kms a day to collect water. This is significant considering that the twelve woredas being targeted by this project consist of an estimated population of 600,000 people (or 120,000 households) and, according to the records of the concerned woreda administration offices, women represent about 49% of this population.

The land users rely on rain-fed agriculture and their crop production system has been buffeted by acute shocks related to climate. This has made it more difficult for them to grow crops or raise animals in the same way they have been doing. They stated that rain has been erratic, and when it comes it is too much and destroys their crops. They are now questioning the suitability of agriculture as an occupation in view of changing climatic conditions. The lowland ecosystem of Ethiopia is also home to significant livestock population which is characterized by low productivity, poor nutrition, low veterinary care and uncontrolled overgrazing. The grazing land has lower quality of pasture due to intensive grazing. The quality of the grazing land is progressively declining due to shorter rainy seasons, frequent droughts and overgrazing, causing cattle to graze before grasses have produced seeds, creating more shortages in subsequent seasons.

Changes in temperature coupled with frequency of extreme weather events have been damaging crops and reducing yields. Heat stress has entailed disease outbreaks, reduced milk production and resulted in extra expenditure or loss of income. In particular, prolonged dry seasons and droughts have become more frequent and severe. These risks are made worse by an upsurge in pests and diseases, especially the increasing threat of Fall Armyworm. Changes in pest and disease patterns have also threatened crop production and animal husbandry. The ranges and distribution of pests and diseases are likely to increase; causing new problems for crops and animals previously unexposed to these pests and diseases. These challenges are further aggravated by climate change and the absence of resilient alternative sustainable income generating activities.

Land users in the Ethiopian lowland ecosystems view climate change as a threat that has resulted in food insecurity and dependence on food aid. However, they also express having limited awareness of the long-term risks that climate change poses, and do not know how to respond to these risks and / or of the options available to adapt to them. Indeed, due to lack of reliable information as well as limited knowledge of, and access to a wide range of adaptation options they are forced to follow unsustainable livelihood systems as they use short term coping mechanisms. Generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is a challenge in Ethiopia. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather forecasting, which has proved ineffective given the context of a changing climate. Discussion with land users and government stakeholders revealed that the challenge of meeting poverty reduction and food security goals has been mainly associated with incapability to plan better so as to minimize climate related losses and damages.

The land users in the target project areas are resource-poor and their low income means they are unable to make investment and take on risk. In particular, the pastoralists in the Somali and Afar regions have seen their daily livelihood challenges being the constant need to cope with challenges like livestock feed, food, water shortages and migration from internal displacement among others. Moreover, because the main resources in the lowland ecosystem of Ethiopia are controlled by men, women rarely participate in decision-making and their contributions in building resilience and adaptive capacity are seldom recognized. In addition, the decrease in food in times of drought has affected human health especially among children under five years, pregnant women and old people, and reduced human disease resistance and productivity.

The focus group discussion (FGD) held during the PPG phase on impacts of and vulnerability to climate change with lowland farmers, agro-pastoralists and pastoralists revealed that land users are taking actions to cope with climate change and related hazards. However, their current coping strategies such as charcoal and firewood selling are not effective in serving their long-term adaptation needs. These coping strategies are based on short-term considerations, and survival needs, leading to mal-adaptation.

Due to the  limited support tailored to the needs of land users to maintain their livelihoods while adjusting to climate change,  land users across the Ethiopian lowland ecosystems are at risk due to climate-change threats. They face several barriers to effectively managing these risks.

THE BARRIERS IN BUILDING RESILIENCE AND ADAPTIVE CAPACITY

The following three sets of overarching barriers stand in the way of advancing towards the project objective of building sustainable and climate-resilient economic growth among vulnerable communities, targeting lowland areas in Ethiopia. The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

Barrier #1:

Lowland communities lack knowledge on risks of climate change; and the benefits of climate smart solutions and adaptation practices.

The causes and implications of current and future climate change are not well understood within lowland communities. Therefore, the land users in these communities are not ready to adopt climate resilient farming and animal husbandry practices because their knowledge of the risk of climate change as well as how to minimize risks and take advantage of these opportunities are limited. The current coping strategies of land users are not also effective in serving their long-term adaptation needs. On the other hand, there are a number of interventions that can make farming and animal husbandry practices in the lowland ecosystems of Ethiopia climate resilient and more productive. Yet, designing actions based on appropriate and participatory interventions that can steer course away from climate sensitive activities remain a challenge.

Although climate change is recognised as a matter of national importance within Ethiopia’s CRGE strategy, the Agriculture Sector Climate Resilient Strategy and the NAPA, the technical and scientific understanding of climate change and adaptation and its practical application is not well developed within government institutions. Gaps in the technical capacity can be attributed to insufficient training of staff employed in relevant departments within the Ministry of Agriculture, Environment, Forest and Climate Change Commission as well as development agents and extension officers at Woreda-level. As a result, they lack the capacity to offer needed advisories and effective extension support to the land users that would enable them to adopt more resilient and productive practices.  Consequently, the land users have limited awareness of the risks that climate change poses and are not familiar with climate smart solutions to build their resilience and adaptive capacity.

At present, there are few initiatives – either through the GoE or elsewhere – to conduct training activities supporting the implementation of the Climate Resilient Green Economy Strategy (CRGE). In particular, there are few training programmes on land management practices for climate change adaptation that are appropriate for Ethiopia’s lowland ecosystems. In addition, there are limited opportunities available for training on how to mainstream activities that are congruent with the CRGE strategy into decision-making and agricultural planning either at the federal or at the regional and woreda levels.

Government stakeholders and land users in the lowland communities require better understanding of community-based adaptation processes as a basis for incorporating climate smart solutions through a practical learning-by-doing approach in order to overcome the barrier.  The proposed project activities under outcome 1: Technical capacity for implementing diversified climate change adaptation practices strengthened will address this barrier.

Barrier #2: Limited access to climate forecasts, decision-making tools and climate advisory services for Lowland communities 

Effective adaptation requires farmers to have access to up-to-date, downscaled climate information, and the appropriate tools and advisory services at their disposal. Ethiopia’s Lowland communities do not have access to these, and are not connected to the climate information, products and advisory services. Technological and capability constraints have hindered the provision of weather and climate forecasts, including guidance and value-added advisory services to land users. In addition, information on how to adopt alternative and innovative farming, pastoral and agro-pastoral practices based on these climate forecasts is not available. This is a result of insufficient availability of climate forecast information, particularly at the local level and inadequate capacity of agricultural extension officers to guide farmers and other land users based on climate forecasts. Consequently, lowland farmers, pastoralists and agro-pastoralists can only undertake limited proactive measures in response to climate change.

At the level of overarching policies, plans and strategies, Ethiopia has made some progress in mainstreaming climate change considerations into national and regional frameworks. This has provided a good basis for the implementation of national adaptation priorities through existing LDCF projects. There is need to find more operational ways of influencing policies and actions on the ground. This requires expanding the capability to gather climate data and to share downscaled weather information and climate change information products with practical applications that combine climate predictions with advisory support services for vulnerable land users. However, the capacity at the national level to generate downscaled climate data and use it at local level is not yet well developed. Often, climate data is provided in complex scientific formats and at high resolutions. The generation of the data is also not informed by the needs of users on the ground.

Moreover, having the tools and undertaking climate information analyses is not in itself enough without the ability to use it to inform decisions at the farm level. Currently, there exists no climate advisory services tailored to the needs of Lowland communities. Practical application requires concerned government stakeholders and land users to have the capacity to use these information and analysis to respond to ongoing and emerging threats in the project area.

Overall, there is no alignment among the components of the climate information products and services value chain, from the collection, analysis and packaging of such information to meet the needs of communities, to the application of this information at local level to support adaptation decisions and actions. Along the chain, there are huge capacity constraints and disconnects in government institutions to provide the information, tools and advisory services synergistically.

The proposed project activities under outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools will address this barrier.

Barrier #3: Inability of land users to invest in climate smart technologies and solutions required to diversify and sustain their livelihoods in the face of climate change.

The land users in the project area are resource-poor and unable to invest in the available climate smart technologies, opportunities and solutions for the diversification of their livelihood system. In the project area, there is potential for constructing reservoirs, ponds and boreholes that help address the prevailing water scarcity. Indeed, the land users in the project area have underutilized this potential and few of them rely on flowing streams/rivers and shallow wells with limited capacity to supply domestic water needed during the drought period. There are also opportunities for local communities to diversify their livelihood options thereby building their adaptive base and assets, but are not able to do so due to a number of reasons. They lack technical knowhow to tap into these opportunities, while the advisory services available to them from support institutions is largely lacking in these areas. These services also focus on traditional agro-based livelihoods which themselves are climate-sensitive. Opportunities in activities such as bee keeping, fish farming, processing and marketing of natural products are not fully tapped by lowland land users to diversify their livelihoods and incomes while building adaptive assets.

These opportunities also remain untapped as they are out of reach for the land users who are not able to access funding and technical knowhow. They are therefore not able to construct, own and operate integrated water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures to enable the creation, improvement and sustenance of diversified livelihood options. Some of the investments especially in the construction of water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures require a high up-front capital investment.

This has also become more difficult in the absence of appropriate financial capital especially for poor land users with limited access to the financial services (Ethiopia is one of the most under-banked countries in sub-Saharan level, with a bank branch to population ratio of 1:43912 in 2013/14). Small land users are also perceived as risky borrowers by the formal financial services sector, which is compounded by their lack of collateral, while the costs of finance from the informal financial services sector makes this source unaffordable to them.

The proposed project activities under outcome 3: Climate change adaptation practices adopted in communities in lowland ecosystems will address this barrier.

Although no single initiative can address all the barriers mentioned above, the LDCF-financed project will deliver complimentary outcomes to contribute towards overcoming these barriers. The theory of change (ToC) (Annex K below) underpinning the design of this LDCF-financed project includes the barriers discussed above and activities that contribute to the preferred solution discussed in section III through the delivery of the outcomes 1, 2 and 3.

Strategy

The objective of the LDCF project is to promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems; which are selected using predefined criteria set by EFCCC through a bottom-up process. In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

The proposed project will develop and implement a capacity building support programme to strengthen the ability of land users through i) reaching a wider audience of land users and government stakeholders across the lowland ecosystems of Ethiopia using a TOT approach; ii) disseminating credible weather information and advisory services using a locally suitable communication channels to inform the preparation and implementation of actions designed for building resilience and adaptive capacity at a watershed level, iii) conducting a “learning by doing” training to promote clarity and commitment of land users and iv) providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

Accordingly, at the local-level, this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for prioritizing and incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds in the project regions.

This LDCF project will also support the GoE in reaching its development targets such as those specified under the GTP II, the CRGE Strategy and the SDGs. The project will contribute to Ethiopia’s National Adaptation Programme of Action (NAPA) through inter alia: i) Key Adaptation Need 24 – Promotion of on-farm and homestead forestry and agro-forestry practices in arid, semi-arid and dry sub-humid parts of Ethiopia; ii) Key Adaptation Need 29 –  Strengthening/enhancing drought and flood early warning systems in Ethiopia; and iii) Key Adaptation Need 32 – Enhancing the use of water for agricultural purposes on small farms in arid and semi-arid parts of Ethiopia.

In addition, the project will contribute to several Sustainable Development Goals (SDGs), including: i) SDG 8 – Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; ii) SDG 12 – Achieve food security and improved nutrition and promote sustainable agriculture; iii) SDG 13 –Take urgent action to combat climate change and its impacts; and iv) SDG 15 – Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss.

RELEVANT NATIONAL AND INTERNATIONAL REGIONAL RELATED INITIATIVES

Ethiopia has undertaken several efforts to strengthen technical, financial and institutional capacities for enabling climate change adaptation. There are already a number of existing national policy initiatives, sectoral policies, programs and strategies that may directly or indirectly address climate change adaptation. The most relevant public documents that have relevance for climate change adaptation include Ethiopia’s National Economic Development Plan (The Growth and Transformation Plan (GTP II), Ethiopia’s Programme of Adaptation to Climate Change (EPACC), the Green Economy Strategy (GE), the Nationally Determined Contribution (NDC) of Ethiopia, the recently prepared National Adaptation Plan (NAP), the Environmental Policy of Ethiopia, the Agriculture and Rural Development Policy and Strategy, the Water resources Management Policy, the Health Sector Development Policy and Program, the National Policy on Disaster Prevention and Preparedness, the National Policy on Biodiversity Conservation and Research, the Science and Technology Policy, the Population Policy and National Agricultural Research Policy and Strategy. In Ethiopia, various international initiatives continue to strive for sustainable development.

In spite of these efforts, there is disparity between objectives and what has been implemented due to the technical capacity limitations of government stakeholders and land users to translate these public documents into on-the-ground action to the fullest.

In view of the recent development with adaptation project implementation in Ethiopia, the project will coordinate with the following relevant projects including; The Green Climate Fund (GCF) financed project-‘’Responding to the increasing risk of drought’’; the Adaptation Fund (AF) financed project- ‘’Building gender responsive resilience of the most vulnerable communities’’ and the USAID Financed FAO Project on Fall Army Worm with the Ministry of Agriculture.

 

Expected Key Results and Outputs: 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened (Co-financing for Component 1, Outcome 1: $2,099,702; LDCF grant requested for Outcome 1: $450,000)

This outcome will deliver strengthened capacity of farmers, agro-pastoralists and pastoralists on planning, monitoring and evaluating diverse climate change adaptation approaches. To this effect, the project would develop targeted training modules to be eventually made available online by appropriate partner institution. The modules would be put online for wider use across the country. These modules would be based on agreed areas of interventions that help strengthen adaptive capacity of the pastoralist, farmer and agro-pastoralist communities. Key considerations would be given to community-based adaptation training that leads to the development of climate resilient action plans across the watershed. The training modules would also include community forecasting, monitoring and early detection of such risks as the Fall Armyworm infestation. Using the developed training modules (as listed below), sets of capacity building seminars and training workshops would be delivered to government officials and woreda development agents respectively.

Subsequently, specific learning by doing community adaptation and participatory trainings would be devolved to the local communities to help strengthen their adaptive capabilities.: More specifically, the training modules will include issues identified for training needs as detailed below. These trained communities from the twelve woredas will in turn develop their own respective water security focused climate adaptive action plans through incorporating climate smart technologies and good practices, as well as early response measures including community-based monitoring, forecasting and early warning initiatives using the guidelines developed by FAO and being implemented by the MoANR. In addition to the Fall Armyworm response plan, targeted community based adaptive response will be developed to include the flash flood risks adaptive response and grievance and response mechanism to address Farmers Pastoralist Conflicts at the community level. The early warning and response measure will depend on the need of each of the twelve project sites.

Furthermore, the results of project interventions implemented under outcomes 2 and 3 will be monitored and the results thereof would be used as an input for the development of best practice guidelines to promote the up-scaling of climate‑resilient farming, agro‑pastoralism and pastoralism in Ethiopia’s lowland ecosystems. Best practices from the training and demonstrations would be documented across the twelve woredas. These experiences would be shared across the regions through effective television and radio documentaries, local language-based posters and other awareness materials.

During the PPG phase, the following training needs were identified to address specific needs of institutions and communities at regional and woreda/community‑levels:

  • Training on climate smart technology and good practices for community adaptation (Regional Institution level training: support Output 1.1)
  • Training on developing climate adaptive community-based action plan (Regional Institution level training; support Output 1.2)
  • Responding to climate emergency at community level: early detection and monitoring training on Fall Armyworm, Pastoralist/farmers conflict and Emergency flood (Woreda and Community level training; support Output 1.3)
  • Training session on adaptive soil and water conservation techniques, including rehabilitation, improvement and maintenance of a productive and healthy watershed (Woreda and Community level training; support Output 1.2, 3.3)
  • Training on climate and weather information for planning and agricultural advisory support for the agro-metrology task force established and hosted by the MoANR (Regional Institution Level training; support Output 2.1)
  • Training on climate smart technologies for adaptive capacities and diversified livelihoods, including provision of enhances the knowledge base and capability of land users, including women and youths, on the establishment of community-based enterprises like water storage and rainwater harvesting techniques, livestock fattening and agroforestry, poultry production, etc. (Woreda/Community Level training; support Output 3.2)
  •  

The outputs under Outcome 1 include:

  1. Training modules and platform for enhancing the knowledge and capability of government officials, DAs and local-communities in twelve woredas on the formulation and implementation of adaptation measures are established and sustained.
  2. Strengthened capacity of development agents (DAs)[1] and government officials to support the implementation of climate change adaptation practices at the woreda and regional levels.
  3. Community action plans for adaptive crop production and animal husbandry developed using a participatory approach in twelve Woredas.
  4. Project benefits and climate change adaptation practices are documented and disseminated to local community members in twelve woredas through learning, using innovative and locally adapted means.

 

The strengthened technical capacity for planning climate change adaptation practices through the provision of targeted training under outcome 1 informs and contributes to Outcome 2 by enhancing the understanding of farmers, agro-pastoralists and pastoralists as well as other stakeholders to generate the inputs required for the formulation and adoption of climate adaptive management plan. The capabilities built under outcome 1 for the provision of inputs to Outcome 2 will be achieved including through enhancing capacity of stakeholders on how to i) define the geographical boundaries of the project area; 2) identify and document climate-related challenges faced by stakeholders; 3) gather credible climate related data; 4) identify climate risks and prioritize climate-related challenges that are likely to affect the social, environmental and/or economic status of local communities and their watershed by considering drivers of future trends and how these issues are currently being addressed as well as 5) on how to plan, monitor and evaluate diverse climate change adaptation approaches.

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools. (Co-financing for Component 1, Outcome 2: $2,193,632; LDCF grant requested for Outcome 2: $681,782)

This outcome will deliver the adoption of climate adaptive management practices by local communities using climate information and appropriate decision-making tools. To this effect, functional Automatic weather stations (AWS) – that will complement and be connected to the on-going effort to extend Ethiopia’s climate observatory network will be installed. Protocols will be developed for climate data collection and analysis as well as on the provision of support regarding climate data storage and management for future reference and decision making in collaboration with the National Meteorology Agency (NMA). Climate monitoring technologies such as rain gauges and handheld climate forecast devices will be distributed to the woredas in the intervention sites. In addition, training on the use of these climate monitoring technologies will be provided to woreda-level officers and DAs. The data collected from the AWS and the household monitoring devices will be used to compile short‑term and seasonal climate forecasts meant for land users.

In order to down-scale the data, the project will work with the Agro-meteorology Task Force established and hosted by the MoANR. This task force currently meets every other week to manually compile agro-meteorology data. Partnership with the MoANR Agro-meteorology Task Force will be formed with the aim of enhancing efficiency and clarity on the implications of weather information and on the practical application of climate science and traditional weather forecast practices. This multi-stakeholders Task force team will ensure that weather and climate forecast services are made easily accessible. The project will also provide capacity building support to the Task Force. The project will facilitate the linkage of activities under this outcome with the Agro-meteorology Task Force Initiative and support the updating of the Task force decision tools to digitized tools. These tools will allow the effective use of climate forecasts provided by the AWS and the downscale of the weather and advisory information to farmers, pastoralist and agro-pastoralist in the project area. Once implemented, the decision-making tools will be tested for a two-year period. The results of this testing period will be combined with lessons learned from the project “CCA Growth: Implementing Climate Resilient and Green Economy plans in highland areas in Ethiopia” to inform national up-scaling of decision-making tools for agro-pastoralists, pastoralists and farmers.

Local weather forecasts will be made available to the land users through mobile phones in each woreda. This would complement the Task Force on Agro-meteorology on-going collaboration[2] with Wageningen University, Netherlands and the Agricultural Transformation Agency (ATA) of Ethiopia. By providing end-users with information in a tailored, useable format, this outcome is building on the GEF financed LDCF project that is being implemented in the highland ecosystem of Ethiopia. This outcome will also build on the lessons learned through the LDCF-funded project “Strengthening climate information and early warning systems in Africa for climate resilient development and adaptation to climate change – Ethiopia” and solicit international expertise to develop climate forecast and decision-making tools.

The outputs under Outcome 2 include:         

  1. Nine Automatic Weather Stations (AWS) installed and linked to the national meteorological network and protocols for use and maintenance established in each woreda.
  2. Appropriate weather and climate monitoring and forecast technologies acquired by representatives of the beneficiary communities and maintained through a functional and durable partnership.
  3. Climate-risk assessment and decision-making tools developed and used in collaboration with local communities in twelve woredas.
  4. Climate-risk assessment and decision-making tools are pilot tested and periodically improved using the results thereof in each of the twelve woredas.
  5. Proactive climate adaptive management plan prepared anchored on functional water storage infrastructure to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.

 

The formulation and adoption of climate adaptive management plan using an up-to-date, downscaled climate information, and the necessary tools and advisory services under Outcome 2 explicitly links the information gathered under outcome 1 for the formulation and adoption of proactive climate adaptive management that would also describe who will be doing what and when to deal with the prioritized climate challenge risks under Outcome 1. Outcome 2 in turn provides inputs that will be implemented by local communities in lowland ecosystem through investment in climate smart technologies, opportunities and solutions as specified under Outcome 3.

Woreda level plans, climate risk assessments and data from AWS integrated with the Met department will inform the interventions under component 3 and the proposed special innovation direct investment.The uptake and use of data and information by local communities gives the AWS infrastructure its ultimate value, and is the purpose for having this infrastructure under the project. This has value both within the project areas as well as within the broader national network. In this regard, the project will facilitate the uptake and use of information and data by local communities through the Agro-Met Task Force Mobile Data provision to farmers and communities at large. It will also strategically support the relevant government institutions, including National Meteorological Agency and Ministry of Agriculture to facilitate community access and use of this information in decision making. This will not only be supported through this project, but through other projects as well thereby ensuring that the installed AWS serve the needs of farmers.

Component 2: Adaptation practices adopted at scale in lowland ecosystem

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems. (Co-financing for Component 2, Outcome 3: $5,956,666 ; LDCF grant requested Component 2, Outcome3: $4,426,383)

This outcome will strengthen land users capacity for the implementation of climate change adaptation practices  for building resilience and diversification of their livelihoods options. This component of the project will thus support land users to create, improve and sustain diversified livelihood options through rehabilitating degraded watersheds in a way that would lead to tangible and replicable changes. This will be achieved through the provision of needs-based technical support for soil and water conservation activities (soil bund, afforestation, check dam, hill-side terracing, etc.) and construction, operation and utilization of water storage structures for the diversification of livelihood options. As a result of this, land users will be able to do supplementary irrigation and engage in creating alternative climate resilient income generating opportunities. Water storage locations would be identified through the development of climate adaptive community-based action plans from Outputs 1.3. The climate adaptive plan will be developed for each woreda in the 6 regions through a participatory consultation process with the aim of securing, in advance, the commitment of the local community to contribute labor during construction, operation and maintenance; as well as to conserve the entire catchment area for long time durability and functionality of the water storage structure.

Local communities in the woredas targeted under this component will benefit from the implementation of a number of on‑the‑ground activities including; increased adaptive capacity through implementation of adaptive farming, agro-pastoral and pastoral practices; improvement of land productivity through such agro-ecological interventions as the bunds, alley cropping and terracing techniques and enhanced availability of fodder crops for livestock feed through planting of drought-resistant and high yield and early maturing varieties. Furthermore, to enhance access to resources in order to scale innovation for climate adaptation in the lowland ecosystem, the project would assist land users to organize into groups to learn from each other and replicate resilient practices.

A range of livelihood improvement activities will be implemented based on the community action plans developed under Component 2, and will vary from community to community. Examples of activities that will be considered include growing, processing and marketing of fruits and vegetables, installation of technologies for water and energy provision such as solar powered water pumps  and biogas to reduce deforestation for community groups, planting fast growing trees for firewood and construction, energy-efficient fuel-wood stoves for clean cooking solutions, growing area closure (fencing) plants using fruits trees, growing  animal forage plants, poultry and animal fattening. The project will train beneficiaries, and especially empower women to engage in value chain business opportunities such as processing and marketing of milk and milk products. Location-specific alternative livelihood support activities such as tree nurseries, bee keeping, fish farming at natural and artificial lakes, edible mushroom cultivation, compost preparation or sustainable use of incense and gum to reduce deforestation and forest degradation would be supported in the intervention sites. To support the offtake and sustainability of these options, the project will support beneficiaries to initiate business enterprises, and will link them to financing schemes.

Following the initial assessments done during the PPG phase, the project will conduct in-depth, focused capacity needs assessments with the aim of strengthening the capacity of beneficiaries for the delivery of sustainable and scalable businesses. The in-depth assessments, based on the selected livelihood activities for each community, will strengthen community buy-in and increase the levels of uptake and sustainability of the adaptive practices and technologies. As well as providing entry points for the establishment of community-based enterprises and involvement of the private sector in running the business enterprises. The assessments will include: i) analysis of market opportunities; ii) identification and implementation of selected income-generating activities; and iii) appropriate support to local communities on value-addition activities, including agro-processing and marketing skills; iv) sustainable financing options. In addition, the development of community business enterprises (CBEs) will be supported to: i) increase local communities’ access to markets; ii) increase market efficiencies; and iii) promote the development of local private sector agents such as agricultural service providers.

The project will also support training of extension agents to follow-up on the implementation of the adaptation and livelihoods activities and review progress in each Woreda with the aim to i)  review successes and failures from the LDCF and to suggest up scaling activities; and ii) develop training material and provide training workshops on developing bankable business plans  It will also develop a long-term M&E strategy for each Woreda that will be followed up by the extension agents and other development facilitators at Woreda level.

The outputs under Outcome 3 include:

  1. Sites identified, through community planning processes, as critically degraded are rehabilitated in the twelve woredas anchored on functional water storage infrastructure designed, constructed and utilized to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.
  2. Alternative livelihood opportunities created, expanded and made more responsive to climate change through the implementation of community-led climate adaptive initiatives in the twelve woredas.
  3. Farm/pasture land rehabilitated through physical and biological soil and water conservation measures in degraded areas in each woreda for and by the vulnerable lowland farmer, pastoralist and agro-pastoralist communities. 
  4. Community-based enterprises established and operationalized in each woreda to develop and strengthen climate resilient local business.
  5. Woreda-level M&E and follow-up strategy developed and adopted by woreda development facilitators and extension agents.

 

The implementation of adaptation plans outlined under Outcome 2 by local communities in lowland ecosystem ensures that land users in the project area enhance their investment in climate smart technologies, opportunities and solutions in order to diversify their livelihood system while mitigating risks and driving actual improvements in performance (Outcome 3). Project performance will be tracked periodically in order to learn from the outcomes and inform future climate change adaptation plans and actions within and outside the geographical boundaries of the Project area. Undertaking frequent evaluation in this way helps to generate and document knowledge and obtain good practice results that would be disseminated to strengthen capacity for the implementation of diversified climate change adaptation practices.

Outcomes 1 and 2 are intended to provide the basis for implementing climate adaptive solutions and practices (Outcome 3) through climate-informed planning at the local level as well as the use of climate information. For each community, the strategies and practices selected under Outcome 3 will be based on the skills and information from planning processes (Outcome 1) that take into account climate change considerations, as well as the capacity to generate provide and use climate information (Outcome 2) to come up with solutions that address climate risks and vulnerabilities. This will generate knowledge that will be applied in the long term. The implementation of Outcome 3 will follow a participatory process that involves communities as well as local level planning and development institutions in the application of climate-informed planning tools and locally relevant climate data. This structure and approach of the project is a deliberate strategy to ensure that planning capacity and the use of climate information are the basis for climate change interventions, and that there is capacity in the local planning structures to facilitate this process. A provision has been made for special innovation direct investment in community infrastructure and alternative livelihoods creation for Woredas with capacity to include additional site making maximum of 3 sites per woreda.




[1] At Kebele level, “development agents” are responsible for technical advisory services to farmers. At a Woreda-level, “extension officers” oversee the activities of and provide guidance to development agents. The term “extension agents” is used to refer to both levels throughout this document, as their roles often overlap.

 

[2] The partnership between MoANR and Wageningen University to develop downscaled weather and Agricultural advisory support to farmers and pastoralist would be explored further and supported by the project to achieve the objective set out in this component.

 

Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
October 2020
Description: 
CEO Endorsement
Proj_PIMS_id: 
5630
SDGs: 
SDG 2 - Zero Hunger
SDG 8 - Decent Work and Economic Growth
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action
SDG 15 - Life On Land

Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70 percent of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening of the already profound poverty levels. Climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas, forcing subsistence agro-pastoralist and nomadic pastoralist households living under deep-rooted levels of poverty into making livelihood decisions out of desperation because their co-dependence on water, agriculture and rangelands is becoming unsustainable. State and federal government budgets, already under strain with development challenges unrelated to climate change, are unable to cope with mounting tolls of a changing climate.

The "Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan" project supports climate change adaptation efforts among subsistence agro-pastoralist and nomadic pastoralist communities in dryland zones across nine states (West Darfur, Central Darfur, East Darfur, Western Kordofan, South Kordofan, Kassala, Red Sea , Northern and Khartoum state). The project will build climate resilience, health, well-being and food and water security for approximately 3.8 million people - almost 1.2 million direct beneficiaries and 2.5 million indirect beneficiaries - accounting for more than 32% of the total population across the nine targeted states, and about 9.2% of the total population of the country.

Its overall goal is to promote a paradigm shift in dryland pastoral and farming systems through i) an integrated approach by increasing resilience of food production systems; ii) improving availability/access to climate resilient water sources; and iii) strengthening capacities of institutions/communities on climate resilience. The project capitalizes on synergies in climate risk management practices across agriculture, water, and rangelands to enhance water and food security under changing climate conditions. Key results are enhanced resilience to climate risks among subsistence farmer and nomadic pastoralist communities and promoting an enabling environment for long-term (post-project) adaptation activities in Sudan. Moreover, the enhanced capacity of the state-level administration in areas of environmental governance, management of shared natural resources, inter- and intra-state relations and how to establish a network of early warning systems will help prevent conflicts and out-mitigation in the targeted areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (31.552734354975 15.424028679987)
Primary Beneficiaries: 
1,181,538 direct, 2,499,712 indirect
Funding Source: 
Financing Amount: 
US$25.6 million
Co-Financing Total: 
US$15.5 million
Project Details: 

The project introduces several interventions among highly vulnerable communities in the target communities. First, the project disseminates a set of sustainable technologies and practices including drought-resistant, early maturing seeds, establishment of integrated women-led sustainable farms, rehabilitation of communal rangelands, development of multi-purpose tree nurseries, and the establishment of shelterbelts to shield cultivatable plots from dust storms. Second, the project increases the availability of water resources through the construction and/or rehabilitation of hafirs (i.e. dugout enlargements into which surface-water runoff is converged during the rainy season), water yards (i.e. water extraction and distribution facility which includes borehole, storage tank, animal watering basins and tap stands), and sand water-storage dams (i.e. rain water harvesting structures). Third, the project strengthens local governance by building capacity among local leaders and stakeholders (i.e. village councils, village development committees, popular committees) regarding best practices, as well as increasing capacity of extension agents from state-level offices of the Ministry of Agriculture and Natural Resources and Ministry of Irrigation and Water Resources  on sustainable technologies/practices suitable for dryland areas.

In introducing these interventions, the project builds upon the lessons learned from recent climate change adaptation projects such as: The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer and Pastoral Communities; and the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these initiatives and applies a similarly integrated approach to crop, water and rangeland management that addresses recurring drought concerns and the linkages between agro-pastoralist and nomadic pastoralist livelihoods.

The barriers addressed by the project include weak drought contingency planning; low institutional capacity; limitations in food security research capacity; limited smallholder access to financing; and limited data infrastructure. Micro-credit and micro-finance systems that have been piloted successfully in other regions have been incorporated into project design to promote financial sustainability and overcome some barriers. The project facilitates transformational change in the short-term by building community resilience against climate change impacts, primarily recurrent drought, and in the long-term by integrating lessons learned into state-level planning, budgeting and implementation of risk reduction measures that will ultimately improve livelihoods in the targeted communities.

Project activities will directly benefit nearly 1,200,000 people in over 211,000 subsistence agro-pastoralist and nomadic pastoralist households. These direct beneficiaries are among 138 dryland villages across nine states. These households correspond to 10% of the total population in the targeted regions. Project activities will indirectly benefit an additional nearly 2,499,712 people through autonomous adoption by neighboring communities of the risk mitigation strategies that direct beneficiaries will implement. The project will take advantage of existing linkages with regional and global research institutions such as CGIAR and the Association for Strengthening Agricultural Research in Eastern and Central Africa.

The project’s paradigm shift potential is rooted in the fact that that the specific adaptation interventions can be leveraged to empower women in large numbers across adjoining communities. Providing women with access to information and knowledge on climate change issues can help reverse their lack of power and build their autonomy. In parallel, the implementation of a suite of adaptation initiatives will build resilience among vulnerable rural communities from future climatic shocks that would otherwise deepen their poverty, while also enabling them to diversify household incomes and assets. Moreover, effective adaptation within traditional agricultural systems will not expand in the poorest states in the absence of catalytic donor support.

The project is aligned with Sudan’s priorities as outlined in its Nationally Determined Contribution to the Paris Agreement and is line with Sudan’s Country Work Programme, as submitted to the Green Climate Fund (GCF). Based on a request made to UNDP by the Government of Sudan, Sudan’s National Designated Authority (NDA), the project is also a part of UNDP’s Entity Work Programme to the GCF and is fully aligned with Government priorities upon which UNDP is focusing.

Climate change challenges

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70% of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening already profound poverty levels. Notably, climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas of Sudan, forcing many subsistence agro-pastoralist and nomadic pastoralist households into making livelihood decisions out of desperation because their co-dependence on water, agriculture, and rangelands is becoming less and less viable. State and federal government budgets, already straining to cope with numerous development challenges unrelated to climate change, are simply unable to cope with the mounting tolls of climate change.

There is strong evidence confirming that Sudan’s climate has been changing over the past decades. First, there has been a steady decline in annual precipitation throughout Sudan. This is most pronounced in the Darfur States, where the data record from the sole meteorological station over the 40-year period from 1952-1992 indicates that rainfall has been declining by about 5.12 mm per year on average. Other areas such as Khartoum and South Kordofan show similar rainfall patterns (decline of 4.90 and 3.99 mm per year, respectively). These trends are reflected by mean annual normal rainfall isohyets. A comparison of the isohyets for the period 1941-1970 and 1971-2000 show that there is a southward shift by hundreds of kilometers.[1]

Moreover, a rainfall trend analysis for 21 meteorological stations across Sudan confirm that mean annual rainfall for the past two decades has been both decreasing and intensifying relative to the 40-year period from 1960 to 2000. This is illustrated in Figure 1 which shows the location of the meteorological stations (top) and indicates that, when compared to the historical period, average annual rainfall declined by an average drop of 9.3 mm per year during the 1990s (middle) and by an average of 23.4 mm per year 2000s (bottom).

These changes have posed profound adverse impacts for rural livelihoods. For faming activities, roughly 90% of cultivated areas depend exclusively on rainfall, with fluctuations in crop yield attributed almost solely to fluctuations in rainfall patterns. While irrigated agriculture is also practiced, it is minor in scope and limited to small areas along wadis and in small plots near hand-dug wells. For pastoralist activities, increasingly erratic rainfall patterns, as well as drought episodes, have led to the deterioration of natural rangelands. Declining rangeland productivity has been accompanied by an increase in seasonal fires, excessive grazing in communal lands, and by large livestock populations unsustainably concentrated around perennial water sources.

Second, there has also been a steady increase in temperature throughout Sudan over the period 1960-2010.  During the March-June and June-September periods, temperatures have been increasing between 0.2°C and 0.4°C per decade, on average. The decadal trend of increasing temperature is more intense during the March-June period. When averaged across all seasons, temperatures in the 2000-2009 period are roughly 0.8°C to 1.6°C warmer than they were in the 1960-1969 period. Figure 2 illustrates annual average temperature trends for a subset of 6 meteorological stations located across Sudan (top) for the period 1960-2010 (bottom).

Third, the above adverse changes in rainfall and temperature have been accompanied by recurrent drought episodes across Sudan since the 1970s. There have been widespread recurring droughts across Sudan during the period 1967-1973 and again during the period 1980-1984, the latter period being the more severe. In addition, there have been a series of spatially localized droughts during the years 1987, 1989, 1990, 1991, and 1993. These drought episodes have occurred mainly in Kordofan and Darfur states in western Sudan and in parts of central Sudan near Khartoum.

Such mounting evidence of decreasing rainfall and increased temperatures, have reduced available grazing lands, have led to crop failures, high livestock mortality and increased rural to urban migration. These climate-related impacts have also aggravated urban health and sanitation concerns. Together this evidence suggests that drought has been a major stress factor on farmer and pastoralist communities and has worsened regional conflicts over environmental resources. Additional information on the climate rationale underlying project design is provided in Annex 19f.

In the future, these climatic changes are projected to intensify. Dynamic downscaling of an ensemble of General Circulation Modeling outputs suggests that over the next two decades, average annual surface temperatures across Sudan will increase significantly relative to the historical climatic baseline, with increasing levels of rainfall variability. This is illustrated in Figure 3 which shows an ensemble of temperature and rainfall projections under Representative Concentration Pathway 8.5 (RCP8.5) for three meteorological stations with sharply differing annual historical rainfall regimes: Port Sudan (medium annual rainfall), Dongola (low annual rainfall), and Gedaref (high annual rainfall).

Baseline situation

The baseline situation is one in which rural households in Sudan are becoming increasingly unable to withstand and recover from climatic shocks, particularly drought. While there are other types of shocks that farmer/pastoralist households are forced to endure related to health, forced migration, or conflicts, they are largely derivative of an inability to effectively cope with recurring drought episodes. This vulnerability is likely to intensify for dryland households in Sudan in the absence of effective climate change adaptation interventions that build increased resilience to drought.

Since subsistence agro-pastoralist and nomadic pastoralist households derive a large share of their income from crop- and/or livestock-related activities, they are also particularly sensitive to drought. Household income from rainfed agriculture and pasture-based livestock production is far more vulnerable to climatic shocks than, for example, irrigated agriculture or other less shock-impacted activities such as the so-called cottage industries (i.e. a business activity carried on in an agro-pastoralist’s home). At present and likely for the foreseeable future, sensitivity to drought among dryland households is largely determined based on prevailing risk-hedging strategies that regard land, water, and livestock – and the mix of those resources – as essential to livelihood preservation. To the extent that household incomes are not diversified, or alternative income-generating strategies not introduced, sensitivity to drought is expected to remain unacceptably high.

The ability of farmer/pastoralist households to cope with droughts has been compromised by the increasing frequency of drought episodes. In the baseline situation, the time between climatic shocks is becoming shorter and shorter, leading to inadequate time to rebuild household assets to withstand subsequent weather-related shocks. Given the lack of governmental safety nets and access to credit, households are forced to rely on their own already depleted savings and assets to try and make up as best they can for food/income shortfalls. Hence, the liquidation of household assets to limit the harmful impacts of a drought episode is becoming less and less of a viable risk-hedging strategy, forcing households into increasingly desperate circumstances.

Taken together, the exposure and sensitivity of farmer/pastoralist households combined with their compromised coping capacity infers that overall vulnerability to climatic shocks is high in the baseline situation. Assent effective adaptation measures, climatic variability has become largely incompatible with traditional agro-pastoralist practices regarding crop selection, water resource management, communal rangeland management, drought preparedness, and household income generation. Additionally, access to tools and extension services designed to build adaptive capacity remains quite low given the overall lack of knowledge to make informed decisions under climate change.

States targeted for project activities

The target region of the project consists of 138 villages in dryland zones across 9 states in Sudan. The selection of these villages has been based on several common characteristics, namely subsistence agro-pastoralists and nomadic pastoralists who are highly vulnerable to climate change, with few opportunities for household income diversification and adaptation. Despite their vulnerability, local populations have little access to measures and practices that can increase their resilience in the face of climate change. A brief description of the major targeted state characteristics, together with key dimensions of vulnerability to climate change, is provided in the bullets below.

West Darfur: West Darfur is characterized by great environmental diversity with seasonal valleys that can sustain forests, rangelands, and agriculture. About 80% of the state's economy is based on cash crops and livestock production. Nevertheless, the state has a history of chronic food insecurity - it is the most food insecure region in Sudan with greater than 40% of the population unable to obtain a health daily diet.

East Darfur: East Darfur is largely characterized by nomadic tribes facing acute water scarcity. Increasingly rainfall variability has led to serious rangeland degradation and in some cases, the disappearance of essential grasses and herbs. Nomads who rely on these resources have been forced to cope by resorting to inferior options for feeding their livestock, namely lower quality tree leaves; limited crop residues, or moving across the border to South Sudan. East Darfur has become the home for significant numbers of displaced people from other Darfur states, all suffering from reduced rainfall. This has amplified the consequences of climatic change for the state and further exacerbated environmental degradation and socio-economic disruption.

Central Darfur: Central Darfur is characterized by diverse climate and soils, including volcanic soils in Jebel Marra (a mountainous area) sandy, clay and alluvial soils in the different valleys traverse the state towards the west to Chad and Central African Republic. Most economic activities are focused on agriculture and pastoralism, with 80% of the population comprised of farmers and pastoralists. Communities are suffering from recurrent droughts, increasing temperature and rainfall variability, which together with high poverty rates have led to a growing misuse of resources as evidenced by overgrazing and denuding of forests.

South Kordofan: The state is characterized by widespread poverty, lack of basic services, poor infrastructure and continued land disputes. While South Kordofan is less prone to drought conditions than its northern counterpart, the state is vulnerable to the impact of forced migration. That is, as agricultural regions in other parts of Sudan become less productive, South Kordofan may see an influx of climate refugees while lacking the infrastructure to accommodate rapid population growth. 

West Kordofan: West Kordofan is characterized by nomadic and transhumant tribes that concentrate in areas where water and other services are available. For farmers, higher temperatures and increased rainfall variability has led to crop failure, increased pest incidence, and out-migration by farmers. For pastoralists, lower humidity levels and higher temperatures have led to grassland degradation and animal diseases. The state has experienced diminishing levels of healthy drinking water due to lower rainfall as well as a higher incidence of certain climate-related epidemics.

Kassala: Kassala is characterized by widespread poverty and lack of basic services. Roughly 85% of the population live below the poverty line and rely on traditional rain-fed agriculture. Flash flooding is a growing risk with frequent seasonal flooding from the Gash and Atbara rivers in the western part of the state. While floods have occurred every 6-7 years over 1970-2000, they have been recently occurring every 4-5 years. Drought frequency has also been increasing, with two major droughts occurring in 2008 and 2011.

Red Sea: The Red Sea state is distinguished from other states in the Eastern region as the only state with a coastline (750 km).  The region supports varied and diverse coastal and marine habitats, including coral reefs, mangroves, and seagrass beds. Many species of birds and fish are supported by these ecosystems, many of which are not found anywhere else in the world. These resources also provide food and income for the communities living along the Red Sea coast. Water scarcity is a persistent problem across inland and coastal areas, while overgrazing is rapidly degrading rangelands.

Northern: The Northern state is characterized by an economy that depends upon both irrigated and rain-fed agriculture. In this region, rainfall is typically very low, temperatures are high in the extreme, and vegetative cover is sparse outside the immediate vicinity of the Nile. Rising temperatures, decreasing rainfall, fluctuations in River Nile water levels, and increased wind speeds have combined to result in a mix of drought and flooding with adverse effects on crop yields, rangelands, animal production, and riverbank erosion. Shifting climates have also hastened the arrival of new plant diseases, such as the date palm disease in the Elgab area, and new skin diseases, such as Jarab, which are not historically common in the state.

Khartoum State: Khartoum is the capital of Sudan and is in the tropical zone around the River Nile. It is characterized by rapid urban growth and the largest concentration of infrastructure. About 20% of the state population is located in rural areas and practice traditional cultivation and pastoralism. Dust storms are regular occurrences and river fluctuations threaten riverbank erosion and flooding. Increasing climatic variability have placed serious pressure on Khartoum’s crop yields, rangelands, and natural forests.

Related projects/interventions

The project builds upon the lessons learned from recent climate change adaptation projects such as: 1) The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; 2) the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer/Pastoral Communities; and 3) the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these projects and applies a similarly integrated approach to crop, water, and rangeland management that incorporate recurring drought concerns and understanding linkages between agro-pastoralist and nomadic pastoralist livelihoods. Some of the specific lessons that have been directly accounted for in project design are outlined below.

Rural water supply for domestic and small-scale irrigation using solar pumping has been readily adopted and effective in several rural settings, resulting in availability of water for agriculture and clean water for human an animal use and saving time of getting it;

Cultivation of drought-resistant horticultural crops (e.g., introduction of new vegetables and practicing cultivation in 3 seasons instead of one season cropping system in Gerf area in Gedarif State) has resulted in improved crop productivity;

Rehabilitation and improvement in irrigated agricultural production (e.g., in Wad Hassan village of Gedarif State) contributed to the creation of new income sources and labor opportunities, which contributed to improved socio-economic status of communities;  

Shelter belts around some farms in River Nile State demonstrably protected farms from hot wind and also created favorable microclimates, which helped to increase productivity and yields;

Afforestation in North Kordofan State - where 7 community nurseries were established, and 53,000 trees were planted – effectively protected agricultural lands and residential areas; and

Awareness-raising and capacity building through demonstration women’s farms led to improvement in crop productivity (e.g. fava beans) in river Nile State and led to women being more oriented to climate change adaptation practices.

 

Expected Key Results and Outputs: 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Activity 1.1:  Introduce drought-resilient seed varieties of sorghum, millet groundnut and wheat that have demonstrated greater yields in the face of climatic changes through village procurement systems;

Specifically, Activity 1.1 will involve a) developing and implementing a programme for drought tolerant and early maturing certified seed distribution; b) replicating successful implementation of drought tolerant and early maturing seed varieties of sorghum, millet, groundnut and wheat to neighboring communities through participatory process; c) establish climate adapted seed multiplication farms; d) conducting community-based drought tolerant and early mature seed procurement by ensuring farmer knowledge of technical aspects of seed production, handling and exchange, including establishment of seed multiplication farm at village level; and e) facilitation of access to micro-financing schemes . Drought tolerant and early maturing seeds constitute crop varieties that can better cope with heat, drought, flood and other extremes and help farmers adapt to climatic changes and lead to increases in agricultural production and productivity. The focus of seed varieties will be on adapted food and cash crops seed varieties that are currently available in Sudan that have shown desirable traits in withstanding climatic stresses such as drought, heat, and waterlogging. Seeds will be procured based on community-based procurement protocols that promote the role of the local farmers in procurement of quality seeds of improved varieties at household and community levels. It is predicated on the frequent circumstance of seed supply from the formal sector unable to reach or meet traditional farmers’ demand. The viability of community-based seed procurement programs is well established in rural Sudan thanks to past projects and local resource management practices. Seed multiplication farms consist of community-based drought-resistant seed supply on local farms through introducing improved seed varieties and strengthening farmers’ capacity and knowledge regarding technical aspects of seeds such as quality control, testing, storage, and certification. These farmers subsequently become a source of quality seeds of improved climate-smart varieties to the communities. The community–based seed supply can be a reliable and efficient way to access high quality seeds. Finally, micro-financing schemes (i.e., sandugs) will be established will be established through the village communities with mechanisms in place to facilitate access to funds.

Activity 1.2:  Introduce sustainable practices in agricultural production at the community level. This involves the introduction of greater irrigation efficiency in the management of water resources through the introduction of integrated women’s farms, home gardens, and demonstration plots;

Specifically, Activity 1.2 will involve a) establishing integrated women sustainable agriculture farms with access to micro-financing schemes; b) establishing sustainable women-centered home gardens, with access to micro-financing schemes; c) training farmers on sustainable wadi cultivated practices and subsequent cultivation in at least 5 specific wadi/depression zones; d) preparing technical manual and provide trainings to farmer groups on water management under climate change (for integrated farmland; home garden and Wadi); and e) setting up climate adaptation-oriented Farmers’ Field Schools. Women-run farms and gardens are enterprises for cultivation of a small portion of land which are around the household or within walking distance from the residence. They will be planted with vegetables and fruits and as well as extra-early maturing crops that can serve as a supplementary and urgent source of food and income during period of food scarcity. Women’s farms and gardens have proven to be a promising approach to enhance food security and wellbeing of resource-poor households in vulnerable areas, offering benefits of security, convenience, and marketable items. Sustainable wadi cultivated practices involve the implementation of climate-adapted technologies and practices that address the challenge of how to transition to a climate-adapt agriculture at needed scales for enabling agricultural systems to be transformed and reoriented to support food security under the new realities of climate change in rural Sudan. Two main categories of sustainable agriculture are the focus of project activities: a) improving water/soil management practices through the introduction of small scale irrigation and conservation tillage techniques and b) improving crop production practices through seed priming, fertilizer micro-dosing, adjusting planting density, and changing planting dates to conform to new climatic trends. Farmers’ field schools (FFSs) are based on the FAO’s Farmer Field School methodology[1] and have been introduced successfully in other parts of Africa to increase farmers awareness about climate change and climate-smart technologies. Among other things, they help farmers learn to integrate weather and climate information with disaster management and agricultural planning while creating awareness about disaster risk reduction and climate change adaptation. The project will address the short time frame to develop climate information by incorporating protocols and lessons learned from the GEF-funded Climate Risk Finance (CRF) project mentioned in Section B.1. That is, the logistical challenge of the time it takes to get climate data, then the time to build climate advisories and then the time to disseminate in FFSs and expect usage for impact will be overcome by the head start provided by the CRF project through the mobile-phone partnership established between the Sudanese Meteorological Authority, the Agriculture Research Center, extension service representatives, and a mobile phone company to develop and distribute climate information to local communities across 6 states in Sudan. As a result, rain-fed farmers and pastoralists now receive forecast/climate information and risk / agricultural / pest / livestock advisories by Short Message Service (SMS). At the same time, the CRF project is developing a Mobile Based Application comprising weather information, agriculture practices, crop insurance scheme, marketing information and advisory services that should be readily available by the start of project activities. Such information will be integrated into the FFS programme.

Activity 1.3:   Introduce rangeland management practices that reduce pastoral stress on communal lands through demonstration farms and rangeland rehabilitation techniques;

Specifically, Activity 1.3 will involve a) the development of technical guidelines for climate adaptive rangeland management; b) establishment of communal rangeland reserves for drought resistant ranged seed production; and c) Rehabilitation of 2,000 hectares of degraded rangelands and an additional 2,500 hectares of strategic rangelands by using site-suitable types of soil conservation and water harvesting techniques Technical guidelines will focus on climate-adaptive rangeland management techniques. Rangelands are a crucial resource for the poorest people in Sudan’s drylands, representing the major source of fodder in livestock production systems. Today, however, these areas are threatened by severe livestock population pressures and environmental degradation New rangeland management practices to be implemented include rotation grazing, reduced burning, reseeding, brush control, and scheduled rest periods.  Rangeland rehabilitation will consist of four main activities: reseeding, water harvesting, grazing management, and fire control. The modalities for introducing and sustaining these new practices will be addressed in Output 3 capacity building activities to ensure that the need for vegetation/soil recovery is community-learned and community-practiced.

Activity 1.4:   Establish shelterbelts/agroforestry to improve productivity and reduce land and environmental degradation.  This involves the plantation of trees to absorb energy from dust storms and protection of cultivatable areas

Specifically, Activity 1.4 will involve a) developing and implementing a programme for a total of 30 multi-purpose tree nurseries to be run by women groups; b) establishing shelterbelts with drip irrigation system; and c) establishing climate adaptive community-based afforestation. Shelterbelts will be equipped with drip irrigation systems to act as a barrier to reduce the harmful effect of wind velocities, wind erosion and sand drift and heat waves while improving existing harsh environmental condition. Community based afforestation will involve the planting of climate-resilient tree species and greater and continued community participation in the development of tree nurseries and the management and long-term protection of new forest cover. In addition to increasing resiliency against climate-related impacts, afforested areas will provide an important co-benefit of carbon sequestration. Principal species to be planted include Acacia Senegal with other Acacia species planted as needed, with a rotation of about 15 years and an uptake period of 30 years. Post-project sustainable management of nurseries, shelterbelts and afforested areas will rely on community mobilization/engagement, awareness-raising, and village institutional capacity building that has been achieved as part of Output 3.

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Activity 2.1:  Construct/rehabilitate water yards and drilling of shallow/borehole for drinking water for human and livestock and small-scale irrigation in targeted locations. This involves increasing the access to water by installing communal water infrastructure;

Specifically, Activity 2.1 will involve a) rehabilitation work for existing water yards to repair/replace components as needed (e.g., borehole, storage tank, animal watering basins, tap stands, solar pumps); b) drilling of new water yards, including boreholes, solar pumps, storage tanks and small-scale irrigated plots in vicinity of water yards; and c) conducting community training for maintenance in water yards, including access to micro-financing schemes. A total of 30 existing water yards will be rehabilitated, together with the installation of 50 new water yards among the targeted communities. Water yards are essentially a water extraction and distribution complex which includes borehole, storage tank, animal watering basins and tap stands. The borehole is equipped with a pump, typically powered by a diesel engine although in the proposed project, solar-powered pumping is the chosen alternative in order to avoid greenhouse gas (GHG) emissions. Project activities include both rehabilitation of existing water yards and the installation new ones. The installation of new water yards requires approval from State Water Councils which are part of the Ministry of Irrigation and Water Resources (MIWR), one of the Responsible Parties of the project. The MIWR has already committed to providing permission for the installation of new water yards. The procurement of all materials (i.e. pipe, fencing, solar panels, water storage tank, cement, sand, stone aggregate) for rehabilitating or installing new water yards are locally available, obviating the need for importing any goods from abroad.  The 80 new and rehabilitated water yards will each provide a daily storage capacity of 50 m3, or 1.46 Mm3 per year. Specific locations for rehabilitated and new water yards are indicated in Annex 2.

Activity 2.2: Establish sand water-storage dams in support of small-scale irrigation in targeted localities and villages. This involves the blocking seasonal wadis for groundwater storage and exploitation;

Specifically, Activity 2.1 will involve a) constructing sand water-storage dams in drought-prone areas; b) installing small pumping units around sand water-storage dam for sustainable agriculture; and c) providing training for operation and maintenance of sand water-storage dam and solar pumps for water management scheme, including access to micro-financing schemes. A total of 30 new sand water-storage dams and 50 solar-powered pumps will be installed at selected locations within the project sites. These are cost-effective rainwater harvesting structures which are used as a response to conditions of water scarcity due to severe drought and climate extremes in drylands. They are simple structures that consist of a reinforced concrete wall built up to 5 meters high across a seasonal water stream that transports runoff-water from catchment areas to streambeds. They are designed like ordinary dams, but the spillway is raised to enable sediments to sit in the dam. Project activities include constructing new sand water-storage dams which do not require a permit or approval from State Water Councils. The procurement of any materials for constructing sand water-storage dams are locally available, obviating the need for importing any goods from abroad.  Each sand water storage dam has an annual design capacity of 20,000 cubic meters. The 30 new sand water storage dams will contribute a total of 0.6 Mm3 in new annual water storage capacity. Specific locations for the new sand water-storage dams and pumps are indicated in Annex 2.

Activity 2.3:  Construct improved Hafirs and upgrade existing ones, excavating natural pond and cistern to increase availability of drinking water. This involves the construction of water storage infrastructure

Specifically, Activity 2.1 will introduce 75 new hafirs at selected locations within the project sites.  A hafir is simply an artificial excavation designed for harvesting rainwater. During the rainy season it will be filled by the discharge from seasonal streams and enhances the access of vulnerable communities to drinking water. Hafirs are usually constructed big enough to cater for the needs of the villagers/nomads and their livestock during the dry season.  Each improved hafir has an annual storage capacity of 50,000 cubic meters. The 75 new improved hafirs will contribute a total of 3.75 Mm3 in new water storage capacity.Project activities include both constructing improved Hafirs and upgrading existing ones. The installation of new hafirs does not require approval from State Water Councils. The procurement of any materials for rehabilitating or constructing new hafirs are locally available, obviating the need for importing any goods from abroad.

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Activity 3.1: Train extension officers and other government stakeholders on climate change resilience and adaptation related issues.  This involves the development of training materials tailored to local circumstances and delivered through a series of workshops;

Specifically, Activity 3.1 will involve a) conducting a training needs assessment for executing and concerned government agencies; b) developing manuals and technical guidelines for strengthening technical capacity for expanding climate-resilient practices throughout other communities; c) training extension staff from the Ministry of Agriculture and concerned government agencies; d) developing guidelines on adaptation measures for up-scaling to other localities; and e) developing a manual of best practices on climate change adaptation measures

Activity 3.2: Build capacity of beneficiaries for coping with climate change risks and local operation & maintenance of project interventions. This involves a series of seminars and workshops to raise awareness among village leaderships councils about climate change coping strategies

Specifically, Activity 3.2 will involve a) conducting climate resilience training of village extension networks, including role of micro-financing schemes; b) conducting training of village development committees, including role of micro-financing schemes and community procurement processes; c) carrying out awareness-raising campaigns on building resilience to climate change, including role of micro-financing schemes; and d) facilitating exchange visits of communities and extension staff across localities. A fair and transparent selection process will be established regarding beneficiary selection for capacity building. Several criteria will be employed to select training beneficiaries including specific level of stakeholder engagement; specific level of vulnerability, status as female-headed household, and other criteria to be determined.

 

Contacts: 
Tom Twining-Ward
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
June 2020
Description: 
GCF Board Approval
Proj_PIMS_id: 
5813
SDGs: 
SDG 2 - Zero Hunger
SDG 3 - Good Health and Well-Being
SDG 6 - Clean Water and Sanitation
SDG 13 - Climate Action