Extreme Weather Events

Taxonomy Term List

Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards

Frequent and more intense floods, mudflows, landslides, avalanches and other climate change-related disasters in Uzbekistan are putting lives and livelihoods at risk and slowing progress to reach targets outlined in the Paris Agreement and Sustainable Development Goals.

To address these challenges, the Green Climate Fund-financed “Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards” project will respond to a critical need in Uzbekistan to modernize its early warning system into an impact-based Multi-Hazard Early Warning System (MHEWS ). The MHEWS will improve early warnings on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions, an essential element of the country’s climate risk management framework.

Several climate change-induced hazards (such as floods) have caused significant economic damages and led to the loss of lives. For example, it is estimated that 7.6 million people are vulnerable to flooding in Uzbekistan. The economic impact of flooding due to climate change is estimated to be about US$236 million. These hazards related to heavy rainfall and temperature extremes are either already increasing in frequency and/or intensity or are expected to do so under climate change, particularly over the eastern mountainous regions of Uzbekistan. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards. The improved early warning systems will inform future planning and reduce risks for vulnerable communities, support resilient livelihoods, good health and well-being, and improve food and water security for the people of Uzbekistan.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, and improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (63.720703099213 41.483205853498)
Primary Beneficiaries: 
311 million direct beneficiaries, 2 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$9.9 million
Co-Financing Total: 
US$30.6 million (Uzhydromet and MES)
Project Details: 

The Government of Uzbekistan through its Ministry of Emergency Situations (MES) implements a state program to modernize the early warning system for natural disasters[1]. This GCF project will provide the critical technical and financial resources, access to innovative technologies and expertise for the implementation and scale-up of this national initiative. The GCF-financed project will promote the transformation of climate hazard forecasting and warning from a reactive (ex-post) hazard-based system to one that is proactive (ex-ante), user-oriented and impact-based.

The project puts a strong focus on strengthening the “last mile” delivery of disaster-related communication and interaction with end users, including vulnerable communities. The improved capacity of Regional crisis management centers (RCMCs) and local communities to use and interpret climate risk information into practical early responses will directly benefit at least 11 million people (34% of total population) currently at risk from climate hazards and enhance the community resilience as a whole.

Uzhydromet’s capacity as a WMO Regional Specialized Meteorological Centre (RSMC) will be strengthened, building on the CAHM[2] (World Bank/WMO) project. The proposed GCF investment will develop automated procedures and modelling capacity that can serve as an example for other developing Central Asian countries, as well as being the driver of significant institutional change, catalysing increased efficiency in climate hazard warning generation and dissemination and developing new operational procedures between MES and Uzhydromet.

Climate change has been leading to more frequent and more intense hydrometeorological disasters in Uzbekistan and to a greater exposure to these disasters across the country. Uzbekistan sets climate change adaptation as a priority in its first Nationally Determined Contribution (NDC)[3] under the Paris Agreement. In particular, the NDC clearly highlights the need to establish a Multi-Hazard Early Warning System (MHEWS).

This project will respond to a critical need of Uzbekistan to modernize its early warning system into an impact-based MHEWS (initially focused on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions), an essential element of the country’s climate risk management framework. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

The GCF grant is required to upgrade the existing hazard forecasting and warning system in Uzbekistan so it can effectively deal with the additional pressure brought about through increases in climate variability and change. This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.




[1] Cabinet Resolution No. 242 of the Republic of Uzbekistan "On further improvement of state system for warning and emergency applications of the Republic of Uzbekistan” from 24 August 2011

[2] Central Asian Hydro-Meteorological project

 

Expected Key Results and Outputs: 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities

The proposed intervention will create a more efficient monitoring network for weather, climate, hydrology and cryosphere, through both upgrading existing (automating) and installing new monitoring equipment (automatic weather stations (AWS), automatic hydrological stations, upper air sounding stations, and strategically placed low cost radars. This equipment and other existing data streams will be integrated into high availability/redundant single databases. Hazard-specific forecasting procedures will be developed and operationalized for climate-induced hazards. Training of Uzhydromet staff to undertake forecasting, operation and maintenance and data QA/QC/archiving procedures will also accompany these activities. Activities follow the GFCS and in this output are designed to address aspects related to: i) observations and monitoring; and ii) research, modelling and prediction. Uzhydromet will be the immediate beneficiary under all activities of Output 1, while their end beneficiaries include all the users of the upgraded hydro-meteorological observation network, modelling and forecasting capacities.

Activity 1.1 Upgrading and modernization of the meteorological and hydrological Observation System. This will include upgrading/automation of 25 meteorological observation stations and equipment (software, workstations etc), modernizing the ground-based infrastructure (telemetry processing, hydrogen generators etc) for 2 upper-air stations (Uzhydromet/GoU will support the establishment of 2 more), installing 2 online X-band doppler radar systems to cover current gaps in mountainous areas, upgrading and technical equipment of 90 hydrological stations , and establishing benchmarks and up to date equipment for instrument calibration (vacuum chambers, mobile laboratory etc). AWS and hydrological stations will be installed/upgraded at existing facilities and premises of key locations in the mountains above hazardous valleys and in the areas of high precipitation/landslides/mudflow risks, not already covered by investments through the CACILM and CAMP4ASB projects, as shown in Figure 46 (page 66) of the FS. Uzhydromet is strongly engaged with the WMO and maintains its standards and compatibility with existing systems. In particular it requires that goods and service comply with WMO 2003 Guidelines on Climate Observation Networks and Systems (TD No. 1185) and WMO Guide to Meteorological Instruments and Methods of Observation (the CIMO Guide No. 8, 2014 edition / 2017 update). These requirements will be taken into account during project implementation, and demonstrated compatibility with existing systems is part of any procurement (ITB/RFQ) tender documents under UNDP processes. All equipment will report data to central servers at Uzhydromet and will conform to WMO standards, including reporting to the Global Climate Observing System (GCOS), Global Basic Observing Network (GBON) and Global Telecommunication System (GTS). The project will also assist the government to identify long-term requirements and to enable budgeting and planning for the maintenance of all observing systems.

Activity 1.2 Upgrading Uzhydromet’s capacity to store, process and develop hazard products, as well as to communicate hydrometeorological data to regional divisions. This is a climate services information system (as described in GFCS) and involves the establishment of an operations centre, ICT servers and networking equipment to integrate data streams (hydrometeorological and satellite-based observations) and automate processes and analyses (including hazard forecasts). Software and processing routines will enable data and maps to be exported in common formats for sharing with partners and importing into the MES risk management system (see activity 2.1 below). A local cloud-based solution will be implemented to store and manage data that will benefit from offsite backups and easier access for the MES risk management system. Specifically this activity will: i) Integrate hydrometeorological data (from both automatic and manually operated stations) into a single database as a basis for developing products based on all available observed data. Automatically transmitted data from different providers/manufacturers will be integrated and undergo quality control/assurance within a single database in real time and will be available for interrogation via geo-visualization software. This activity will also: i) Expand the hydrological drought early warning system for Amu Darya (developed by the UNDP/AF project) to the Syr Darya and Zeravshon rivers. All historical streamflow and flood data for the two rivers will be collected and forecast models, with data ingestion and data processing routines, will be derived;  ii) Develop automatic procedures for calculating avalanche risk in real time. Software and code will be developed to automatically update avalanche hazard maps based on snow accumulation from satellites (and AWS) and established procedures for estimating avalanche extent; iii) Develop code and procedures for automatically calculating mudflow risk maps based on precipitation observations and forecasts for 2-3 days lead time; iv) Develop a landslide risk model for Eastern Uzbekistan based on geophysical and geotechnical characteristics, including subsurface water and extreme rainfall. The skill of all developed forecast systems will be assessed using retroactive forecasts and used to assess their utility for forecast based actions in activity 2.1 and 2.2.

Activity 1.3 Re-training and advanced training of Uzhydromet staff on monitoring and forecasting technologies and procedures (training of MES staff is covered in output 2 below). International experts will train weather forecasters to work with new products of the KOSMO model (with a resolution of 13 km and 2 km). Refresher courses and advanced training will be provided for new software and equipment, including the introduction of new methods for the analysis and prediction of hydrometeorologically important variables and climate hazards. The project will facilitate organization of on-the-job trainings, engagement with universities, courses and seminars with the involvement of foreign specialists. Training of IT specialists of Uzhydromet will be conducted for work with the computer center and operation of the KOSMO model, the UNIMAS, MITRA information reception and transmission system, workstation software (for weather forecasters, agrometeorologists, GIS-METEO, etc.) and EU Copernicus programme on satellite data, all of which will be used for impact-based forecasting where needed. Trainings on AWS installation, general user training and technical support will be provided. These increased capacities will also assist Uzhydromet in fulfilling its regional role as a WMO RMSC, in accordance with the GFCS capacity development, and help improve their capacity for regional cooperation.


Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness

The proposed intervention will integrate and develop ICT systems to use the hydro-meteorological hazards predicted in output 1, and combine these with vulnerability data to identify risks and provide information for planning and mitigating their impacts. It will improve the efficiency of the current early warning system by automating the sharing and production of risk-related data, as well as the communication of warnings. The project will also develop methodologies for and support hazard and risk mapping and risk zoning for key climate-induced hazards (floods, landslides, mudflows, droughts and  avalanche). Specifically it will introduce an advanced, impact-based information management system for combining data on socio-economics (population, livelihoods, poverty indicators), infrastructure (roads, utilities, buildings, bridges etc) and the natural environment (landcover, vegetation, soils etc) in order to operationally assess the risks associated with each hazard forecast. This information will be transmitted and shared with RCMCs in key hazard-prone districts in Uzbekistan so that regional teams have the most up to date information available for planning their operations. Building on the existing mobile-based public dissemination platforms, the project will develop geographically specific risk based warnings tailored to the areas affected by each hazard (e.g. mudflows, avalanches, landslides and flooding). Based on the user interaction guideline of GFCS, inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will inform the design and dissemination of warnings and alerts to communities at risk.  MES and its RCMCs will be the immediate beneficiaries under all activities of Output 2, while their end beneficiaries include all the users of the Multi-Hazard Early Warning System.

Activity 2.1 Developing and installing a modernised and efficient system for assessing climate risks based on dynamic information on both hazards and vulnerabilities, including socio-economic risk models for decision making and prioritization of resilience building long-term/future investments. This would enable establishing an impact-based MHEWS, where hazard forecasting is linked to the risk and exposure information (socio-economic risk model).  This involves installing both hardware and software to enable an advanced, impact-based information management system to be built, which will combine data on current vulnerabilities (e.g. indicators of poverty, education, health, housing etc), public and private assets (including infrastructure, roads, railways, housing, mines, airports, hospitals, schools etc), the environment (crops, lakes, rivers, tourism areas etc) and hazard impacts (input from Output 1) to operationally assess the risks associated with each hazard forecast. Based on evaluated risks and the skill of each impact-based forecast, a set of feasible ex-ante actions will be identified for different lead times. This activity will also develop software and standard operating procedures to automatically ingest hydrological and meteorological observations, weather and seasonal forecasts, and derived drought/avalanche/mudflow/landslide forecasts from Uzhydromet (through activity 1.2) into the system to be combined with available vulnerability data. Traning to MES staff will be delivered on risk assessment, operations and maintenance of the systems. The system will also import long-term climate change scenarios to be used for forward planning and evaluation of future risks.

Activity 2.2 Developing and introducing technical guidance, institutional and coordination frameworks to increase the efficiency of: i) data collection and archiving (activities 1.1 and 1.2); ii) hazard mapping and modelling (activity 1.2); iii) risk assessment (activity 2.1); iv) impact-based warning and forecast-based actions (activity 3.2); and v) dissemination of information to RCMCs (activity 2.3). These protocols are also required to ensure that new climate information sources (e.g. AWS, AWLS, radar and satellite observations – activity 1.1) are translated into products that are useful for decision making and investment by MES and Uzhydromet (based on feedback obtained through activities 3.1 and 3.3). Thus, under this activity the project will explore and facilitate promotion of forecast-based-financing (FBF) by developing draft SOPs and prototype FBF protocols/decision-making systems.  This activity will include development of SOPs (both for ingesting and sharing data, as well as for forecast based actions to be undertaken when specific risk-related triggers/thresholds are reached), a national to regional EWS protocol, and communication protocols to accompany introduction of the new technologies. Guidance and procedures will be developed to support the application of socio-economic risk models and enhanced risk zoning in development planning and decision-making (activity 2.1). Corresponding training to MES staff will be delivered.

Activity 2.3 Designing and implementing a system for information dissemination to RCMCs and area specific mobile alerts including an information visualization system for RCMCs with software. This involves setting up information visualisation and analysis systems (video walls, telecommunication systems, servers and ICT storage) at 7 RCMS, to enable them to visualise the maps and impact forecast information provided through the risk analysis and warning system (activity 2.1) and combine it with local (regionally available) information on current vulnerabilities and field-based information. This will enable them to better target advice and direct regional response teams. This activity will further develop (improving the existing MES dissemination system) area-specific mobile and SMS based warnings for mudflows, avalanches, landslides and flooding. This will reduce the chance of false alarms sent to those not at risk, as well as improve the content based on information from the improved MES risk and impact-based forecast system (activity 2.1 and 2.2). Inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will be used to design the dissemination system, following the co-design and co-production user interaction guideline of GFCS.

Output 3: Strengthened climate services and disaster communication to end users

The proposed intervention will strengthen the effectiveness of delivering climate information services and disaster warnings to users in Uzbekistan at two levels. On the overall national level, the project will initiate the establishment of the National Framework of Climate Services as a mechanism to systematically bring together producers and users of hydrometeorological and climate information and to ensure that information and services reach their end recipients both in the various sectors of the government and the society and at the different geographic levels down to local communities. Disaster-related information and services being the specific focus of the project, it will work with the various public and private stakeholders to reorient the existing financial / economic model behind the provision of such services to make it more cost-efficient and sustainable in the long-term, i.a. using private investment and partnership opportunities on the domestic and the international markets. Finally, on the warning dissemination and communication aspect, updated communication technolgoies will be utilised to support real-time risk evaluation by Regional disaster managemen agencies (RCMCs) and first responders and ensure ‘last-mile’ delivery of early warning risk information to the communities at risk and population at large. In collaboration with  Red Crescent Society and other community-level NGOs, RCMC will organize trainings and annual community forums to help communities at risk better interpret, understand and react to those warnings, as well as facilitate forecast-based actions and responses. Uzhydromet (and, in the long run, other parts of the Government of Uzbekistan, as well as other providers and users of climate services) will be the beneficiaries under Activity 3.1, as the NFCS provides a platform where the various service providers and end-users are engaged in the co-designing, testing and co-production to improve the content and delivery of products and services. Uzhydromet and MES (and Uzbekistan’s Government in the long run) will be the beneficiaries of Activity 3.2, as the development and promotion of a sustainable business model for disaster-related information and services in Uzbekistan will provide additional operational funding to the two institutions which currently to a large extent rely on government budgets. MES and its RCMCs as well as the communities in the 15 targeted districts as well as Uzbekistan’s population at large will be the beneficiaries under Activity 3.3.

Activity 3.1  Establishing National Framework for Climate Services for Uzbekistan

The Global Framework for Climate Services (GFCS), promoted and facilitated by the World Meteorological Organization in cooperation with GFCS partner organisations, is a framework that envisions better risk management and more efficient adaptation to climate variability and change through improvements in the quality, delivery and use of climate-related information in planning, policy and practice. GFCS, i.a. endorsed by the GCF Climate Services Strategy, focuses on developing and delivering information services in agriculture and food security, disaster risk reduction, energy, health and water, and organises its work around observations and monitoring; climate services information systems; research, modelling and pre- diction; user interface platforms; and capacity development. A strong focus of GFCS is on a multi-stakeholder approach to the definition and the actual delivery of services, thus bringing users and co-producers of climate and hydrometeorological information together and to the centre of the design and production process as opposed to more traditional supply-driven approaches. The establishment of the NFCS would typically involve:

i) an assessment of gaps, needs and user perspectives (i.a. through interviews) with respect to the current and desirable climate services;

ii) based on this assessment, the drafting of NFCS Uzbekistan concept and action plan;

iii) extensive consultations regarding the concept with the various sectors, users and co-producers of climate services; and

iv) reaching a broad agreement and Governmental endorsement for NFCS implementation.

Following an accepted WMO blueprint for the conceptualising and establishment of a NFCS, the project will undertake a baseline assessment of climate services in Uzbekistan, followed by multi-stakeholder consultations and the participatory development of the country's NFCS concept and Action Plan to be endorsed both by stakeholders and at the high executive level, ready for implementation once supplementary NFCS-earmarked funds become available as a follow-up to the project.

As part of this activity, a platform will be set up to engage end users in the design and testing of new disaster-related climate information services and products. Similarly, a National Climate Outlook Forum will be established and supported as one mechanism to help shape and deliver climate services with longer time horizon, i.a. with a particular focus on disasters such as hydrological droughts. A connection will then established between the Forum and WMO’s Regional Climate Fora operating in Europe (NEACOF) as well as Asia (FOCRAII).  Both the NFCS user dialogue platform and the National Climate Outlook Forum will (as well as the NFCS process at large) will be managed by Uzhydromet.

Activity 3.2  Designing sustainable business model for disaster-related information and services

While it may not be realistic to expect any significant level of private financing during project implementation given the existing public service management model and the time required for transition, there is long-term potential for private sector investment in climate information services and for expanded service provision to private sector based on enhanced hydrometeorological and climate information in Uzbekistan, including those related to natural disasters and early warning. Linked to the NFCS process above, the project will conduct a comprehensive analysis and discussion of long-term sustainable financing options for disaster-related services in Uzbekistan beyond current state-funding model, in particular drawing on blended finance through dedicated national funds and public-private partnership opportunities.  This will include seeking financing, from both public and private sources, for forecast based (ex-ante) actions identified in activities 2.1 and 2.2. Based on the analysis and consultations, a sustainable value chain-based business model for disaster-related information will be developed and agreed with the key stakeholders, and the necessary legal and organisation changes will be outlined and planned on the national (adjustment of legislation) and the inter-institutional levels (Uzhydromet, Ministry of Emergency Situations, users of the services, private investors).

Activity 3.3 Strengthening disaster warning dissemination and communication with end users

The project will significantly strengthen interaction with the end users with the aim to communicate and facilitate proactive responses to disaster information and warnings in Uzbekistan. Within the 15 RCMCs, outdoor communication boards[1] will be set up in identified communities at highest risk to alert and inform the population in real time about threats or emergencies, following which, through cooperation between MES RCMCs and the Red Crescent Society, communities will be trained to interpret and use information on climate hazards and early warnings. Printed visual information (leaflets) will be provided to RCMCs and Uzbekistan’s communities on climate hazards and associated early warnings. With expected increase of user interaction level, regional staff of MES RCMCs will be further trained in the effective use of this information to suppport community interactions (crowd sourcing and survey data) and formulate forecast-based actions following the guidelines developed in Activity 2.2. Similarly, easy-to-understand and visual information will be channelled to mass media through existing agreements between them and MES / Uzhydromet, as well as to national NGOs. Finally, this activity will also complement the prior Activity 2.3 in the development of region-specific (as opposed to the currently used national-wide) broadcasting of early warnings, with the use of other modern communication channels such as social media and electronic messenger subscription groups. In addition, the project will establish a platform for organizing annual community forums on community-based EWS engaging target communities and representatives of vulnerable groups to exchange information, lessons learned, successes and opportunities. Through such platforms regular competitions will be organized engaging both youth and the most active community representative to advocate for structural and non-structure mesures and ensure their inclusiveness.  


[1] These are physical boards used to relay warnings and messages, to be installed/set up by MES in targeted districts (including in hazard-prone areas with limited mobile receptions or not immediately reachable by a Regional Crisis Management Center). Boards will be installed in popular public places used by communities or on regular commuter transport routes.


 



 

Contacts: 
UNDP
Nataly Olofinskaya
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities
Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness
Output 3: Strengthened climate services and disaster communication to end users

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 13 - Climate Action

Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’

The Green Climate Fund-financed “Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’” project responds to the coastal adaptation needs of Cuba due to climate-change related slow onset events such as sea level rise and flooding arising from extreme weather events. Impacts from these climate drivers are a matter of national security for the people of this small-island state and pose an existential threat to coastal settlements and communities. Projections show that if no intervention is made by 2100, up to 21 coastal communities will disappear with a further 98 being severely affected by climate related threats (flooding, coastal erosion and saline intrusion).

Cuba’s Southern Coast has been selected due its high vulnerability to climate change particularly in the form of coastal flooding and saline intrusion. 1,300 km of coastline, 24 communities, and 1.3 million people will directly benefit from the project. In protecting life on land and below the water, 11,427 ha of mangroves, 3,088 ha of swamp forest and 928 ha of grass swamp will be restored, which in turn will improve the health of 9,287 ha of seagrass beds and 134 km or coral reef crests.

The project will enhance adaptive capacity by holistically rehabilitating coastal land-seascapes, their interlinked ecosystems and hydrology. This will be achieved by rehabilitating ecosystem functions and connections within mangroves and swamp forests and reducing anthropic pressures to marine coastal ecosystems, thus enhancing the services supplied by integrated coastal ecosystems (particularly protection from saline flooding and erosion, and channelling freshwater to coastal areas and aquifers). It will also strengthen the adaptive capabilities of coastal governments and communities´ by building their capacity to utilize and understand the benefits of ecosystem-based adaptation, enhancing information flow between stakeholders and strengthening the regulatory framework for territorial management in coastal areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-78.594726920422 20.988793500139)
Funding Source: 
Financing Amount: 
US$23,927,294
Co-Financing Total: 
US$20,371,935 (US$16,242,488 MINAG, US$2,696,376 CITMA, US$1,435,071 INRH)
Project Details: 

Climate change impacts and threats

The Cuban archipelago’s location in the Caribbean, places it in the path of frequent tropical storms, and the long, narrow configuration of the country is such that no part of the country is very far from the sea (over 57% of the population lives in coastal municipalities).*

Coastal municipalities and their respective settlements are also extremely vulnerable to climate change (CC) due to increased storms and rising sea levels, resulting in increased coastal flooding caused by extreme meteorological phenomena such as tropical cyclones, extratropical lows, and strong winds from surges. From 2001 to 2017, the country has been affected by 12 hurricanes 10 which have been intense (category 4 or 5), the highest rate in a single decade since 1791. In the past 10 years the percentage of intense hurricanes affecting the country has risen from a historical average of 26% to 78% with accompanying acute losses. These intense hurricanes impacting Cuba since 2001 coincide with very high sea surface temperatures (SSTs) in the tropical Atlantic recorded since 1998.

The coasts of Cuba in the past three decades have also seen an increase in the occurrence of moderate and strong floods as a result of tropical cyclones and of extratropical systems; with extratropical cyclones being associated with the highest rates of flooding in the country.  Furthermore, warm Pacific El Niño events lead to an increase in extra-tropical storms which increase the risks of flooding along the coastline.

CC induced Sea Level Rise (SLR) will aggravate coastal flooding affecting in particular low-lying coastal areas. It is expected that through SLR, mean sea level will increase by 0.29 m by the year 2050 and between 0.22m and 0.95m by the year 2100 impacting 119 coastal settlements in Cuba. Combining increased storm surge and projected SLR, flooding of up to 19,935 km² (CC + Category 5 hurricane) and 2,445 km² (CC + normal conditions) can be expected by the year 2050.

These estimates could be higher when compounded by the impact of surface water warming on the speed of storms, and new research that links it to increased wave heights in the Caribbean. Under this scenario, storms could be more frequent and move at a slower pace thus increasing the impact on island states such as Cuba.

CMIP5 projections indicate that by 2050, mean annual temperature in Cuba will rise by a median estimate of 1.6°C; total annual extremely hot days (temperature >35°C) will rise by a median estimate of 20 days (RCP 4.5) and 20.8 days (RCP 8.5). Associated increases in potential evapotranspiration will further lead to more frequent severe droughts, as already observable in eastern Cuba.

Cuban coastal seascapes and landscapes are a succession of ecosystems that have coevolved under current climatic conditions, including current distributions of extreme events. The progression of coral reefs, seagrass meadows, beaches, coastal mangroves and forest or grassland swamps represents an equilibrium that confers resilience to each ecosystem separately but also to the coast as a whole. The current resilience of Cuban coastal ecosystems to extreme events and SLR, is being undermined by both climate change effects (increased extreme events) and other anthropogenic pressures, tempering their capacity to provide their protective services. Mangroves have further suffered high levels of degradation affecting their ability to colonize new areas, reduce wave impacts, accrete sediments and stabilize shorelines. Additionally, coral reefs have shown signs of bleaching and degradation that have been attributed to mangrove and sea grass degradation (including the alteration of hydrological natural flows, presence of invasive species, water contamination, and habitat destruction), climate-related increases in surface water temperature and to increased impacts of hurricanes.

SLR will further increase current vulnerabilities and stresses on ecosystems due to increases in water depth and wave energy which will increase coastal erosion, coastal flooding and saline intrusion risks.

Coastal erosion

Current coastal erosion rates are attributed to a combination of natural dynamics (waves, currents, extreme events, hurricanes, etc.) and human interventions (natural resources extraction, wetlands filling, coastal infrastructure construction excluding natural dynamics, habitat loss, water diversion, etc). An increase in the magnitude of extreme events and increasing SLR will accelerate erosion related to natural processes, which currently averages 1.2 m/year (calculated between 1956-2002). This erosion rate poses a danger to communities, infrastructure and natural habitats that are not tolerant to saline intrusion and provide services to landward communities.

Flooding

Coastal flooding as a combination of high rainfall, high sea levels and storm surges has been identified as one of the primary climate change related threats to Cuba. Trends in the frequency of coastal floods during the period 1901-2011 have been observed in Cuba with the past three decades seeing an increase in the occurrence of moderate and strong floods, regardless of the meteorological events that generate them. Specific impacts and the extent of resulting damages depend on local bathymetry and topography, seabed roughness and coastal vegetation coverage and conditions, with the coastal regions of La Coloma- Surgidero de Batabano and Jucaro-Manzanillo being particularly vulnerable.

Hurricanes have also extensively damaged infrastructure. Hurricane Matthew, which crossed the eastern end of Cuba in October 2016, caused USD 97.2 million of damages (approximately 2.66% of GDP), making it the third most devastating hurricane to hit the island in the last decade, only behind Ike (2008) and Sandy (2012), with equivalent costs of USD 293 million (12.05% of GDP) and USD 278 million (9.53 % of GDP) respectively.

Saline intrusion

Saline intrusion into aquifers is the most common and extensive cause of freshwater degradation in Cuba’s coastal zones. Most of these aquifers, located near and beneath the northern and southern coasts, are open to the sea, making them very susceptible and exposed to saline intrusion as a result of SLR, and potentially leading to water that is too saline for human consumption and increasing the salinization of agricultural fields.  It is estimated that approximately 544,300 ha in the area of proposed interventions are already affected by saline intrusion.

Drought

Drought has been identified among the most important climate risks for all Caribbean islands, including Cuba. There has been an increase in drought events in the period 1961-1990 when compared to 1931-1960.  Severe droughts have been increasing in eastern Cuba and are projected to increase in the future. Future projections indicate a general reduction in rainfall by 2070 (particularly along the Eastern Coastline), along with an average reduction in relative humidity between 2% and 6% between 2030 and 2070, respectively. Reduced rainfall occurring mostly during the summer rainy season, with relatively smaller increases in winter and dry season rainfall. This situation adds an increase pressure on the aquifers, which cannot be filled by just one tropical storm, or during the rainy season.

Vulnerability Southern Coast of Cuba, project target site 

Cuba’s coastal ecosystems have been extensively studied through extensive research led by The Ministry of Science, Technology and Environment (CITMA), the Environmental Agency (AMA) and the Scientific Institute for the Sea (ICIMAR). ICIMAR’s research on coastal dynamics and vulnerability is the foundation for Cuba’s National Environmental Strategy (NES) and its State Plan for Facing Climate Change (“Tarea Vida”, 2017) which outlined coastal areas in eminent danger as national priority.

A research-based CC vulnerability ranking (high, medium, and low) was designed considering a combination of factors: geological, geomorphological and ecosystem degradation highlighting that vulnerability to sea-level rise and associated events is higher in the country’s low-lying coasts. Settlements in these areas are more vulnerable to SLR and more likely to be affected by extreme weather events (hurricanes, tropical storms) because of their low elevation, largely flat topography, extensive coastal plains and the highly permeable karstic geology that underlies it; hence more exposed and susceptible to flooding and saline intrusion. These areas have been targeted as the project’s area of intervention, prioritized within “Tarea Vida,” with attention being paid to two coastal "stretches" totaling approximately 1,300 km of coastline and 24 municipalities covering 27,320 km2.

Main localities for direct intervention of EBA include settlements with high vulnerability to coastal flooding, facing saline intrusion and with a contribution to economic life including those with major fishing ports for shrimp and lobster. Settlements with coastal wetlands that represent a protective barrier for important agricultural production areas to reduce the effects of saline intrusion on the underground aquifers and agricultural soils where also considered.

Southern Coastal Ecosystems

Coastal ecosystems in the targeted coastal stretches are characterized mainly by low, swampy and mangrove-lined shores surrounded by an extensive, shallow submarine platform, bordered by numerous keys and coral reefs. In these areas mangroves and marshes could potentially act as protective barriers against storm surges, winds and waves and therefore reduce coastal erosion, flooding and salt intrusion associated risks. These ecosystems can keep pace with rising seas depending on sediment budgets, frequency of disturbances, colonization space, and ecosystem health.

There are numerous reported functional relationships between coastal and marine ecosystems, including sediment binding and nutrient absorption, which combined with water retention, create equilibrium dynamics and coastal stability. Freshwater infiltration is favored by swamp forests reducing saline intrusion risk and organic matter exchange facilitates favorable conditions for healthy seagrass beds and coral reefs. Restoration of these fluxes and connections is required to increase these ecosystems resilience to a changing climate and strengthening their protective role.

Coastal ecosystems and their complex interconnections provide a variety of services to communities, including coastal protection and disaster risk reduction. These services can be enhanced with healthy ecosystems, functional connections and when adequately integrated into land/marine planning policies.

Project focus

The project will focus on actions along Cuba’s Southern Coast that has been selected due its high vulnerability to climate change (open aquifers, low lying coastal plain, degraded ecosystems and concentration of settlements), particularly to storms, drought and sea level rise, which result in coastal flooding and saline intrusion.

Targeted shores cover approximately 89,520 hectares of mangroves (representing 16.81% of the country's mangroves) followed by 60,101 hectares of swamp grasslands and 28,146 hectares of swamp forests. These in turn will contribute to improving 9,287 ha of seagrass and 134 km of coral reefs and their respective protective services.

There is evidence of reef crests degradation which in turn could cause significant wave damage in both mangroves and sea grasses reducing further their ability to offer protection against the effects of CC on the coast of Cuba.

Restoration of degraded red mangrove (Rhizophora mangle) strips along the coastal edges, in stretches 1 and 2, is crucial. During wind, storms and hurricane seasons, the sea has penetrated more than 150 meters inland in these areas, exposing areas dominated by black or white mangroves, which are less tolerant to hyper-saline conditions, potentially becoming more degraded. During stakeholder consultations, communities highlighted the consequent loss of infrastructure and reduced livelihood opportunities (both fisheries and agriculture).

Coastal Stretch 1: La Coloma – Surgidero de Batabanó (271 km – 13,220 km2)

This stretch is made up of  3 provinces (Pinar del Rio, Artemisa and MAyabeque) and 13 municipalities (San Juan y Martinez, San Luis, Pinar del Rio, Consolacion del Sur, Los Palacios, San Cristobal, Candelaria, Artemisa, Alquizar, Guira de Melena, Batabano, Melena del Sur and Guines). The main localities along this stretch are: (1) La Coloma in Pinar del Rio Province; (2) Beach Cajío in Artemisa province; and, (3) Surgidero Batabanó in Mayabeque Province.  

The vulnerability assessment concluded that, by 2100, 5 communities in this stretch could disappeared due to SLR. Extreme events, waves’ strength and salinity have also been identified in this area; hence appropriate adaptation measures need to be in place to reduce the impact.

These risks are being exacerbated by the impacts of ecosystem degradation related to changes in land use, pollution past logging, grey infrastructure and inappropriate measures of coastal protection in the past, urbanization, and the reduction of water and sediments flows.

The impact of saline intrusion into the karstic aquifer is particularly troubling along this coastal stretch with important implications at a national level, as the main aquifer, in the southern basin which supplies water to the targeted coastal communities and agriculture, is also an important source of fresh water to the capital, Havana. To address the issue of saline intrusion in this area, the GoC has experimented with grey infrastructure (The Southern Dike), a 51.7 km levee built in 1991 aiming to accumulate runoff fresh water to halt the infiltration of saline water in the interior of the southern aquifer. The USD 51.3 million investment, with maintenance costs of USD 1.5 million every 3 years and a once-off USD 15 million (20 years after it was built), had a positive effect in partially containing the progress of the saline wedge. However, the impact of the dike resulted in the degradation of mangroves in its northern shore reducing the mangroves function to protect the coastline.

Coastal Stretch 2: Jucaro- Manzanillo (1029 km – 14,660 km2)

This stretch is comprised by 4 provinces (Ciego de Avila, Camaguey, Las Tunas and Granma) and 11 muncipalities (Venezuela, Baragua, Florida, Vertientes, Santa Cruz del Sur, Amancio Rodriguez, Colombia, Jobabo, Rio Cauto, Yara and Manzanillo).The main localities to intervene along this stretch include (1) Júcaro in Ciego de Avila Province; (2) Santa Cruz del Sur in Camagüey Province; (3) Manzanillo in Gramma Province (4) Playa Florida.

The communities in this coastal area are located within extensive coastal wetlands dominated by mangroves, swamp grasslands and swamp forest.

Water reservoirs for irrigation have reduced the water flow towards natural ecosystems, it has also been directed towards agricultural lands altering the natural flow indispensable for ecosystems.

Mangroves have been highly impacted by degradation and fragmentation, which has undermined their role in protecting the beach and human populations from extreme hydro-meteorological events, saline intrusion and coastal erosion. Only 6% of mangroves are in good condition, while 91% are in a fair state, and 3% are highly degraded. Wetlands in the prairie marshes have begun to dry due to a combination of climate drivers and land use management with a direct impact in reducing their water retention and infiltration capacity.

Coral crests of the area’s broad insular platform, have been classified as very deteriorated or extremely deteriorated and it is predicted that if no intervention on the sources of degradation from the island, is made, they will disappear by 2100. Reef elimination will increase communities’ flood risk to potentially settlements disappearing.

Saline intrusion is becoming increasingly significant in this area due to a combination of CC-related SLR and the overexploitation of aquifers.

Climate change vulnerability is exacerbated by construction practices (such as people building small shops and walkways) along the shoreline where fully exposed infrastructure can be found within flood zones, between the coast and the coastal marsh. This situation is aggravated by the limited knowledge of local actors and a false sense of security that was perceived during community consultations.

Baseline investment projects

Traditionally, Cuba´s tropical storms response and management strategies have focused on emergency preparation and attendance rather than on planning for disaster risk reduction. The GoC has successfully introduced early warning mechanisms and clear emergency protocols to reduce the impact of storms in the loss of lives. The development of Centres for Risk Reduction Management (CGRR) has also been successful in mobilizing local actors when storms are predicted to hit ensuring that emergency resources are available to address storms’ immediate impacts. While these are important steps in the face of an immediate emergency, they are insufficient to manage multiple ongoing threats (some of slow consequence of climate change).

In 2017, GoC approved its State Plan to Face Climate Change (“Tarea Vida”) in which identified and prioritized the impacts of saline intrusion, flooding and extreme events to the country coastal zones, focusing strategic actions for the protection of vulnerable populations and of key resources including protective ecosystems such as mangroves and coral reefs. The GoC has begun to look into various strategies to mainstream local adaptation initiatives using existing successful national mechanisms for capacity building and knowledge transfer and international cooperation best practices.

Initial investments made by the GoC have identified the country´s climate vulnerability, including drought and SLR vulnerability and hazard risk assessment maps. The development of the “Macro-project on Coastal Hazards and Vulnerability (2050-2100)”, focused on these areas´ adaptation challenges including oceanographic, geophysical, ecological and infrastructure features, together with potential risks such as floods, saline intrusion and ocean acidification. Cross-sectoral information integration was a key tool to identify climate risks and potential resources (existing instruments, institutions, knowledge, etc) to manage it. While this is an important foundation it has yet to be translated into concrete actions often as a result of lack of technical equipment.

International cooperation has financed projects that have further allowed the GoC to innovate on various institutional mechanisms such as the Capacity Building Centres (CBSCs) and Integrated Coastline Management Zones through active capacity building incorporating municipal and sectoral needs. Table 1 summarizes the most relevant baseline projects and highlights key results, lessons learned, and gaps identified. The proposed project aims to address such gaps, and incremental GCF financing is required to efficiently achieve efficient climate resilience in the target coastal sites.

* Footnotes and citations are made available in the project documents.

Expected Key Results and Outputs: 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

1.1 Assess and restore coastal wetland functions in target sites by reestablishing hydrological processes  

1.2 Mangrove and swamp forest rehabilitation through natural and assisted regeneration for enhanced coastal protection

1.3 Record and asses coastal and marine ecosystems‘ natural regeneration and protective functions based on conditions provided through restored coastal wetlands

1.4 Enhance water conduction systems along targeted watersheds to restore freshwater drainage in coastal ecosystems and aquifers to reduce and monitor saline intrusion in target sites

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

2.1 Develop a climate adaptation technical capacity building program for coastal communities and local stakeholders to enable adaptation actions and capacities

2.2 Integrate project derived information,  from EWS  and national datasets into a Knowledge Management Platform, to provide climate information products to monitor, evaluate and inform coastal communities on local capacity to manage climate change impacts.

2.3 Mainstream EBA approaches into regulatory and planning frameworks at the territorial and national levels for long term sustainability of EBA conditions and investments for coastal protection

Output 3: Project Management

3..1 Project Management

Contacts: 
UNDP
Montserrat Xilotl
Regional Technical Advisor
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

Output 3: Project management.

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
March 2021
Description: 
Project Approval
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Climate security and sustainable management of natural resources in the central regions of Mali for peacebuilding

The proposed "Climate security and sustainable management of natural resources in the central regions of Mali for peacebuilding" project tackles Mali’s interlinked challenges of land degradation and climate change that together threaten the long-term sustainability of vulnerable productive landscapes in the country’s central regions. The proposed project will restore 21,000 hectares of land, implement improved practices in 15,000 hectares, offest 900,000 metric tons of CO2, and reach 150,000 direct beneficiaries (80,000 women and 70,000 men). The project is currently in the PIF stage.

The Republic of Mali is committed to achieving Land Degradation Neutrality, defined by the UNCCD as “a state whereby the amount and quality of land resources, necessary to support ecosystem functions and services and enhance food security, remains stable or increases within specified temporal and spatial scales and ecosystems.” Currently this global challenge is not being met, since the area of Mali over which productivity has been lost in the past two decades far exceeds the small pockets where productivity has been restored, and these trends continue. Evidence is already seen of how climate change and increased climate variability contribute to the desertification and the degradation of ecosystems on which societies depend for food and water security, and projections are that these impacts will worsen over the decades ahead. As anthropogenic and climate impacts shrink the productive natural resource base, so conflicts over land and water intensify, particularly between farming and herding communities, feeding into the ongoing conflict between jihadists and civilian militia.

The proposed project involves strategies that will simultaneously combat land degradation and restore land productivity, help vulnerable communities adapt to climate change, and promote peace-building, with the overarching goal of developing resilient rural communities in Mopti region. The main emphasis of the project is focused on activities on the ground involving communities and their structures, local government, and private sector actors.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-1.4267581770588 18.471272480165)
Primary Beneficiaries: 
150,000 (80,000 women and 70,000 men)
Financing Amount: 
US$7.5 million
Co-Financing Total: 
US$28 million
Project Details: 

Overview

The proposed project tackles Mali’s interlinked challenges of land degradation and climate change that together threaten the long-term sustainability of vulnerable productive landscapes in the country’s central regions. The Republic of Mali is committed to achieving Land Degradation Neutrality, defined by the UNCCD as “a state whereby the amount and quality of land resources, necessary to support ecosystem functions and services and enhance food security, remains stable or increases within specified temporal and spatial scales and ecosystems”. Currently this global challenge is not being met, since the area of Mali over which productivity has been lost in the past two decades far exceeds the small pockets where productivity has been restored, and these trends continue. Evidence is already seen of how climate change and increased climate variability contribute to the desertification and the degradation of ecosystems on which societies depend for food and water security, and projections are that these impacts will worsen over the decades ahead. As anthropogenic and climate impacts shrink the productive natural resource base, so conflicts over land and water intensify, particularly between farming and herding communities, feeding into the ongoing conflict between jihadists and civilian militias.

Addressing interconnected challenges

Demographic pressures and conflict, exacerbated by COVID-19: Mali’s population has been growing at a rate of about 3% per year for the last 15 years, and the current population is estimated at over 20 million. The fertility rate of 5.92 births per woman is one of  highest in the world, and the population is very young, with a median age of 16.3 years. Conflict in the North and Central regions since 2012 has caused significant internal migration, with over 800,000 Malian citizens estimated to be internally displaced, in neighbouring countries, or recently returned in March 2020. Conflict also restricts movement and prevents cultivation of fields located further from the village, worsening the vulnerability of households to food insecurity. Mopti Region saw a rise in conflict in 2019, with the presence of armed groups and self-defence militias, increasing criminality and intercommunal tensions triggering a spiral of violence, reflected in a 25% decline in the area under cultivation compared with the previous year. Before the recent 8 years of conflict, Mopti’s poverty rate at 79% was already much higher than the national average of 43%. A UN report in 2011 highlighted that 59.5% of the population was living on degraded land and only 29.2% had satisfactory water quality, and the conflict years have worsened this situation, as a growing population tries to eke out a living on a shrinking area of productive land, without significant technological investment. Competition over scarce resources further fuels conflict, in a vicious cycle. In this context, the spread of the COVID-19 pandemic in Mali might have a devastating impact for the population. As of late September 2020, Mali had just over 3,000 confirmed cases of COVID-19 infection, with 129 deaths recorded as being due to the virus. These figures are likely an under-reflection of the real situation, given the poor spread of healthcare facilities across large parts of the country, the low level of testing capacity available, the unavailabilty of “excess deaths” data and analysis, and the unreliable system for recording of deaths generally. The Government of Mali has designed a National Action Plan for the prevention and response to COVID-19. Among the measures taken so far, the Mali government has introduced restrictions on travels to and from Mali, suspended public gatherings, requested the closure of all schools, and, on 25 March, a curfew from 21:00 to 5:00 has been decreed, along with the closure of land borders.

Impacts of climate change

Already observed changes in increased temperatures and diminished rainfall are reducing the absolute area of land suitable for food production nationally. During the most humid month of July, the maximum temperature recorded for the period 1961-1990 was 30.5°C, and this is projected to be 32, 5°C by 2050 and 34.5°C by 2100. Data from Mali’s meteorological services demonstrates a southward encroachment of the Sahelian and Saharan climatic and vegetation zones over the past 40 years, as rainfall has decreased. This is in line with recent studies showing that the Sahara Desert has expanded by 10% over the past century, affecting regional food and water security, and also influencing global weather patterns and human health, as huge seasonal dust clouds are carried across the Atlantic as far as Central America. Analysis of Mali’s rainfall patterns over the past 50 years shows a decrease in total rainfall of 19% in the South and 26% in the North, and communities widely report increased inter-annual variability and a more unpredictable monsoon. Studies indicate that historical climate change across West Africa in the period 2000–2009, relative to a non-warming counterfactual condition (that is, pre-industrial climate), accounted for average annual yield reductions of 10–20% for millet (loss of 2.33–4.02 billion USD in value) and 5–15% for sorghum (loss of 0.73–2.17 billion USD). There is significant uncertainty in climate scientists’ rainfall projections for West Africa over the coming decades, but inter-annual variability, which is already high because of the effect of the Inter-Tropical Convergence Zone, is likely to grow, and increased temperatures will enhance evapotranspiration. The recently submitted Mali Climate Risk profile confirms the increase in evapotranspiration (according to RCP6.0, evapotranspiration will increase by 2.4% by 2030, 3.7% by 2050 and 7% by 2070), as well as the decrease in soil moisture (-3.7% by 2080 according to RCP6.0). According to the Mali’s third Communication on Climate Change in Mali (2015), the most plausible climate scenarios for 2100 predict a decrease in rainfall in all localities. The Mali Climate Risk profile report also identifies the risks climate change poses on water resources and agriculture sectors. The report projects an expected reduction in water availability per capita of 77% by 2080 (RCP2.6 and RCP6.0), taking into account the projected population growth. In addition, harvests of important crops such as Maize (-13%), Millet and Sorghum (-12%) and peanuts (-7%) are expected to decrease by 2080 (RCP6.0).

The unreliability of rainfall during the rainy season (June-September) is also projected to increase by 2080-2099, with projected changes between -51mm to +37mm in July, -38mm to +88mm in August and -25 to +88mm in August, significantly impacting the risks of flood. Between 1980 and 2012, Mali already experienced six major droughts and two major floods, and the country is likely to see an increase in these disaster types, as well as stronger winds, sand and dust storms, and bush fires, and larger and more frequent locust swarms. More intense rainfall events are predict to increase flash floods in the inland Niger Delta and along river floodplains. Without effective adaptation strategies, many models predict significant decreases in central and northern Mali in both water availability and yields of staple crops rice, millet and sorghum; for example, the Mali NAPA analysis predicts significant losses in staple crops as early as 2025. The central / Sahelian region is most sensitive to changes in rainfall, and households derive over 70% of their income from the land, making them highly vulnerable. A vulnerability mapping study showed over 90% of the Mopti Region as high or very high vulnerability, as defined by a combination of high biophysical exposure to climate impacts, high socio-economic sensitivity and low adaptive capacity.

Poor land management: Mopti Region, where the project focuses, is in the Sahel zone and contains arid and semi-arid ecosystems, as well as the fertile inland delta of the Niger River. Outside of the delta, the natural vegetation is mostly steppe grassland or tree and shrub steppe with Acacia species dominant and other trees like Combretum and Boscia. Mopti is characterised by widespread degradation of natural ecosystems because of unsustainable practices – including overgrazing by livestock, over-extraction of woody vegetation for fuel, removal of natural vegetation to expand crops, and uncontrolled bushfires (sometimes accidentally spread when using fire to clear land). Loss of vegetation allows valuable topsoil to be eroded by wind and rain, resulting in serious sand encroachment in the northern Sahel, and siltation of waterways in the Delta zone. Extreme temperatures and overgrazing cause hardening of the top layers of soil, preventing infiltration of rainwater, furthering the loss of vegetation, and worsening unexpected floods. The area covered by woodland, estimated at 10.1% of the country in 2008, is continually declining. Recent estimates from the National Directorate of Water and Forests show the disappearance of 450,000 to 500,000 ha of woodland per year.The Sahelian zone is identified in Mali’s LDN Country Report as a hotspot of land degradation. Rainfed cropland productivity is also declining – with intermittent localized droughts, and declining soil fertility from shorter fallow periods combined with low use of inputs. Land degradation can also influence local and regional micro-climates, through the albedo effect and alterations in moisture transfer between land surface and the atmosphere.

Poor water management: With increased variability in rainfall and localized droughts, villages in the north and centre of Mali need adaptation strategies to maximize water availability for drinking, sanitation, livestock and crop irrigation. At present, there are parts of Mopti in and around the inland Niger Delta where significant groundwater potential exists, but is not sustainably exploited. There is also inadequate capture of surface water through small dams and rainwater harvesting. In recent years with changing rainfall patterns, Mali’s southern regions have experienced flooding, including flash floods in Bamako in 2013 causing loss of life and displacement of 20,000 people. In the Delta, unexpected high floods have also caused damage, but the opposite problem of insufficient expected, manageable flooding also exists. Seasonal flooding of the massive delta area (comparable only with Okavango) is the basis for irrigated rice, fishing and grazing (as well as a Ramsar Site and important global site for migratory birds), but the inundated area has shrunk from over 35,000 km2 each year to sometimes as small as 10,000 km2 under drought conditions. Underlying this is a decline in the Niger’s average flow – which fell from 1,300 m3/second in 1978 to 895 m3/second in 2002.  Irrigated cropland is subject to problems of leaching and alkalization of soils, and the spread of invasive plants, as well as ineffective management to combat siltation. As vegetation is lost in upstream watersheds, erosion of banks is causing massive siltation of rivers, channels and ponds, especially in the Niger downstream from Bamako and the Delta.

Addressing these root causes of land degradation and likely impacts of climate change and variability requires a coordinated and scaled up effort across Mali. But this is difficult to undertake at a time when government is still battling to stabilize the country, to decentralize and deliver services throughout the fragile central and northern regions, made even more challenging since the political instability at national level in 2020. Since 2012, Mali has faced ongoing conflict, at times caused or worsened by competition over scarce land, water and grazing resources, particularly in the Mopti Region. The government signed a peace accord with northern separatist rebels in 2015, but armed groups continue to assert territorial control in much of the vast desert north. At the same time, Islamist insurgent groups have expanded from the north into previously stable central Mali, allegedly leveraging interethnic tensions and local resentment toward state actors to recruit supporters and foment conflict.

In 2019 Mopti faced a dramatic deterioration of its security situation, with hundreds of recorded violations of human rights and international humanitarian law. The presence of armed groups and self-defence militias, increasing criminality and intercommunal tensions triggered a spiral of violence, leading to a loss of livelihoods for displaced populations, and difficulties in cultivating fields and accessing markets for those who have remained in their villages. A perceived inability to curtail massacres of civilians is one of the issues highlighted in anti-government protests in recent months in Bamako, leading to the forced resignation of President Ibrahim Keita on 18 August 2020. Conflict analysis of Mopti Region shows that rising levels of insecurity led to approximately 1,300 fatalities and tens of thousands of internally displaced people across the region in 2019 only. According to the World Food Programme analysis of the Mopti security situation up to April 2020, in a context already made fragile at many levels – an economy marked by mounting demographic pressures, youth unemployment, soil degradation or scarcity of natural resources, exacerbated by repeated droughts intensified by climate change, the impact of violence on food security is highly threatening: displaced communities lose their livelihoods and those remaining in their villages experience difficulties in cultivating fields and accessing markets.

The proposed project aims to ensure the long-term sustainability of vulnerable productive landscapes in Mali’s central region of Mopti, through nature-based solutions that reverse land degradation, strengthen communities’ resilience to climate change impacts and to conflict that is worsened by climate change. These nature-based solutions will follow the principles of conflict-sensitive adaptation –  critical in areas where there is high dependence on natural resources and in already fragile (politically, socially, economically, environmentally) contexts. International literature on the Sahel shows that the region is both very vulnerable to the physical effects of climate variability and to communal conflicts, the dynamics of which in turn seem to be sensitive to climate variability.

Because of this fragile context, the project preparation phase and final site selection process will involve using consultants with in-depth local cultural as well as agro-ecological knowledge to undertake a detailed scoping of conditions on the ground and consultations with a wide range of stakeholders at local level (following COVID-19 protocols), and particular attention will be paid during the PPG to: (i) the design and resourcing of measures to mitigate security-related risks likely to be faced during project implementation (ii) measures to ensure that the root causes of conflict relating to competition over access to scarce (and declining with climate change) natural resources: and (iii) use the Environmental and Social Management Framework to ensure that conflicts are not inadvertently sparked by project interventions. The vulnerability assessment and mapping process planned for Component 1 will include the application of a security sensitivity framework. The proposed interventions are also built on an analysis of the interdependencies of these challenges  that builds on the RAPTA (Resilience, Adaptation Pathways and Transformation Assessment) methodology developed through the STAP, which highlights a systems view of food security, as dependent on availability of adequate and nutritious food to households in the district, access to adequate and nutritious food, utilization of this food by individuals in a house-hold , and the stability/resilience of the availability, access and utilization of food in the face of shocks and stresses, over time.  The first, second and last of these factors are severely affected by the conflict situation in the Mopti Region, and are further compounded by increasingly erratic rainfall and creeping desertification. Specific barriers to achieving the project’s objective are as follows:

Barriers

Barrier 1: Lack of coordination and capacity for implementing and monitoring environmental agreements

Mali has a fairly comprehensive set of national policies, laws and strategies for achieving its international environmental commitments (including UNFCCC, UNCCD and CBD) . Some interministerial cooperation has been achieved around climate change adaptation through the AEDD, but the mainstreaming of resilience principles into sectors like agriculture, water and forestry, as envisaged in the 2007 NAPA, has not been effectively achieved. This is partly because of the ongoing security situation, the uneven presence of state institutions across the country, and the challenges of decentralization – which has built capacity at regional and cercle (district) levels, but has also caused confusing overlaps between local government and traditional authorities over natural resource management. In addition, Mali’s Land Degradation Neutrality country report to the UNCCD identifies a number of weaknesses that constrain effective implementation of policy, including: institutional conflicts between national directorates and specialized agencies of MEADD and other ministries; difficulty in inter-ministerial coordination around LDN and low-emission climate-resilient development, with significant overlaps in mandates; weak consultation between the focal points of the Rio Conventions, and a lack of monitoring and evaluation mechanisms for consultations upstream of major national and international forums. These challenges are compounded by a high turnover of officials in AEDD and other key agencies. Mali has recently set overall targets for achieving LDN by 2030, through actions to reduce forest loss, regreen woodland and grassland areas, restore soil fertility, and protect wetlands. Still missing is the identification of key indicators (in most countries these are: (i) land cover and land cover change, (ii) land productivity and (iii) soil organic carbon), agreement how these will be measured and monitored, setting of baselines and targets, and then a detailed implementation plan for the actions required. Although climate vulnerability mapping has featured in some donor-funded projects, there is no long-term system for regular assessment and mapping nationwide, or for ongoing analysis of the links between security and climate change risks. Challenges identified in the 2019-2021 budget framework for MEADD include “the establishment of a monitoring system and continuous surveillance of the environment and the dynamics of forest and wildlife resources”.  Much data and monitoring capacity exists in Mali, scattered between different government departments and agencies, research institutes and universities, but there has been little coordination, and reporting on Mali’s progress to the MEAs is not done in a coherent and integrated fashion.

Barrier 2: Lack of a systemic approach to enhancing resilience of degraded production landscapes

There is a need for landscape restoration interventions to be piloted, adapted for local context and scaled up across the country, utilizing existing processes for cross-sectoral climate change adaptation planning for economic sectors, wherever possible. Mali,  and particularly the Mopti Region, has complex, interlinked socio-ecological systems built around grazing, farming and fishing that are increasingly vulnerable to climate impacts[6]. A number of donor-funded projects and programmes have tackled the challenges of restoring the productivity of land and water systems, and helping communities develop their capacity to adapt to the unavoidable impacts of climate change. What is missing, however, is a systemic approach that aligns such interventions within an overall strategy (see Barrier 1 above). Sectors of government, such as agriculture, economic development, livestock, fisheries, water and forestry, have limited budgets and little presence on the ground in the central regions. Where they are engaged in development activities, this tends to be sporadic and isolated, and interventions are not based on a systemic understanding of climate and other risks across the landscape, and how these can be managed in an integrated fashion. For example, a new pond may be dug, but no effort made to stabilize the river banks upstream, leading to the pond quickly silting up. In the central regions, with limited government presence, land use decisions are taken by local actors such as village chiefs, and there is no systematic land use policy or planning. There is a need to work with the resources that do exist on the ground and strengthen local governance of natural resources in a manner which enhances climate resilience, promotes peace, and allows for social inclusion and equity. Community NRM structures need to cooperate with customary mechanisms and committees to negotiate agreements between herding, farming and fishing communities on boundaries for grazing and farmland, access to pasture and water, timing and regulated migration. They also need to feed into local government land use and development planning, through the Economic, Social and Cultural Development Plans of target cercles and communes. Technical training and support in accessing inputs is also needed for farming households (including women-headed households) to adapt farming practices to climate change, and restore land productivity through regeneration of tree cover in farmlands, and sustainable land and water management techniques, building on traditional knowledge and local preferences. Although donor-funded projects have led to some communal rehabilitation works to restore land and water resources (e.g. desilting water infrastructure, stabilizing dunes to prevent sand encroachment) and develop new water sources in a sustainable basis, there is a need for this work to be better coordinated, and scaled up, with work opportunities created especially for youth and internally displaced people.

Barrier 3: Insufficient support for households and communities wishing to diversify their production activities

As the changing climate puts increasing pressure on the natural ecosystems on which traditional livelihoods such as fishing, livestock-keeping and cereal-crop farming depend, there is a need to (i) adapt these practices to changing conditions, (ii) diversify into other activities which are less directly dependent on these fragile ecosystems, and (iii) generate cash income so households can buy the food and materials needed for enhanced resilience. This is particularly true in the central and northern regions, and it is here that government agencies have the least presence on the ground, which makes achieving effective agricultural extension support a challenge. In this context, there is a need for projects and programmes funded by government’s technical and financial partners to fill some of the gaps in the short term, and to help build government extension capacity for the longer term. At present, agricultural extension services are limited, and concentrated in the cotton-producing regions of the south, not in the mostly subsistence-oriented farmers in the central regions, whose agricultural yields are highly vulnerable to climate change, and who have little opportunity for diversification. Although there is potential for value-add activities e.g. processed products from fish grown in aquaculture ponds, or processed millet with a longer shelf, communities lack training on new opportunities, micro-finance and access to markets. There is also a lack of access to electricity for processing agri-products, and for cold storage, and while solar water heating is widespread, photovoltaic technology is more expensive and complex, and communities lack skills to install and maintain equipment. Although government has a number of programmes to support youth entrepreneurs, in practice access to opportunities has tended to be limited to young people in urban areas whose families have government connections. Such initiatives have generally focused on individuals involved in trading, and have not facilitated real entrepreneurial growth and job creation. There is a need to learn from the more successful initiatives (e.g. TETILITSO and DoniLab) and create links to these for emerging entrepreneurs in rural areas, including women, young people and internally displaced people, all of whom may have limited direct access to productive assets, but can get involved in value addition and new value chains. There is a particular need to support organizations for widowed women, who sometimes receive local government support, but are often left without access to land or productive assets because of discriminatory legislation and customary practices. Access to regular commercial loan finance is near-impossible for many rural entrepreneurs, especially youth and married women, but progressive microfinance opportunities do exist (e.g. APPIM, PMR) and even loan guarantees for promising projects (FGSPSA, ANPE’s FARE Fund), and need to be made accessible.

Barrier 4: Few opportunities for sharing learning across initiatives for evaluation and national scale-up

Although there is a large number of recent and current initiatives (see Section 2 below), and these initiatives do  monitor their own progress, there is little systematic effort to share learning between initiatives. (These include initiatives that address stabilization and peace-building, planning for climate change adaptation, early warning systems and flood protection, resilience of rural communities, integrated water resource management, biodiversity conservation, sustainable land and water management, and entrepreneurship and economic development.) There is also a tendency for pilot or demonstration activities carried out in a particular area to remain limited to that area. Regional platforms which were established to promote climate change adaptation across sectors have been successful while project funding lasts, but have not managed to sustain themselves thereafter. There is a need to harmonize and rationalize the knowledge management activities of a set of related initiatives that are important for achieving LDN and climate security. Related to Barrier 1, there is a need for agreement on ways to measure progress, so that the efforts of disparate initiatives can all be matched up against national targets. There is also much untapped potential for sharing the lessons of Mali’s Sahel zone with those of other countries – northern Senegal, southern Mauritania, northern Burkina Faso, southern Algeria, southwestern Niger, northern Nigeria, central Chad, central Sudan and northern Eritrea. There are a number of international initiatives under the umbrellas of the African Forest Landscapes Restoration Initiative (AFR-100) and the Great Green Wall which are generating learning about best practice, and effective and cost-effective ways of combating desertification in this region. In recent years, with the difficult security situation in Mali, lessons from Mali are not being shared optimally with the rest of the region and in international fora, and there is a need to create such opportunities. There are also barriers to effective monitoring and evaluation of donor-funded projects in Mali – because of the constraints under which many project management teams operate, evaluation is often limited to measuring the outputs of a project, and not finding creative ways to assess its overall impact; what really worked and what didn’t, and why; and how the positive impacts can be sustained and scaled up. Project monitoring is also rarely linked in to long term development of monitoring capacity at regional and national levels for purposes of MEA reporting.

Project overview

The proposed project involves strategies that will simultaneously combat land degradation / restore land productivity, help vulnerable communities adapt to climate change, and promote peace-building, with the overarching goal of developing resilient rural communities in Mopti region. The main emphasis of the project, and the bulk of the proposed resources, are focused on activities on the ground involving communities and their structures, local government, and private sector actors – through Components 2 and 3. The project interventions in Component 1 support the on-the-ground efforts of Components 2 and 3, through creating an enabling environment that supports strategies for restoration of land productivity and climate change adaptation, and sets a baseline for and tracks changes in communities’ climate change vulnerability and adaptive capacity. The project is very timely because the country has recently developed its programme for defining national targets for Land Degradation Neutrality, and is ready to enhance coordination for implementation of adaptation and re-greening strategies, and for tracking progress towards achievement of land degradation neutrality and climate security. In this alternative scenario, an LDN action plan is developed across all economic sectors for achieving the targets, and a monitoring system is set up – building on existing data to review and agree on baselines, targets, indicators and means of measurement. The project activities in Component 4 enable knowledge platforms for replication and scale-up, facilitating learning within and beyond Mopti Region, and sharing of lessons learnt with other countries of the Sahel zone. They also equip youths in Mopti to support on agroecological monitoring of project results and impacts, which can be fed back through the IER into the national action plan as a pilot for monitoring.

In this alternative scenario, significant resources are invested through the project in building resilience of highly vulnerable communities of Mopti to the impacts of climate change, in particular drought – expected to become more frequent and serious as a result of climate change, on top of human-induced degradation of agro-ecosystems. Since the nett result of these climate and anthropogenic effects is a shrinking of productive capacity, the focus in the alternative scenario is on project interventions that restore and enhance productive capacity – in the process also reducing competition over natural resources and enabling adaptation to climate change. In Component 2, there is an improvement in local governance through developing capacity of community natural resource management committees. This improved governance enables better decision-making on land use, including access to pastures and water – so that conflicts are avoided and natural regeneration of productive capacity is enabled. The component also involves intervening on the ground to: (i) restore crop / agroforestry productive capacity through equipping small-scale farmers to regreen their farmlands; (ii) maximize crop / agroforestry land productive capacity though supporting farmers on climate-smart agriculture and aquaculture; and (iii) restore pastureland productive capacity and water resources through communal restoration by the village-level committees.

As part of the alternative scenario there is a need to provide inputs on a sustainable basis to climate-smart agriculture, and to enable market access for its products. Selling climate-smart agricultural produce and value-added products will bring new income streams into households, and provide cash that can be used to improve nutritional status and strengthen homes against disaster. Such enhanced and diversified household incomes are important for building resilience against external shocks and stresses of all kinds – including civil conflict and climate hazards. In Component 3, technical assistance is provided for establishing cooperatives businesses involving youth and women. Some businesses may develop inputs for climate-smart agriculture, such as liquid fertilizer or agroforestry seedlings. Other businesses may enhance the economic sustainability of the climate-smart agri- and aquaculture by adding value to its products, e.g. primary processing of drought-resistant millet, or fish drying and smoking, and selling these products on local markets. Component 3 will also facilitate the incubation of sustainable youth-led businesses that can enable the productivity-enhancing adaptation strategies of Component 2, for example, businesses that enhance the supply of water for dry season vegetable irrigation, or energy for primary agri-processing activities at village level. Some youth might develop business concepts for more sophisticated levels of processing, for example, turning millet into snack foods, porridge, wine, nutrition powder or poultry feed. Scholarships will also be provided for local youth to obtain the skills for manufacture and maintenance of these technologies, where appropriate.

As part of the alternative scenario, climate change adaptation co-finance from financial and technical partners of the Government of Mali will contribute to enhancing resilience of degraded production landscapes through rehabilitation efforts, including a GCF program on climate change adaptation in the Niger basin (including Mopti) and two partnerships with the government of Canada through FAO on climate-resilient agriculture for food security. A project also funded by Canada, through IFAD, on access to finance for agricultural value chains, including in the central regions, will support the GEFTF/LDCF project’s Component 3, which aims to develop capacity of farm households to innovate and adopt resilient and sustainable livelihoods. Pression with private sector partners agreed business incubation hub is proposed for Output 3.2, supporting youth on climate-smart agri business incubation and technology for adaptation. An investment by the government of Monaco on women’s livelihoods will support Output 3.1 on building household adaptive capacity through supporting value chains for climate-resilient crops and products.

Activities in Components 2 and 3 of the project will be focused in three target landscapes in Mopti Region. These landscapes, to be made up of clusters of Communes (rural municipalities), for example across a micro-watershed, may be focused in any of the 8 Cercles (districts) of Mopti Region, and the exact target landscapes will be selected during the PPG phase. At that time, a security analysis will be conducted to understand the extent to which the security situation in specific Cercles enables or prevents the carrying out of project activities. Depending on the security situation, a case could be made for focusing on the three Cercles of Youwarou, Douentza and Koro. These three cercles are the districts of Mopti where studies show that communities are most vulnerable to the impacts of climate change. This includes studies by GIZ undertaken in 2019, confirming the findings as indicated on the map below – from a detailed climate vulnerability analysis conducted through USAID in 2014 (northern part of country not included due to low population density). This map shows cumulative results for vulnerability, using various indicators for (i) biophysical exposure to climate hazards, (ii) socio-economic sensitivity, and (iii) adaptive capacity. The three cercles also include two of the five natural regions of the Sahel identified as hotspots of land degradation in Mali’s 2020 Land Degradation Neutrality Report – the Gourma hotspot, and the Gondo-Mondoro hotspot. The Youwarou Cercle also includes a portion of the inland Niger Delta which is flooded annually and provides critical seasonal resources for hundreds of fishing, farming and pastoralist communities. The delta zone is highly vulnerable to climate change and human-induced degradation, and simultaneously forms the poses an enormous asset for the Mopti Region in building resilience. The precise clusters of communes (target landscapes) to be involved will be decided during the project preparation phase, since travel has not been possible during the COVID-19 pandemic.

Strategy and action framework for response to the COVID-19 pandemic: In the alternative scenario, the project contributes to the Government’s response to the pandemic, supported by the United Nations (UN) and other financial and technical partners. According to a rapid analysis by the UN Country Team of the socio-economic impacts of COVID-19 in Mali, the indirect socio-economic impacts are likely to be even more devastating than the direct health effects. The study, conducted in May 2020, observed a sharp loss of jobs in the secondary and tertiary sectors of the economy, and reported that 4 million children were estimated to be out of school. The study’s projections for the country as a result of global economic slowdown include: a decline of 0.9% in GDP for 2020 (as against 5% growth in 2019), an increase of the number of people living in extreme poverty by 800,000, an increase in the need for food assistance by 70%, and loss of state revenue causing the debt burden to increase from 39% to 45% of GDP.

During the PPG, the UNDP Mali Country Office will support the consultant team to conduct regular assessments of both the security situation and COVID-19 pandemic impacts in the country, and specifically in Mopti Region, and to put in place appropriate measures to ensure the safety of all stakeholders involved in project design and implementation. This will take into account (i) what impact the pandemic (or measures to contain it) has had on government capacity/resources to implement the work proposed in the project (or other baseline initiatives), either at the enabling level or practically; (ii) how targeted project beneficiaries have been affected (e.g. disruption of supply chains, price increases etc); and (iii) how will implementation be affected if there is recurrent outbreaks of this or other diseases during implementation.

The proposed project strategy is to contributes in two ways to assisting the Government of Mali with a “green recovery” from the pandemic, building on UNDP’s support to Government, and on the Government’s commitment of new resources for social protection, corresponding to 1.3% of GDP. This strategy responds to the guidance document “GEF’s Response to COVID-19”, and has a dual action framework including for alignment of the project goals with the response and recovery strategies: 

1. Actions to support COVID-19 response in the short-term: The proposed project has been designed to maximize opportunities for job creation and training, local economic development, and productivity improvements, as follows:

Job creation through small business development: In Output 3.2 of the project, youth-led climate-smart agribusinesses, technologies and services are developed. This includes work to: (i) provide opportunities for local youth from target communities to receive entrepreneurship training in existing incubator programmes in Mopti city; (ii) promote access to loan finance and loan guarantees for youth with solid business plans and family/community backing – in agri-processing and climate-smart technologies. In Output 2.2, training is provided in 9-12 target communes in Mopti to develop farmers’ capacity for Assisted Natural Regeneration and other Sustainable Land and Water Management (SLWM) techniques, building on traditional knowledge and local preferences.

Productivity improvements: In Output 2.2 of the project, technical and financial support are provided to farming households (including women headed households) to adapt farming practices to climate change, and restore farm productivity. This includes work to: (i) form agro-ecological farmer’s groups / Farmer Field Schools, including women farmers, and establish demonstration plots for train-the-trainer activities; (ii) provide heads of households (male and female) with regeneration incentive package (e.g. shears, pickaxe, wheelbarrow, boots and gloves); and (iii) promote climate-smart agriculture – including new drought-resistant local crops/varieties, improved pest management, fodder and fruit trees, and dry season gardening schemes, providing training and equipment, (e.g. seeds, seedlings, polyethylene bags, watering cans and spades).

2. Actions to support COVID-19 response in the long-term: The proposed project has been designed to maximize opportunities for strengthening supply chains, consistent with long-term decarbonization targets, and increasing natural and economic resilience and adaptive capacity, as follows:

Strengthening supply chains: In Output 3.1 of the project, new value chains for climate-resilient crops and processed products are identified and catalyzed. This includes work to: (i) empower organizations of widowed women with climate-smart business and leadership training; (ii) support / establish women producer associations and cooperatives of youth and displaced people e.g. for processing of cereal crops, fish drying and smoking, liquid fertilizer, seedling nurseries etc., conducting value chain analysis and market studies with them; and (iii) support set-up and first two years of operation of cooperative climate-smart businesses – including partnerships for land and infrastructure, technical training and business planning, market access and savings groups/micro-credit.

Supporting long-term decarbonization targets: Output 3.2 of the project involves creating scholarships for local youth to be trained in supply and maintenance of solar PV technology for adaptation activities (water pumps and agri-processing for adaptation). Solar power also support low-emissions development strategies and decarbonization targets as part of the post-COVID green recovery.  

Increasing natural and economic resilience and adaptive capacity: In Output 2.4 of the project, land and water resources (outside of family farms) are restored through communal restoration works for ecosystem-based adaptation. This includes work to: (i) train community resource management committees and community members, including youth and displaced persons, to analyze adaptation needs, and to plan, carry out and monitor rehabilitation efforts; (ii) equip commune / village-level committees and carry out plantings for rehabilitation of pastureland and protection of villages from sand encroachment; (iii) equip committees to develop and sustainably restore watercourses (channels, rivers, ponds, pools) and carry out rehabilitation works; and (iv) equip committees to construct/rehabilitate communal earth dams, and wells with solar PV-powered pumps, to increase household water supply and irrigation (for Output 2.1).

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Enhancing coordination and monitoring for land degradation neutrality and climate security. The planned outcome of this component is that capacity is improved for national coordination and monitoring, to achieve implementation of Land Degradation Neutrality targets. Given the current high level of uncertainty around the political transition in Mali, the AEDD will be supported on this component by the Mali Geographic Institute (IGM)[1] and the Institute of Rural Economy (IER)[2]. These institutes will be responsible respectively for undertaking capacity needs and gap analyses, and designing capacity development interventions on two fronts: for preparing climate risk and vulnerability assessments and maps (LDCF) and for achieving and monitoring targets for Land Degradation Neutrality (GEFTF). This will involve work at national level around LDN targets, building on existing data to review and agree on baselines, targets, indicators and means of measurement / monitoring, and enable long-term monitoring plots through unlocking research partnerships. Following global trends, indicators may focus on the three core areas of land cover and land cover change, land productivity and soil organic carbon[3]. Over the six-year project period, training will be conducted at regional levels in all of Mali’s 8 regions for climate vulnerability assessment and mapping. This component will link to Component 4, where youth monitors will be trained in the target landscapes of Mopti to pilot “bottom-up” monitoring that can feed into the “top-down” national monitoring through satellite data.

Output 1.1: Action plan for achieving and monitoring targets for Land Degradation Neutrality (GEFTF)

    Conduct survey to assess government and partner capacity for implementing strategies and actions for LDN, and enforcing relevant legislation

    Undertake review of natural resource legislation to harmonize and address gaps for effective management and restoration, including potential tree tenure reform as the basis for effective Assisted Natural Regeneration (ANR)[4]

    Hold a series of workshops led by Mali’s Institute of Rural Economy (IER) with government (national, regional, cercle[5] levels represented), research and civil society partners to develop an action plan for achieving and monitoring targets for Land Degradation Neutrality

Output 1.2: Regional biennial climate risk and vulnerability assessments and maps developed, with an application of security sensitivity framework (LDCF)

    The Mali Geographic Institute (IGM) to work with Météo Mali to develop a common methodology for measuring the vulnerability and adaptive capacity of communities to climate change, building on existing initiatives[6]

    Conduct training for youth from all 8 regions to carry out assessment, with household surveys and ground-truthing of maps

    Carry out a biennial climate change vulnerability assessment and mapping across all 8 regions of Mali

    Report results to the public, analyzing links between security and climate change risks, and providing a spatial risk analysis with recommended mitigation and governance actions

Component 2: Enhancing resilience of degraded  production landscapes with communities vulnerable to climate change. The planned outcome of this component is that productivity is restored and yields increased in vulnerable grazing,  farming and fishing landscapes through effective community management in three target landscapes of Mopti Region, potentially in the highly vulnerable cercles of Youwarou, Douentza and Koro (to be finalized and specific sites to be determined in PPG). The component involves the clusters of work outlined below – strengthening natural resource management through capacitated community committees structures and agreements between herders and farmers; supporting farmers to undertake climate-smart agriculture and regreening efforts on their land; and undertaking communal restoration works for grazing land and water resources. The agriculture and agroforestry activities here will also be linked to small business development in Component 3, prioritizing opportunities for women and youth. There will be further discussions with stakeholders in local government and communities level during the project preparation phase, to achieve an understanding of communities’ adaptive capacity and needs, any underlying sources of competition or conflict, and what would work in a particular socio-ecological system, ensuring that specific project interventions are carefully designed to promote peace and reconciliation between communities in target landscapes in Mopti, and to avoid unintentionally feeding into underlying tensions or conflicts – applying a conflict-sensitive adaptation approach. 

 

Output 2.1: Community natural resource management committees are established and adaptation actions are embedded in local development plans (GEFTF)

    Undertake baseline survey and annual update with communities in 9-12 target communes in Mopti[7] on climate vulnerability, adaptive capacity, production practices and livelihood activities, and household income, using this as a pilot for national system

    Integrate community land management for adaptation and rehabilitation into the Economic, Social and Cultural Development Plans and budgetiung frameworks of Cercle Councils and Commune Councils[8]

    Build new or redynamize existing community resource management committees at village level[9], involving women and youth

    Use customary mechanisms and committees to negotiate, formalize and uphold agreements between herding, farming and fishing communities on boundaries for grazing and farmland, access to pasture and water, timing and regulated migration, and NRM[10] agreements (including pastoral corridors)

Output 2.2: Training and inputs provided to farmers in 9-12 target communes in Mopti for regreening of farmlands (GEFTF)

    Provide training to develop farmers’[11] capacity for Assisted Natural Regeneration[12] and other Sustainable Land and Water Management (SLWM)[13] techniques, building on traditional knowledge and local preferences

    Form agro-ecological farmer’s groups / Farmer Field Schools, including women farmers, and establish demonstration plots for train-the-trainer activities

    Provide heads of households (male and female) with regeneration incentive package (e.g. shears, pickaxe, wheelbarrow, boots and gloves)

Output 2.3: Capacity development programme for climate-smart agriculture delivered to farm households in target communes (LDCF)

    Provide training and inputs[14] – including new drought-resistant local crops/varieties, improved pest management, fodder and fruit trees, and dry season gardening schemes

    Advocate for climate-smart agriculture and SLWM through developing and piloting in local languages: a radio programme, a short message service for farmers, a capacitated network of traditional communicators, and materials for schools

Output 2.4: Communal restoration work undertaken over 21,000 hectares of degraded grass/shrubland and wetlands (LDCF)

    Train community resource management committees and community members, including youth and displaced persons, to analyze adaptation needs, and to plan, carry out and monitor rehabilitation efforts

    Equip commune / village-level committees and carry out plantings for rehabilitation of pastureland and protection of villages from sand encroachment

    Equip committees to develop and sustainably restore watercourses (channels, rivers, ponds, pools) and carry out rehabilitation works

    Equip committees to construct/rehabilitate communal earth dams, and wells with solar PV-powered pumps, to increase household water supply and irrigation (for Output 2.1)

Component 3: Supporting family farms, youth and women to innovate and adopt resilient and sustainable livelihoods. The planned outcome of this component is that rural households and community-based organizations enhance their resilience to conflict and climate change by restarting and diversifying productive activities and businesses that spread household risk, whilst simultaneously provide inputs to climate-smart agriculture, or adding value to climate-smart agricultural products. The component involves two clusters of work outlined below – (i) supporting the strengthening / establishment of small agri-businesses and cooperatives at village level, (based on the enhanced and diversified production stimulated in Component 2); and (ii) linking these to value chains beyond the village through targeted support to youth entrepreneurs. Further discussion will be held with stakeholders in the private sector, government and civil society during the project preparation phase, including scoping of potential in particular target landscapes, and what partnerships can be forged with agribusiness innovation hubs, and providers of micro-finance and technical training in Mopti city.

Output 3.1: New cooperative climate-smart businesses established involving women, youth and displaced people (LDCF)

    Empower organizations of widowed women with climate-smart business and leadership training

    Support / establish women producer associations and cooperatives of youth and displaced people e.g. for processing of cereal crops, fish drying and smoking, liquid fertilizer, seedling nurseries etc., conducting value chain analysis and market studies with them

    Support set-up and first two years of operation of cooperative climate-smart businesses – including partnerships for land and infrastructure, technical training and business planning, market access and savings groups/micro-credit[15]

Output 3.2: Entrepreneurship training and business incubation services provided to youth from target landscapes for adaptation-linked business ideas (LDCF)

    Provide opportunities for local youth from target communities to receive entrepreneurship training in existing incubator programmes in Mopti city

    Promote access to loan finance and loan guarantees for youth with solid business plans and family/community backing – in agri-processing and climate-smart technologies

    Create scholarships for local youth to be trained e.g. in maintenance of solar PV systems (supporting adaptation activities)[16].

Component 4: Monitoring and evaluation and knowledge management for upscaling. The planned outcome is that project impacts are monitored and learning shared for scale-up of results across Sahel regions of Mali, and beyond. This involves two proposed outputs, with indicative activities for further discussion with stakeholders in national and regional government agencies, research institutions, development partners and civil society. The two clusters of work are outlined below – (i) creating platforms for scaling up the project learning across Mali and the Sahel; and (ii) facilitating learning exchanges and training of youth to feed into a monitoring system, both for the project, and also feeding into the implementation and monitoring of the LDN action plan in Component 1.

Output 4.1: Knowledge platform operational for coordination and lessons sharing among stakeholders at commune, cercle, region, national and international levels (GEFTF)

    Establish a knowledge platform with online and face-to-face elements, including project stakeholders and all related initiatives (peace-building, adaptation, mitigation, sustainable agriculture etc)

    Hold annual multi-stakeholder dialogues through the platform in target Cercles and Mopti Region to address interrelated challenges of SLWM, peace and climate security

    Host a national learning event[17] on Climate Security and Sustainable NRM to share learning from project, inviting participation by other conflict-affected Sahelian countries[18] to promote South-South engagement

    Produce a lessons learnt publication and series of short videos and use these as basis for participation by Mali in international forums to disseminate lessons learnt

Output 4.2: A participatory M&E and learning framework is developed and implemented for project as a whole (including sites for Component 2 and 3 activities) (LDCF)

    Develop, implement and monitor youth and gender action plans for project

    Arrange learning exchange visits to share experiences in climate change adaptation and agro-ecological restoration between target villages, communes and cercles

    Operationalize the mechanism for monitoring changes in agro-ecological ecosystem condition, adaptive capacity and resilience in the Mopti region, including training and equipping youth monitors who feed data back via the Institute for Rural Economy to the national LDN action plan

_____________________________

[1] The Mali Geographic Institute (IGM) is in charge of the production, maintenance and diffusion of geographic reference information in Mali, including on land cover, land use and land degradation.

[2] The Institute of Rural Economy (IER) is the main research institution in Mali for the implementation of the national agricultural research policy, covering all of Mali's agro-ecological zones, and addressing climate change vulnerability and adaptation strategies.

[3] UNCCD (2016) Scaling up Land Degradation Neutrality Target Setting - from Lessons to Actions: 14 Pilot Countries’ Experiences

[4] Assisted Natural Regeneration (ANR) or la Régénération Naturelle Assistée (RNA) is the term used in Mali for Farmer Managed Natural Regeneration (FMNR), as the most successful proven technique for sustainable regreening in the Sahel - see https://fmnrhub.com.au/wp-content/uploads/2019/03/FMNR-Field-Manual_DIGITAL_FA.pdf or http://fmnrhub.com.au/regeneration-assistee/ or https://regreeningafrica.org/wp-content/uploads/2020/06/FMNR-Booklet-French_High-Res_web.pdf

[5]A cercle is a rural district

[6] Potential exists for co-financing from the German Government, building on the 2017 Climate Change Risk Assessment in Mali by MERADD and AEDD in Partnership with GIZ, funded by BMZ.

[7] Component 1 and 4 of the project will be carried out at national scale, as well as with the regional government of Mopti Region. Components 2 and 3 of the project are proposed to take place in three target landscapes, to be selected during the project preparation phase, according to criteria agreed by the Technical Committee under AEDD, in consultation with stakeholders. A target landscape could, for example: (i) involve 3-4 contiguous communes, in a particular cercle (or crossing cercle boundaries if this makes sense ecologically; (ii) be in an area shown on the map below as vulnerable or highly vulnerable to climate change; and (iii) have visible evidence of ecosystem degradation, for example, thinned woodland, bare soils, silted waterways, or sand-encroached dwellings.

[8] A commune is a rural municipality

[9] Potentially in all the villages of the 9-12 target communes

[10] Natural Resource Management

[11] Including farming households headed by women (including widows and divorced women)

[12] Assisted Natural Regeneration (ANR) or la Régénération Naturelle Assistée (RNA) is the name given in Mali to the concept sometimes known as Farmer Managed Natural Regeneration. This approach has proven highly effective in the Sahel context and has multiple benefits – it can restore land productivity, reverse desertification and enhance resilience to disaster: increasing crop yields, improving groundwater recharge, retaining soil moisture, and increasing soil organic carbon, nutrient recycling, shade, wind and dust barriers, fodder and compost production and availability of fruit and medicine.

[13] For example, soil and water conservation strategies such as digging half-moon pits, contour bunds with stone, banquets etc.

[14] e.g. seeds, seedlings, polyethylene bags, watering cans and spades

[15] Potentially in partnership with the National Agency for Youth Employment, and with entrepreneurship support providers such as TETELISO and Doni-Labs

[16] Potentially in partnership with the Renewable Energy Agency

[17] Potentially through a partnership with the UN Peacebuilding Forum

[18] Particularly through existing GEF projects in these countries with related goals, which may have resources to enable such participation

Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Enhancing coordination and monitoring for land degradation neutrality and climate security.

Component 2: Enhancing resilience of degraded  production landscapes with communities vulnerable to climate change.

Component 3: Supporting family farms, youth and women to innovate and adopt resilient and sustainable  livelihoods.

Component 4: Monitoring and evaluation and knowledge management for upscaling.

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
Proj_PIMS_id: 
6317
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Enhancing Whole of Islands Approach to Strengthen Community Resilience to Climate and Disaster Risks in Kiribati

The Republic of Kiribati is a small island state with 33 low-lying and narrow atolls dispersed over 3.5 million km² in the Central Pacific Ocean and a population of approximately 110,000 people. 

Climate change and climate-induced disasters are projected to exacerbate the vulnerability of Kiribati’s people by causing more frequent inundations leading to damage of coastal infrastructure and exacerbating already problematic access to clean water and food.

Despite an existing strong policy framework and previous efforts, several barriers exist that prevent Kiribati from achieving its adaptation goals. 

Implemented with the Office of the President (Te Beretitenti), this project aims to benefit 17,500 people (49% women) on the five pilot islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati.

It is expected to contribute to several Sustainable Development Goals: SDG5 Gender Equality, SDG6 Clean Water and Sanitation, SDG12 Responsible Consumption and Production and SDG13 Climate Action.

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-157.34619142837 1.8735216654151)
Primary Beneficiaries: 
17,500 people (49% women) on the islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati
Financing Amount: 
GEF Least Developed Countries Fund project grant US$8,925,000
Co-Financing Total: 
Co-financing of US$769,667 from UNDP | $47,723,920 from the Government of Kiribati
Project Details: 

Background: Projected impacts of climate change on coastal infrastructure, water and food security in Kiribati

Climate change and climate-induced disasters are projected to cause more frequent inundations leading to damage of coastal infrastructure/ community assets and exacerbating the already problematic access to clean water and food.

Geographically, Kiribati’s narrow land masses and low-lying geography (in average 1-3 meters above mean sea level other than Banaba Island) results in almost the entire population being prone to flooding from storm surges and sea-level rise.

The low-lying atoll islands are already experiencing inundation leading to a loss of land, buildings and infrastructure. Mean sea level is projected to continue to rise (very high confidence) by approximately 5-15 cm by 2030 and 20-60 cm by 2090 under the higher emissions scenario.

Sea-level rise combined with natural year-to-year changes will increase the impact of storm surges and coastal flooding. This will lead to increased risks of damage to coastal homes, community infrastructure (community halls, schools, churches) and critical infrastructure, such as health clinics and roads. Further, increasing damage and interruption to roads, causeways and bridges, might lead to isolation of communities.

Sea-level rise also results in greater wave overtopping risk, and when marine flooding occurs, saltwater infiltrates down into the freshwater aquifer causing contamination. This risk will increase with sea-level rise and increased flooding and impact both water security and food security from agricultural production.

With limited groundwater reservoirs, access to clean water and sanitation is already a serious problem in Kiribati, impacting health and food security. Agricultural crop production can be expected to be increasingly affected by saltwater inundation, more extreme weather patterns, pests and diseases. This negative impact on food security is further exacerbated by the projected impact on coastal subsistence fisheries, affecting the main stable food source and livelihood. 

Barriers and challenges

While Kiribati has a strong policy framework around climate adaptation – with adaptation and disaster risk management recognized as national priorities within the Kiribati Development Plan and Kiribati’s 20-year Vision (KV20), and a national Climate Change Policy and Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 –  several barriers exist that prevent Kiribati from achieving its objectives, including:

  • Limited integration of CCA&DRM in national and sub-national development plans and frameworks;
  • Insufficient institutional coordination at national, sectoral and sub-national levels;
  • Limited technical and institutional capacities at national and sub-national levels;
  • Weak data management, monitoring and knowledge management (due in part to challenges in gathering and analysing data from dispersed and remote island communities without effective communication and information management systems); and
  • Limited community knowledge and adaptive solutions for CCA&DRM at outer island level.

 

Project interventions

This project will address the exacerbation of climate change on coastal infrastructure, water security and food security by increasing community resilience to the impacts of climate change, climate variability and disasters and building capacities at island and national levels, with benefits extended to household level and in community institutions/facilities such as schools, health clinics, community halls, agricultural nurseries, and Islands Councils.

It is expected to deliver adaptation benefits to the entire population on the five islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati, estimated at approximately 17,500 people (49% women).

The Project will address key challenges and vulnerabilities to climate change through four interrelated components:

  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: WoI-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies

 

It is expected to support progress towards the following Sustainable Development Goals:

  • SDG 13: Take urgent action to combat climate change and its impacts;
  • SDG 5: Achieve gender equality and empower women, by ensuring women’s equitable participation in Project planning and implementation and by actively monitoring gender equity and social inclusion outcomes.
  • SDG 6: Ensure availability and sustainable management of water and sanitation for all;
  • SDG 12: Achieve food security and improved nutrition and promote sustainable agriculture

 

Key implementing partners

  • Office of Te Beretitenti (OB – Office of the President) - CC&DM division
  • Kiribati National Expert Group on Climate Change and Disaster Risk Management 
  • Ministry of Internal Affairs 
  • Ministry of Finance and Economic Development 
  • Ministry of Environment, Lands and Agriculture Development 
  • Ministry for Infrastructure and Sustainable Energy 
  • Ministry for Women, Youth and Social Affairs 
  • Ministry of Fisheries and Marine Resources Development
  • Ministry of Commerce, Industry and Cooperatives
  • Ministry of Line and Phoenix Islands Development
  • Ministry of Justice 
  • Ministry of Information, Transport, Tourism and Communication Development (MITTCD)
  • Parliament Select Committee on Climate Change
  • Island Councils
  • Extension officers
  • Village Elders and Leaders  
  • Women and Youth
  • Community-based groups
  • KiLGA (Kiribati Local Government Association)
  • NGO’s
Expected Key Results and Outputs: 

Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge

Outcome 1 Capacities of national government institutions and personnel is strengthened on mainstreaming climate and disaster risks, supporting the operationalization of the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP)

Output 1.1.1 National and sectoral level policy, planning and legal frameworks revised or developed, integrating climate change and disaster risks

Output 1.1.2 National, sectoral and island level monitoring and evaluation (M&E) processes, related data-gathering and communication systems enhanced and adjusted to support KJIP implementation

Output 1.1.3 Coordination mechanism for the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP) enhanced

Output 1.1.4 Tools and mechanisms to develop, stock, and share data, knowledge, and information on climate change and disaster risks enhanced at the national level

Component 2: Island level climate change resilient planning and institutional capacity development

Outcome 2 Capacity of island administrations enhanced to plan for and monitor climate change adaptation processes in a Whole of Islands (WoI) approach

Output 2.1.1 Island and community level vulnerability and adaptation (V&A) assessments revised and/or developed for 5 targeted islands

Output 2.1.2 Island Council Strategic Plans developed/reviewed and complemented with Whole of Islands (WoI)-implementation and investments plans in 5 targeted islands

Output 2.1.3 Tools and mechanisms to develop, stock and share data, knowledge, and information on climate change and disaster risk enhanced at island level to strengthen information, communication and early warning mechanisms

Output 2.1.4 I-Kiribati population on 5 targeted islands receives awareness and technical training on climate change adaptation and disaster risk management

Component 3: Whole of Island implementation of water, food security and infrastructure adaptation measures

Outcome 3 Community capacities enhanced to adapt to climate induced risks to food and water security and community assets

Output 3.1.1 Climate-resilient agriculture and livestock practices (including supply, production and processing/storage aspects) are introduced in 5 outer islands

Output 3.1.2 Water security improved in 5 targeted project islands

Output 3.1.3 Shoreline protection and climate proofing of infrastructure measures implemented at 5 additional islands and communities

Component 4: Knowledge management and communication strategies

Outcome 4 Whole of Islands (WoI)-approach promoted through effective knowledge management and communication strategies

4.1.1 Whole of Islands (WoI)-communication, engagement and coordination strengthened at national, island and community levels

4.1.2 Whole of Islands (WoI)-lessons learned captured and shared with national and regional stakeholders

Monitoring & Evaluation: 

The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation.

Monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in UNDP’s Programme and Operations Policies and Procedures (POPP) and UNDP Evaluation Policy, with the UNDP Country Office responsible for ensuring full compliance with all UNDP project monitoring, quality assurance, risk management, and evaluation requirements.

Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.

The project will complete an inception workshop report (within 60 days of project CEO endorsement); annual project implementation reports; and ongoing monitoring of core indicators.

An independent mid-term review will be conducted and made publicly available in English and will be posted on UNDP’s Evaulation Resource Centre ERC.

An independent terminal evaluation will take place upon completion of all major project outputs and activities, to be made publicly available in English.

The project will use the Global Environment Facility’s LDCF/SCCF Adaptation Monitoring and Assessment Tool to monitor global environmental benefits. The results will be submitted to the GEF along with the completed mid-term review and terminal evaluation.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Results and learnings from the project will be disseminated within and beyond the project through existing information sharing networks and forums.

M&E Oversight and Monitoring Responsibilities

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks.

The Project Board will take corrective action as needed to ensure the project achieves the desired results. The Project Board will hold project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences.

The Implementing Partner is responsible for providing all required information and data necessary for timely, comprehensive and evidence-based project reporting, including results and financial data, as necessary. The Implementing Partner will strive to ensure project-level M&E is undertaken by national institutes and is aligned with national systems so that the data used and generated by the project supports national systems.

The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions.

Contacts: 
UNDP
Azza Aishath
Regional Technical Specialist - Climate Change Adaptation
Location: 
Programme Meetings and Workshops: 

Local Project Appraisal Committee (LPAC) Meeting TBC

Inception workshop TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: Whole-of-Islands (WoI)-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies
Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
GEF CEO endorsement /approval
Proj_PIMS_id: 
5447
SDGs: 
SDG 5 - Gender Equality
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
November 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Integrated Water Resource Management and Ecosystem-based Adaptation in the Xe Bang Hieng river basin and Luang Prabang city, Lao PDR

Lao PDR is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

Increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase with climate change.

Led by the Government of Lao PDR with support from the UN Development Programme, this proposed 4-year project will increase the resilience of communities in two particularly vulnerable areas – Xe Bang Hieng river basin in Savannakhet Province and the city of Luang Prabang – through:

  • Strengthened national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction;
  • Ecosystem-based Adaptation (EbA) interventions with supporting protective infrastructure and enhanced livelihood options;
  • Community engagement and awareness-raising around climate change and adaptation opportunities, as well as knowledge-sharing within and outside Lao PDR; and
  • The introduction of community-based water resource and ecological monitoring systems in the Xe Bang Hieng river basin.
English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The proposed project will directly benefit 492,462 people (including 247,991 women) by increasing the climate resilience of communities in nine districts in Savannakhet Province, as well as the city of Luang Prabang, through facilitating the adoption of ICM at the provincial and national level and urban EbA at the local level. Government ministries at central and provincial levels will also benefit from capacity-building; development of relevant plans; technical support; coordination; and mobilisation of human and financial resources.
Financing Amount: 
GEF-Least Developed Countries Fund: US$6,000,000
Co-Financing Total: 
Government of Lao PDR: $19,500,000 (in-kind) | UNDP: $300,000 (in-kind) + $200,000 (grant)
Project Details: 

General context

The Lao People’s Democratic Republic is a landlocked Least Developed Country in Southeast Asia. It has a population of ~7.1 million people and lies in the lower basin of the Mekong River, which forms most of the country’s western border with Thailand.

Its GDP has grown at more than 6% per year for most of the last two decades and reached ~US$ 18 billion in 2018 (~US$ 2,500 per capita). Much of this economic growth has been dependent on natural resources, which has placed increasing pressure on the environment. Agriculture accounts for ~30% of the country’s GDP and supports the livelihoods of 70–80% of the population.

Impacts of climate change

The country is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

In 2018, for example, floods across the country resulted in ~US$ 370 million (~2% of GDP) in loss and damage, with agriculture and transport the two most affected sectors.  Floods in 2019 — the worst in 4 decades — affected 45 districts and ~768,000 people country-wide floods, resulting in US$162 million in costs.

An increase in the frequency of these climate hazards, including floods and droughts, has been observed since the 1960s, as well as an increase in the average area affected by a single flood.

Following the floods, the Government identified several priorities for responding to flood risk in the country, including:

  1. Improving flood and climate monitoring and early warning systems;
  2. Public awareness raising to respond to disasters and climate change;
  3. Building resilience at community level; iv) improved risk and vulnerability mapping; and
  4. Strengthening the capacity of government at the provincial, district and community level for better climate change-induced disaster response.

 

In addition, average increases in temperature of up to 0.05°C per year were observed in the period between 1970 and 2010. These trends are expected to continue, with long-term climate modelling projecting: i) an increase in temperature between 1.4°C and 4.3°C by 2100; ii) an increase in the number of days classified as “Hot”; iii) an increase of 10–30% in mean annual rainfall, particularly in the southern and eastern parts of the country and concentrated in the wet season (June to September); iv) an increase in the number of days with more than 50 mm of rain; v) a 30–60% increase in the amount of rain falling on very wet days; and vi) changing rainfall seasonality resulting in a longer dry season.

The increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase as a result of the projected increase in extreme rainfall events — associated with changes iv) and v) described above.

About the project under development

The proposed project focuses on strengthening integrated catchment management (ICM) and integrated urban flood management within the Xe Bang Hieng river basin in Savannakhet Province – a major rice-producing area and particularly important for the country’s food security, as well as one of the areas in the country which is most vulnerable to droughts and experienced severe flooding in 2017, 2018 and 2019 – and the city of Luang Prabang – one of the cities in Lao PDR which is most vulnerable to flooding, as well as being an important cultural heritage site – for increased climate resilience of rural and urban communities.

The approach will ensure that water resources and flood risks are managed in an integrated manner, considering the spatial interlinkages and dependencies between land use, ecosystem health and underlying causes of vulnerability to climate change.

The protection and restoration of important ecosystems will be undertaken to improve the provision of ecosystem goods and services and reduce the risk of droughts, floods and their impacts on local communities, thereby increasing their resilience to the impacts of climate change.

Improved hydrological and climate risk modelling and information systems will inform flood management as well as adaptation planning in the Xe Bang Hieng river basin and Luang Prabang. This information will be made accessible to national and provincial decision-makers as well as local stakeholders who will be trained to use it.

Using the ICM and integrated urban flood management approaches and based on integrated adaptation planning, on-the-ground interventions to improve water resource management and reduce vulnerability to floods and droughts will be undertaken, including ecosystem-based adaptation (EbA).

These interventions will be complemented by capacity development and awareness raising as well as support for rural communities to adopt climate-resilient livelihood strategies and climate-smart agricultural practices.

Addressing gender equality

The proposed project will promote gender equality, women’s rights and the empowerment of women in several ways.

First, the proposed activities have been designed taking into account that in Lao PDR: i) women’s household roles should be considered in any interventions concerning natural resource management, land-use planning and decision-making; ii) conservation incentives differ for men and women; iii) gendered division of labour needs to be understood prior to the introduction of any livelihood interventions; and iv) women need to have access to, and control over, ecosystem goods and services.

Second, an understanding of gender mainstreaming in relevant sectors and associated ministries will be developed, and gaps in gender equality will be identified and addressed in all aspects of project design.

Third, women (and other vulnerable groups) will be actively involved in identifying environmentally sustainable activities and interventions that will support them in safeguarding natural resources and promoting their economic development, with specific strategies being developed to target and include female-headed households. To ensure that the project activities are both gender-responsive and designed in a gender-sensitive manner, a gender action plan will be developed during the project preparation phase.

Expected Key Results and Outputs: 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

 

Monitoring & Evaluation: 

The overall monitoring and evaluation of the proposed project will be overseen by the Department of Planning under the Ministry of Planning and Investments, which carries out M&E for all planning processes in the country.

Contacts: 
Ms. Keti Chachibaia
Regional Technical Advisor for Climate Change Adaptation, UNDP
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Output 1.1.1: Central and Provincial training program implemented to enable climate risk-informed water management practices in target urban and rural areas

Output 1.1.2: Current and future zones of the Xe Bang Hieng River catchment at risk of climate change-induced flooding and drought mapped, based on hydrological models produced and protective infrastructure optioneering conducted

Output 1.1.3. Economic valuation of urban ecosystem services in Luang Prabang and protective options conducted.

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Output 1.2.1: Fine-scale climate-resilient development and land-use plans drafted and validated for Luang Prabang and in the headwater and lowland areas of the Xe Bang Hieng and Xe Champone rivers.

Output 1.2.2: Current Xe Bang Hieng river basin hydrological monitoring network — including village weather stations — assessed and updated to improve efficiency.

Output 1.2.3: Early-warning systems and emergency procedures of vulnerable Xe Bang Hieng catchment communities (identified under Output 1.1.2) reviewed and revised

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Output 2.1.1:  Xe Bang Hieng headwater conservation zones restored to ensure ecological integrity is improved for delivery of ecosystem services

Output 2.1.2: Headwater conservation zone management supported to improve resilience to climate change

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Output 2.2.1: Protective infrastructure constructed to reduce flood (cascading weirs and drainage channels) and drought (reservoir networks and rainwater harvesting) risk

Output 2.2.2: Implementation and distribution of communication and knowledge management tools and technologies (e.g. mobile phone apps, community radio) to increase climate resilience of agricultural communities to floods and droughts

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Output 2.3.1: Market analysis conducted, including; i) analysing supply chains for climate-resilient crops, livestock, and farming inputs; ii) assessing economic impacts and market barriers; and iii) drafting mitigating strategies to address these barriers.

Output 2.3.2: Community Conservation Agreements process undertaken to encourage climate-resilient agriculture, fisheries, and forestry/forest-driven livelihoods and practices

Output 2.3.3: Diversified activities and opportunities introduced through Community Conservation Agreements (developed under Output 2.3.2) in agriculture (livestock and crops, including vegetable farming) as well as fisheries, non-timber forest products (NTFP), and other off-farm livelihoods.

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Output 3.1.1: Training and awareness raising provided to Xe Bang Hieng and Xe Champone headwater and lowland communities on: i) climate change impacts on agricultural production and socio-economic conditions; and ii) community-based adaptation opportunities and strategies (e.g. water resources management, agroforestry, conservation agriculture, alternatives to swiddening ) and their benefits

Output 3.1.2: Project lessons shared within Lao PDR and via South-South exchanges on  strengthening climate resilience with regards to: i) catchment management; ii) flash flood management; and iii) EbA.

Output 3.1.2: Awareness-raising campaign conducted in Luang Prabang for communities and the private sector on urban EbA and flood management.

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

Output 3.2.1: Community-based monitoring systems developed and implemented to measure changes in key ecological determinants of ecosystem health and resilience in the Xe Bang Hieng river basin

Project Dates: 
2020
Proj_PIMS_id: 
6547
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Building Climate Resilience of Vulnerable Agricultural Livelihoods in Southern Zimbabwe

This GCF-financed project supports the Government of Zimbabwe in strengthening the resilience of agricultural livelihoods of vulnerable communities, particularly women, in southern Zimbabwe to increasing climate risks and impacts. The project supports vulnerable people, especially smallholder farmers and women to access sufficient, reliable sources of water to enhance the climate resilience of agricultural production, adopt climate-resilient agricultural practices and cropping systems, and access and utilize climate information to more effectively manage climate risk in rain-fed and irrigated agricultural production. The project will benefit an estimated 2.3 million people across Manicaland, Masvingo and Matabeleland South provinces.

The project enhances the water security for smallholder farmers in light of evolving climate risks by enabling revitalization and climate-proofing of irrigation schemes and improving water-use efficiency and enhancing soil moisture management on rain-fed lands. It strengthens the capacities of vulnerable smallholder farmers through farmer field schools and peer-to-peer support to scale up climate-resilient agriculture, with access to resilient inputs, markets, and actionable climate information. The project empowers vulnerable smallholders through multi-stakeholder innovation platforms for climate-resilient agriculture – including value-chain actors and financial intermediaries – to make a transformative shift away from subsistence livelihoods to climate-resilient, market-oriented agricultural livelihoods. The project will leverage government budgets to direct funds to climate-resileint actions in the three provinces. The project will yield significant environmental, social and economic co-benefits, including climate risk-informed, sustainable land management, strengthened gender norms and women’s empowerment, private sector engagement, and increased income and food security including income and productivity benefits over the project’s lifetime.

The project contributes towards the Government of Zimbabwe’s achievement of priorities outlined in its Nationally Determined Contributions (NDC) and climate change plans and strategies including: strengthening management of water resources and irrigation in the face of climate change; strengthening capacities to generate new forms of empirical knowledge, provision of technologies (including conservation agriculture) and agricultural support services that meet climate challenges, and strengthening the capacity of the national meteorological and hydrological services to provide timely climate data.

English
Region/Country: 
Coordinates: 
POINT (30.33398417638 -20.443485689853)
Primary Beneficiaries: 
2,302,120 people (approximately 543,620 direct and 1,758,500 indirect beneficiaries)
Funding Source: 
Financing Amount: 
US$26.6 million
Co-Financing Total: 
US$20 million (Government of Zimbabwe), US$1.2 million (UNDP)
Project Details: 

Background and context

The key climate change risks in Zimbabwe stem from increasing temperatures, more variable rainfall, and the intensification of extreme weather events. Increasing temperatures, coupled with declining and more erratic rainfall and greater evapotranspiration, result in increasing river run-off, leading to more aridity, the expansion of marginal lands and decreasing soil water retention capacity. Declining and variable rainfall is projected to cause changes to the growing season, with significant implications for yields and national revenues. Increasing frequency and length of mid-season dry spells has resulted in crop failure in rain-fed farming systems owing to severe water stress during the growing season (agricultural drought). The greatest intensity of impacts is experienced in the southern provinces, where the majority of smallholder farmers, especially women, depend on rainfall and bear the brunt of these climate risks threatening their food and income security.

Southern Zimbabwe is home to 30% of the country’s 14.5 million people and 45% of the country’s rural population, including some of the poorest communities in the country, with poverty prevalence across the Southern provinces ranging from 66-74%. About 7.1 million people in Zimbabwe depend on smallholder farming, most of whom are women.

Over the past five years, Zimbabwe has experienced a sharp decline in the rate of economic growth from 11.9% in 2011 to 1.5% in 2015 . This decline is largely due to underperformance of the agriculture sector, which at its peak contributed 19% to GDP. Agricultural performance in Zimbabwe is heavily impacted by the quality and quantity of rainfall with extreme events such as droughts or floods being the most damaging, along with dry dekads – ten-day rain-free periods during the growing season that cause “agricultural drought”.

While climate change affects the entire country, impacts are experienced most intensely in the southern provinces, where the majority of smallholder farmers are extremely vulnerable to increasing climate hazards as a result of poverty and weak access to services and institutional resources. Most of the farmland in southern Zimbabwe – the provinces of Manicaland, Masvingo and Matabeleland South – falls within Agro-Ecological Regions (AERs) IV and V, which have the lowest agricultural potential in terms of rainfall, temperature and length of growing season. The smallholders in southern Zimbabwe are predominantly communal farmers with very limited access to irrigation – only about 10,000 ha out of the 180,000 ha of irrigated land in southern Zimbabwe are found on communal lands. The remaining farmers are dependent on rain-fed agriculture.

These rain-fed agricultural systems are expected to be subject to drier and hotter conditions, making rain-fed maize production – the primary staple - a significant challenge . With increasing climate risks, water is the key limiting factor for agricultural productivity and adaptation to climate change. In addition to decreasing rainfall and increased evaporation, annual rainfall in AER V is increasingly variable, characterized by erratic and unpredictable rains (short, sharp, isolated storms). Crop yields are extremely low, and the risk of crop failure is increasing to one in three years. The effects of climate-induced droughts, exemplified by the 2015/2016 El Niño, continue to demonstrate that Zimbabwe’s agricultural sector remains highly vulnerable and exposed to increasing climate risks. 

According to the 2016 ZimVAC statistics, the highest proportion of food-insecure households at peak hunger period can be found in Matabeleland South (44%), Masvingo (50%) and Midlands (48%) provinces. Zimbabwe spends an average of USD30 million on food relief every year, with expenditures rising to USD 50 million in 2016 when 4.3 million food-insecure people were assisted as a result of El Niño-induced drought. High levels of poverty and food insecurity make the population less able to cope with increasingly harsh and variable climatic conditions. The increasing growth and strength of climate hazards have significant implications for household food security and income in already vulnerable communities in southern Zimbabwe. Key Government Strategies and National Climate Change Response

The Zimbabwe Government has established a five-year economic plan (2013-2018) called the “Zimbabwe Agenda for Sustainable Socio-Economic Transformation (ZimAsset)” . The plan’s vision is to move “towards an empowered society and a growing economy”, execution of which is “to provide an enabling environment for sustainable economic empowerment and social transformation to the people of Zimbabwe” . ZimAsset is an integrated plan with four clusters: a) Food Security and Nutrition; b) Social Services and Poverty Eradication; c) Infrastructure and Utilities; and d) Value Addition and Beneficiation. In 2015, the Government delivered a Ten Point Plan to support operationalization of ZimAsset, of which the following points are most directly relevant to the agricultural sector: “a) Revitalizing agriculture and the agro-processing value chains; b) Advancing Beneficiation and/or Value Addition to the agricultural and mining resource endowment; c) Focusing on Infrastructure development, particularly in the key Energy, Water, Transport and ICTs subsectors; d) Unlocking the potential of Small to Medium Enterprises; e) Encouraging Private Sector Investments.” 

To respond to and manage growing climate risks and hazards, the Government of Zimbabwe (GoZ) has formulated a number of key policies and plans, as well as strengthened the corresponding institutional frameworks. GoZ has developed a National Climate Policy and a costed National Climate Change Response Strategy (NCCRS) and has established a Climate Change Management Department in the Ministry of Environment, Water and Climate to coordinate and guide the national response to climate change. In its recently submitted Nationally Determined Contributions (NDC), Zimbabwe commits to promoting adapted crop and livestock development and climate smart agricultural practices; strengthening management of water resources and irrigation in the face of climate change; and promoting practices that reduce risks of losses in crops, livestock and agricultural incomes among other priorities. Zimbabwe is currently developing a National Adaptation Plan with readiness funding from GCF, supported by UNDP.

Addressing the financial limitations in investing in the incremental costs of building climate change resilience of vulnerable smallholder farming systems in southern Zimbabwe

Smallholder farmers in southern Zimbabwe have largely maintained traditional approaches to managing water, soil and crops for food security and income albeit in an increasingly unpredictable environment. The productivity and stability of these agro-ecosystems have deteriorated over the years due to a number of factors, including overly intensive cultivation and land degradation, compounded by increasing climate change-related extreme weather events, primarily droughts and, secondarily, floods. Farmers have been constrained in adapting to hydro-meteorological hazards by their intensity and frequency, which leaves farmers unable to repair irrigation infrastructure and equipment held in common - in particular as they are caught in a cycle of increasing drought or rainy season dry spells under the changing climate, compounded by inadequate consideration of climate risks in the baseline investments in irrigation infrastructure, climate change-induced water deficits, reduced yields and revenues, and heightened food insecurity. Smallholder farmers themselves in southern Zimbabwe clearly lack sufficient resources to invest in addressing the incremental costs of enhancing agro-ecosystem resilience to climate change. 

Development investments over the past decades, particularly in relation to irrigation infrastructure, have suffered dramatically from the impacts of climate change. Extreme weather events, such as sudden onset of heavy rains, have damaged or destroyed canals, dams and pumps with sedimentation of erosion of banks and stream beds. Current investments and projects are insufficient to counteract or mitigate growing climate risk as they fail to incorporate climate resilience into infrastructure design. The private sector has little incentive to invest given the risks and uncertainties associated with smallholder production, including technical, capacity, financial and other barriers.

With the impacts of climate change projected to increase over the coming years, the Government of Zimbabwe fully recognizes the significance to the country’s food security of ensuring that vulnerable smallholder farmers have the means, information, capacities, incentives and institutional support they require to manage their resources in a climate risk-informed manner. While some government funds have been made available as co-financing, the current public expenditure budget of the Government of Zimbabwe is limited and insufficient to move smallholder farmers to climate resilient and improved livelihoods. The IMF describes Zimbabwe to be in an ‘external debt distress’ state as of 2017 , and in the absence of stronger economic growth or more concessional financing and debt relief, Zimbabwe has little chance of emerging from its debt problems even in the long term. The government is unable to increase investments in climate resilient agriculture, which not only impacts farmers’ income, but also negatively affects the country’s future economic growth prospects.

The smallholder farmers in the project’s target areas themselves have insufficient income and resources to invest in irrigation and inputs for resilient agricultural livelihoods. GCF resources are indispensable to address the incremental costs of climate-proofing community irrigation systems, promoting climate-resilient agricultural practices, diversifying income and managing climate risk by facilitating public-private partnerships for climate resilient value chain development, and ensuring that climate information is produced and disseminated to decision and policy makers at all levels, from farmer to the national level. Leveraging and combining public and private sector financing for community-level investments for adaptation among smallholders

Expected Key Results and Outputs: 

Output 1: Increased access to water for agriculture through climate-resilient irrigation systems and water resource management

Activity 1.1: Climate proofing irrigation infrastructure for enhanced water security in the face of climate change

Activity 1.2: Field-based training and technology investments for farmers on rain-fed farmlands for climate-resilient water management

Output 2: Scaled up climate-resilient agricultural production and diversification through increased access to climate-resilient inputs, practices, and markets

Activity 2.1: Establish transformative multi-stakeholder innovation platforms for diversified climate resilient agriculture and markets

Activity 2.2: Investments in inputs, technologies and field-based training to scale up the implementation of climate-resilient agricultural production in the face of increasing climate hazards (rain-fed and irrigated farms)

Activity 2.3: Enhance institutional coordination and knowledge management capacities for climate-resilient agricultural production in the face of increasing climate hazards

Output 3: Improved access to weather, climate and hydrological information for climate-resilient agriculture

Activity 3.1: Installation and operationalization of weather/climate and hydrological observation networks

Activity 3.2: Develop, disseminate and build institutional capacities (MSD and AGRITEX) for tailored climate and weather information products

Activity 3.3: Capacity building for farmers and local institutional staff on effective use of climate and weather information and products for resilient water management and agricultural planning

Contacts: 
UNDP
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Project Status: 
News and Updates: 

   

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Increased access to water for agriculture through climate-resilient irrigation systems and water resource management

Output 2: Scaled up climate-resilient agricultural production and diversification through increased access to climate-resilient inputs, practices, and markets

Output 3: Improved access to weather, climate and hydrological information for climate-resilient agriculture

Project Dates: 
2020 to 2027
Timeline: 
Month-Year: 
March 2020
Description: 
GCF Board Approval
Month-Year: 
June 2020
Description: 
FAA Effectiveness
Month-Year: 
November 2020
Description: 
Project Launch
Proj_PIMS_id: 
5853

An integrated landscape approach to enhancing the climate resilience of small-scale farmers and pastoralists in Tajikistan

The Republic of Tajikistan is the most climate-vulnerable country in Central Asia: while extreme rainfall events have become more frequent and intense, the rainfall season has shortened in many parts of the country, air temperatures have risen markedly, and glacial melting is accelerating.

As a result, hydrometeorological disasters such as droughts, floods, mudflows and landslides are more frequent and rates of soil erosion across the country are increasing. The socio-economic impacts of these changes on livelihoods, agricultural productivity, water availability and hydroelectricity production are considerable.

Ageing infrastructure, the disproportionate number of women in poverty compared with men, and limited institutional capacity are exacerbating Tajikistan’s vulnerability to climate change and capacity to adapt.

This five-year project (2019 - 2024) will introduce an integrated approach to landscape management to develop the climate resilience of rural communities. The project will focus within one of the most climate-vulnerable river basins, the Kofirnighan River Basin. An integrated catchment management strategy will be developed for the basin which and implemented at raion (district), jamoat (sub-district) and village levels. The strategy will include guidelines for landscape management interventions to reduce the vulnerability to climate change.

 

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
46,000 people are expected to directly benefit from the project with another 828,000 to indirectly benefit, with at least 50% women.
Financing Amount: 
US$9,996,441
Project Details: 

Background

Tajikistan has experienced a considerable warming of its climate since 1950. From 2001 to 2010, the country experienced the warmest decade in its history. Average temperatures in Tajikistan are projected to increase by 2.9°C by 2050.

The temperature changes have been accompanied by increasingly erratic rainfall which has resulted in both an increase in rainfall intensity and longer dry spells. In the major crop-growing regions, droughts that impact yields by at least 20% have been increasing in frequency over the past decade.

Tajikistan’s vulnerability to climate change is attributable to weak social structures; low adaptive capacity; underdeveloped infrastructure; low-income insecurity; poor service provision; strong dependence on agriculture; and institutional constraints. Losses from natural hazards currently amount to ~20% of the country’s GDP and climate change impacts are predicted to increase the frequency and magnitude of such losses.

These climatic changes will have negative impacts on climate-sensitive sectors, including agriculture, water, energy and transport. For example, a decrease in dry‑season water availability will adversely affect the agricultural sector, which in turn increases the risk of food insecurity in the country.

About the project

This project will introduce an integrated approach to landscape management to develop the climate resilience of rural communities.

The project will focus within the Kofirnighan River Basin, identified by the State Agency for Hydrometeorology (Hydromet) as a basin particularly vulnerable to extreme climate events.

The project focuses its activities within this basin due to limited international support for the implementation of integrated catchment management; a large number of communities within the basin are highly vulnerable to a wide range of climate risks; the basin’s variable topographic and climatic conditions are highly representative of the conditions in Tajikistan; and there are no transboundary disputes along the river. The districts were deemed the most vulnerable: Vakhdat, Faizobod and Varzob in the north; and ii) Nosiri Khusrav, Kabodiyon and Shaartuz in the south.

An integrated catchment management strategy will be developed for this basin which will be operationalised at raion (district), jamoat (sub‑district) and village levels. The strategy will provide detailed guidelines for suitable landscape management interventions to reduce the vulnerability to climate change.

Complementing the catchment management strategy, the project will directly build the resilience of selected communities by:

i) implementing on‑the‑ground ecosystem-based adaptation (EbA);

ii) supporting agro-ecological extension services to provide technical assistance on climate change adaptation practices to local community members;

iii) promoting the development of business models that capitalise on EbA interventions; and

iv) developing a Payment for Ecosystem Services approach to support the long‑term financing of climate‑resilient catchment management plans across Tajikistan.

A wide range of stakeholders were consulted during the scoping and validation of the project development.

For more information, please refer to the Project Document here.

Expected Key Results and Outputs: 

Component 1: Integrated catchment management to build climate resilience

Expected outcome: Catchment management strategy to manage climate risks operationalised at raion (district) and jamoat (sub- district) levels in Kofirnighan River Basin (KRB)

Concrete outputs

1.1. Multi-hazard climate risk model developed for target watersheds in the Kofirnighan River Basin

1.2. Support provided for upgrading automated weather stations in Kofirnighan River Basin watersheds

1.3. Integrated catchment management strategy developed for the Kofirnighan River Basin

1.4. Strengthened coordination and training mechanisms for integrated climate-resilient catchment management

1.5. Payment for ecosystem services models developed for the Kofirnighan River Basin

Component 2: Ecosystem-based adaptation, including climate smart agriculture and sustainable land management, in agro-ecological landscapes

Expected outcome: An integrated approach to building climate resilience of agro-ecological landscapes operationalised at a village level

Concrete outputs

2.1. Agro-ecological extension services supported at the jamoat level to provide technical support for ecosystem-based adaptation implementation

2.2. Watershed Action Plans developed that promote climate resilience and enhance economic productivity for target watersheds

2.3. Ecosystem-based adaptation interventions implemented in target watersheds by local communities.

Component 3: Knowledge management on building climate resilience through integrated catchment management and ecosystem-based adaptation in the Kofirnighan River Basin

Expected outcome: Existing knowledge management platforms supported for integrated catchment management and ecosystem-based adaptation

Concrete outputs

3.1. Existing knowledge management platforms supported for collating information on the planning, implementation and financing of ecosystem-based adaptation interventions

3.2 An impact evaluation framework established to enable effective adaptive management of ecosystem-based adaptation activities.

Monitoring & Evaluation: 

Monitoring and evaluation will be applied in accordance with the established UNDP procedures throughout the project. The executing entity, together with the UNDP Country Office, will ensure the timeliness and quality delivery of the project implementation.

Audit: The project will be audited according to UNDP Financial Regulations and Rules and applicable audit policies on NIM implemented projects.

Project start

A project Inception Workshop (IW) will be held within the first three months of the project start date with those stakeholders with assigned roles in the project management, namely representatives from the Adaptation Fund (AF), UNDP Country Office and other stakeholders where appropriate. The IW is crucial to building ownership for the project results and to plan the first-year annual work plan (AWP).

Mid-term Review

The project will undergo an independent Midterm Review (MTR) at the mid-point of implementation. The evaluation will focus on the effectiveness, efficiency and timeliness of the implementation of project activities. Furthermore, the MTR will highlight issues requiring decisions and actions and will present initial lessons learned about project design, implementation and management.

Project closure

An independent Final Evaluation will be undertaken three months prior to the final PSC meeting. The final evaluation will focus on the delivery of the project’s results as initially planned and as corrected after the MTR.

  • Annual Review Report. An Annual Review Report shall be prepared by the Project Manager and shared with the PSC. As a minimum requirement, the Annual Review Report shall consist of the Atlas standard format for the PR covering the whole year with updated information for each above element of the PR as well as a summary of results achieved against pre-defined annual targets at the output level.
  • Annual Project Review. Based on the above report, an annual project review shall be conducted during the fourth quarter of the year or soon after, to assess the performance of the project and appraise the Annual Work Plan (AWP) for the following year. In the last year, this review will be a final assessment. This review is driven by the PSC and may involve other stakeholders as required. It shall focus on the extent to which progress is being made towards outputs, and that these remain aligned to appropriate outcomes.

Together with UNDP, the PSC will carry out two independent external evaluations:

  • Mid-Term Evaluation (MTE). The MTE will be carried out in the 6th quarter of the programme implementation and will be independent and external. The evaluation will engage all programme stakeholders and will assess the extent to which progress is being made towards the outputs and their alignment with outcomes. The evaluation may propose mid-course corrective measures and may reassess the objectives and revise implementation strategy.
  • Terminal Review (TR). The TR will be conducted at the conclusion of the programme. UNDP will commission a full external evaluation assessing the accomplishment of objectives.
Contacts: 
UNDP
Ms. Keti Chachibaia
Regional Technical Advisor, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Project Dates: 
2020 to 2024
Timeline: 
Month-Year: 
August 2019
Description: 
Adaptation Fund project approval
Proj_PIMS_id: 
6219

Strengthening Climate Information and Early Warning Systems for Climate Resilient Development and Adaptation to Climate Change in Guinea

Despite considerable natural resources, including rich biodiversity, fertile soil, forests and mineral deposits, the West African nation of Guinea remains one of the world’s least developed countries due in part to the poor management of climate variability over past decades.

In line with climate change, the country has seen a decline in rainfall, recurring droughts since the 1970s, and frequent and early floods. The observed impacts of these disturbances are the drying up of many rivers and soils, the reduction of vegetation cover, a decline in agricultural, pastoral and fishing production, and the resurgence of waterborne diseases, all exacerbated by unsustainable production systems.

National development strategies are struggling to achieve results while the country is still recovering from the devastating effects of the 2015 Ebola virus disease.

By improving climate monitoring, forecasting and early warning for disasters, and strengthening the capacities of key actors, this four-year project (2019-2023) will help Guinea to respond to shocks and to mainstream adaptation into development planning for climate-sensitive sectors (agriculture, livestock, water, coastal and forestry areas) – supporting more inclusive and sustainable development into the future.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-13.623046879746 9.4942150191335)
Primary Beneficiaries: 
9,600,000 individuals (80 per cent of the Guinean population) who are currently affected by the effects of climate change in the agriculture, fishing, livestock farming, mining and forest industry sectors. Approximately 200,000 will be direct beneficiaries and around 51 per cent of the beneficiaries will be women. | Grassroots community organizations and farming associations | Over 120 political decision-makers from the agriculture, fishing, livestock farming, mining and forest industry sectors as well as from the planning and finance sectors.
Financing Amount: 
GEF-LDCF US$5,000,000; UNDP TRAC resources $350,000
Co-Financing Total: 
Ministry of Agriculture $30,000,000; Ministry of Transport - National Directorate of Meteorology $1,503,000; National Directorate of Hydrology $384,300; Agronomic Research Centers $240,000; SOGUIPAH $120,000; IRD $450,000
Project Details: 

A coastal country bordered by Côte d'Ivoire, Mali, Liberia, Sierra Leone, Guinea Bissau, Senegal and Mali, Guinea is at the crossroads of major West African climate groups including the Guinean coastal climate, the Sudanese climate and the wet tropical climate at the edge of the equatorial climate.

For several successive decades, the country has recorded a considerable decline in rainfall over the entire territory. This decline has been accompanied by a general rise in temperatures, recurring droughts since the 1970s, a decline in the frequency and intra-annual distribution of rainfall, early and frequent floods, and sea-level rise.

The effects of these changes is having negative consequences for many rural development sectors still largely dominated by rainfed activities and for communities already living under precarious conditions.

By expanding hydrometeorological infrastructure and strengthening institutional capacities in climate monitoring, early warning and development planning, this project is aimed at reducing vulnerability to shocks and promoting climate adaptation in Guinea’s most exposed sectors.

The project feeds into national and global priorities including Guinea’s National Economic and Social Development Plan (PNDES) 2016-2020, Vision Guinée 2040, Guinea’s National Adaptation Programme of Action (2007) and the country’s Intended Nationally Determined Contribution (2015) submitted to the UNFCCC under the global Paris Agreement.

It cuts across several Sustainable Development Goals in Guinea, including SDG 7 (Gender Equality); SDG 12 (Sustainable Consumption and Production), SDG 13 (Climate Action) and SDG 15 (Life on Land).

Expected Key Results and Outputs: 

COMPONENT 1: Technology transfer for monitoring climate and environmental infrastructure

Outcome 1: The capacities of the national hydrometeorological departments are strengthened in monitoring extreme weather phenomena and climate change

Outputs:

  • 64 hydrological stations with telemetry, processing and archiving of data rehabilitated/installed and operational.
  • 37 automatic weather stations, 1 upper air station and 24 lightening detection sensors with archiving and data processing facility rehabilitated/ installed
  • A training program for the efficient operating and maintaining of the hydrometeorology equipment is developed and delivered to hydrological and meteorological technicians of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A training program to run hydrological models and produce climate information products and services (including early warning information) is delivered to meteorologist engineers and hydrologist engineers of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A centralized national climate data and hazard information center and knowledge management system is set up

 

COMPONENT 2: Integrating climate information, early warning and climate adaptation products into development plans.

Outcome 2: The generated climate products and services are accessible and used efficiently and effectively for the production of warnings for producers and in the drafting of medium- and long-term climate-resilient development plans

Outputs:

  • Risk profiles and maps for floods, landslides, thunderstorms, bushfires, stormy winds, and droughts, malaria and meningitis (length of transmission period and geographic range), risk zoning based on hazard and risk maps for all ecological regions of the Guinea, the key river basins, agrometeorological bulletins, rainy season outlooks are developed
  • Hazards risks and climate information products and services are integrated in the multi-year investments plans of the agricultural, water, environment and health sectors, the national land use plan, the national disaster risks management strategy and the local development plans of 26 municipalities
  • A multi hazards Early Warning System covering all Guinea is developed and operational
  • A financial sustainability strategy for the Early Warning System and the centralized national hydroclimatic data and hazard information and knowledge system is developed
Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy. Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies. Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation  
Contacts: 
UNDP
Julien Simery
Technical Specialist - Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Programme Meetings and Workshops: 

Inception workshop, August 2019.

Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
February 2017
Description: 
Concept approved by the GEF
Month-Year: 
March 2019
Description: 
GEF CEO endorsement
Month-Year: 
August 2019
Description: 
Inception workshop
Proj_PIMS_id: 
5552