National

Taxonomy Term List

Strengthening the Resilience of Climate-Smart Agricultural Systems and Value Chains in the Union of Comoros

Comoros is particularly vulnerable to climate change, like other Small Island Developing States (SIDS). Due to its location and topography Comoros is among the most climate vulnerable countries in the world, and 54.2 percent of the population live in at-risk areas. The climate risk index of 25.33 for the year 2019 places the Comoros 16th (out of 180) of the countries most at risk. This value is mainly attributable to the passage of Cyclone Kenneth in April 2019 while the longer-term climate risk index, for the period 2000-2019, is 90.00 corresponding to the 97th rank. Comoros is extremely vulnerable to the amplification of rainfall variability linked to climate change, especially since the rural population is entirely dependent on rainwater harvesting. Models predict an increase in the annual average temperature, as well as increasing and intensifying risks associated with climate change, such as sea level rise, floods, droughts, and cyclones. Climate impacts are impacting agriculture, vulnerable ecosystems and livelihoods.

The proposed project “Strengthening the Resilience of Climate-Smart Agricultural Systems and Value Chains in the Union of Comoros” will aim to increase the resilience of 98,000 people, over 11% of the Comoros population, by focusing on key agricultural value chains vulnerable to the impact of climate change, including vanilla, ylang-ylang, and clove, the three main Comorian export commodities. The intervention will build capacities and support investments in climate-smart practices, more autonomous supply of inputs, better climate risk management and better access to knowledge and training, providing resilient livelihoods options for smallholders while reducing import dependence and increasing access to better quality, locally produced food. Implemented over a period of five years with an allocation of US$10 million from the Global Environment Facility Least Developed Countries Fund, the intervention will build on and make US$46 million worth of co-financed investments in agriculture and transportation in Comoros more resilient to climate change impacts. The project is aligned with and contributes to the Emerging Comoros Plan 2030, the flagship national strategy guiding the country’s development and green recovery efforts.

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (43.759277142724 -11.939019063947)
Primary Beneficiaries: 
98,000
Financing Amount: 
US$10 million
Co-Financing Total: 
US$46 million (Government of Comoros, UNDP)
Expected Key Results and Outputs: 

Component 1. Systemic, institutional and individual capacities for climate-resilient agriculture includes one outcome: Outcome 1. Enhanced capacity of national institutions and value chain actors involved in agriculture development to guide, plan, supervise and implement climate-resilient practices. The strategy for achieving outcome 1 is based on 3 outputs related to capacity development (i) of the institutional actors responsible for developing climate-adapted solutions and of CRDEs responsible to provide extension services to support their adoption, and (ii) of smallholder farmers, collectors and retailers to help them cope with the risks and uncertainties related to climate change, and (iii) through the development of guidance tools to support the adoption of climate-resilient practices. The development of institutional capacities will facilitate the replication of the lessons of this project to the whole agricultural community and will allow the continuous adaptation of tools and approaches to the evolution of the climate.

1.1 Capacity development plans elaborated and implemented to increase the institutional skills required to plan, develop, disseminate, and support the adoption of climate-resilient agricultural practices among smallholder farmers, and value chain actors. In 2013, the government established a network of sixteen (later expanded to nineteen) Rural Economic Development Centers (CRDEs) in rural areas of the country to supervise rural development programs for the improvement of the economy through the production and environmental protection sectors. CRDEs are local support structures for farmers responsible for providing services adapted to their needs to strengthen the resilience of agricultural systems and value chains. The CRDEs are in particular responsible for training farmers, providing technical extension services, support and advice to producers, supervising professional organizations, ensuring the collection and management of data, providing support to improve rural populations' access to agricultural inputs and supporting the development of basic infrastructure (eg hydraulics, supply, etc.). CRDEs will therefore be key beneficiaries of the project's capacity building interventions and will be at the centre of the project interventions to support small agricultural enterprises and other value chain actors. The rationale for the selection of target intervention areas is presented in section 1b. Project Map and Coordinates.

Strengthening the capacities of CRDEs will require a significant involvement of the public administration to support the recruitment of staff with adequate training meeting the profiles defined for CRDEs and ensure their continuing training and include aspects of adaptation to climate change in the training curriculum for agricultural technicians (University of Comoros and National Horticultural Center): a) Redeployment of institutional staff: Faced with the recruitment constraint within the public service, the project will advocate with the authorities within the ministry and the national and regional directorates and the Governorates of each island for the redeployment of staff from the administrations towards the CRDEs. The Regional Directorate is responsible for proposing the assignment of technicians to the CRDEs and the ministry is responsible for their recruitment. b) The project will support the definition of criteria for the selection of candidates for the assignment of personnel to CRDEs to ensure that they have the capacity to fulfill the responsibilities of the personnel (Director, Accountant Manager, Administrative Assistant and Technicians of the Center) as defined in Article 14 of Decree No. 13-015 relating to the status of Rural Economic Development Centers (CRDE). For each of these positions, the project will provide details on the requirements and skills required and will specify the need to work in rural areas. c) The project will support the establishment of a continuous training system and promote self-training focused on adaptation and resilience to climate change for CRDE staff. The project will work with institutions that provide training (National Horticultural Center and UdC) in order to include these themes in their curricula. Also, online resources are available (fr.csa.guide) to facilitate self-training in climate-smart agriculture on the CGIAR (Consultative Group on International Agricultural Research) and CCAFS (Climate Change, Agriculture and Food Security) websites. Modules have also been developed by FAO and are available in French. d) The project will support the development of a training of trainers’ program (namely in collaboration with FOFIFA and FIFAMANOR of Madagascar), which will target technicians within the staff of CRDEs who have more capacities in the most relevant areas. The trainings will cover different themes relating to climate-smart agriculture, including the selection and production of suitable seeds. e) The project will support the strengthening of the skills of CRDEs in communication and their essential role as extension centers focused on the development, evaluation, demonstration and dissemination of improved and climate-resilient agricultural practices to farmers, and their support throughout their adaptation to new techniques and approaches as well as in the traceability process through digital platforms and technological solutions.

This output is also focusing on strengthening the capacities of the other parties responsible for planning and supporting the implementation of climate-adapted agricultural practices, namely the National Directorate of Agricultural and Livestock Strategies (DNSAE), local authorities, NGOs and the private sector. Based on assessments of capacity development needs, the project will support the strengthening of the technical capacities of state actors (DNSAE and regional directorates for Agriculture), local authorities (municipalities, including the mayor and councillors), NGOs (including DAHARI, ARAF, Initiative Développement, Ngochao, 2 Mains, GAD, Mesha, and the Jeune Chambre Internationale), and the private sector (especially in relation to cash crops including collectors, vanilla preparers, exporters) to identify vulnerabilities to climate change in agricultural and pastoral activities, and develop and implement long-term adaptation strategies, through training, dissemination of knowledge through various media, and the development of action research involving these actors. (b) The project will support the development of the capacity to develop and update agricultural land use plans and agricultural calendars through the establishment (composition, terms of reference and resources) of a multidisciplinary working committee in charge of to develop and update the agricultural calendar on an annual basis and based on meteorological data and the analysis of the vulnerabilities of the various segments of the targeted sectors.

1.2 Training packages developed and delivered by CRDEs to farmers and agriculture value chain actors to enable the implementation of climat risk reduction measures. To achieve this output, the project will target local farmers, men, women, youth, and people with disabilities (PWDs), working individually or within cooperativeswith a special consideration given to facilitating attendance by women and PWDs. Capacity development needs will be assessed during the preparation of the project document (PPG). The trainings will be organized by the CRDEs who will also ensure the demonstration of climate-adapted practices within their plots, and will be provided by relay farmers, to build the capacity of farmers to understand and assess the effects of climate change on the condition of plots, crops and livestock, and to identify appropriate measures to improve it. Where appropriate, training will take advantage of the digital platform of the CRDE network, which aims, among other things, to facilitate access to online trainings on climate-smart agriculture and the digital transition.

Measures to improve climate resilience may include: i) improvement of soil condition to restore or increase productive capacity and counter erosion; ii) selection of new climate-resilient agricultural crops and varieties, and livestock options, suitable to local weather and soil condition of the plots (identified under the output 2.1 and in line with guidance provided in the agricultural land use plans under the output 1.3) and to the needs and interests of farmers; iii) adoption of practices (such as agroforestry, hedging, associated crops, agropastoralism) that strengthen the climate resilience of agriculture and livestock, and identified under the output 3.1.

In accordance with a national strategy to encourage actors to further specialize within value chains, training will also address aspects of processing, marketing and packaging of agricultural products. The climate change impacts on these segments of the value chains will be assessed to identify vulnerabilities and required adaptation mesures to increase their climate resilience, and develop/implement related trainings.

To further reduce the vulnerability of smallholder farmers in the context of climate change, the project will equally support the establishment or strengthening of local farmers cooperatives and improve their capacities in governance, microfinance and micro-entrepreneurship. To contribute to the financial sustainability of the climate-responsive solutions proposed under the project, trainings will include the development of business models that integrate the depreciation cost of inputs (e.g. infrastructure) into the price determination of products.

1.3 Guidance plans and tools to support the adoption of climate-resilient agriculture are designed, assessed, and disseminated on the basis of the analysis of the climatic and socio-economic vulnerability of each of the sectors of the targeted value chains, and include agricultural land use plans, crop calendars, advice sheets on varieties and agricultural practices for adapted varieties including for market gardening, cash crops, food crops, fodder, and for agroforestry including hedging (embocagement). To achieve this output, the project will undertake: (a) Climate and socioeconomic vulnerability analysis for all sections of targeted value chains. In order to identify the main issues affecting the value chains of targeted cash crop and market gardening and to better define the interventions needed to strengthen their resilience, the project will involve the value chains actors to document and assess climate, environmental, and socioeconomic vulnerability in all sections of the value chains. The vulnerability assessment will integrate the results of the assessments conducted by the CGIAR for tomatoes, bananas and manioc crops based on exposure to several factors related to climate change[1]. As part of the vulnerability analysis, the project will develop value chain climate risk profiles. Assessments of the impacts of climate change often focus on production while neglecting the other components of value chains. However, successful adaptation requires thinking about how climate change will affect all aspects of the value chain. It is proposed to carry out this reflection with the stakeholders concerned by following the approach of climate risk profiles[2]. Discussions will take place with value chain actors, i.e. producers, collectors, cooperatives and exporters, including the local populations involved, on their perception and experience of climate change and its impact on cultivation, harvesting, storage, transportation and processing of products. These discussions will also involve support and supervision structures for agricultural production in the field (CRDE) to consolidate understanding of the risks and effects/impacts of climate change on the different segments of the value chains. These consultations will help identify the individual and institutional actions and capacities needed at each level for the design and adoption of effective climate change adaptation measures, such as climate-smart agriculture practices or access to innovative information/communication tools or technologies that facilitate their adaptation. Solutions will be identified for each segment of the value chains – inputs, production, collection, storage, processing and marketing – to increase the adaptive capacity of value chain actors to climate change. This exercise will make it possible, among other things, to identify the most vulnerable actors (men-women-young people-people with disabilities) within each of the value chains. In addition, the review will document the land tenure situation of cultivated plots as well as governance, gender and inclusion issues in order to identify the challenges to tackle so that value chains are resilient, inclusive, sustainable and that the benefits are equitably accessible and distributed among the different actors, as between men and women.

(b) Agricultural land use plans within the areas supported by each of the CRDEs: The project will support planning for optimal land development that takes into account projections of climate change and its impacts, as well as the potentials and vulnerabilities of current and new crops using the FAO Ecocrop tool[3]. This planning will build on existing plans for individual plots (approximately 75% of smallholder farmers have developed climate-adapted land use plans for their individual plots, with the support of CRDEs, that take soil and climate into account) and knowledge, including studies carried out by CGIAR as part of the development of an IFAD project. Such plans will integrate the planning carried out for protected areas under the UNDP-GEF project and the planning carried out for the Mwali Island Biosphere Reserve with support from AFD. (c) Crop calendar: Development of an agricultural calendar adjusted to new weather conditions, supplied and updated on an ongoing basis according to the acquisition of new knowledge. (d) Operating plans: The project will support the parties concerned to develop or update plans for agricultural and agro-pastoral operations at the individual, cooperative and CRDEs levels. (e) Online tool: The project will support the development of an online tool to provide advice to farmers and disseminate knowledge on climate-smart agro-ecological practices on the basis of knowledge and best practices developed in the Comoros by CRDEs, farmers and other stakeholders in the sector[4]. The feasibility of enhancing the efficiency of the real-time dissemination of agrometeorological forecasts by contracting the dissemination of messages to individual operators to telephone companies will be assessed.

Component 2. Diversification of climate-resilient value chains includes one outcome: Outcome 2. Increased resilience of agricultural actors through the identification and promotion of new climate-resilient value chain options with good prospects for profitability, increased access to national and international market information and equitable benefit sharing. To achieve outcome 2, the project will support interventions to identify new value chain options which climate-resilience, profitability on national and/or international markets, and social acceptability will have been carefully assessed and validated with the support of CRDEs and INRAPE strengthened expertise. To achieve result 2, the project will support interventions aimed at identifying new value chain options whose climate resilience, uniqueness of components or properties, profitability in national and/or international markets and social acceptability will have been carefully assessed and validated with the support of the CRDEs and the enhanced expertise of INRAPE. Increased awareness of actors within national institutions, policymakers and private sector investors not only on the challenges posed by climate change to Comorian agriculture, but also on the potential brought by a diversity of new adapted value chains to the country's climate and environmental conditions, and by agricultural practices that will make it possible to increase the resilience of traditional crops, will promote the political support needed to make the changes, particularly at the level of the CRDEs, and mobilize the investments required from the private sector to develop value chains. Equity in benefit sharing between value chain actors and decent incomes are essential elements for the sustainability and replicability of the solutions developed under the project and will be ensured through the above-mentioned investments, political support and negotiation. and the signing of agreements between value chain actors ensuring the equitable sharing of benefits. Access to market information will enable value chain actors to position supply in relation to existing markets and negotiate appropriate prices commensurate with the quality and uniqueness or rarity of the products offered. Benefits to smallholder farmers will be optimized through developing product processing and marketing capacities, and improving CRDEs’ capacities to organize the distribution and the marketing through fairs, as inspired by Diboini CRDE’s successful experience, and promoting the multiple advantages of organic and fair-trade agriculture on the local and national scene and promoting the quality and specificity of Comorian products on the national, regional and international markets. This component will build on the contributions of co-financing projects aiming at eliminating obstacles in the commercial circuits (building on the achievements of co-financing partners for road rehabilitation, including Sima -Moya and other rural roads (BafD, PIDC-BM, AFIDEV-AFD).

2.1 Identification of climate-adapted agricultural varieties and livestock breeds to develop climate resilient and profitable value chains. A major focus of the project is to help famers shift from a few climate-vulnerable crops to a diverse selection of climate-resilient agricultural and livestock options that can support the development of profitable value chains. Diversification is an integral part of the strategy to build climate resilience, reduce risk and increase the chance of ultimate success. A more diverse array of crops/varieties is more likely to contain varieties that provide overall resilience to a farmer’s field (or to the several fields of a farmers’ group), as there is a greater chance of any one or a few of them having traits that enable them to adapt to a changing climate, or that confer resistance to new pests or diseases whose spread is favored by climate change. Diversifying farmers’ sources of income and spreading harvests and revenues throughout the year will also contribute to strengthen farmers resilience to climate change.

This will be achieved by identifying new climate-adapted cash and garden crops and livestock options whose demand is strong on national or international markets, which only require small areas (thus reducing the risk of expansion of cultivated areas at the expense of natural forests), which production cycle is short, and which can be processed locally[5]. (a) As part of the PPG, a series of Comorian products will be examined including varieties endemic to the Comoros or which have become rare on a regional or global scale and products whose specificity is based on traditional production techniques that meet the requirements of agroecological cultivation[6]. For each variety, the review will focus on the identification of its soil and climatic requirements and their correspondence in the Comorian context, the investigation of distinctive assets in existing and potential markets and will also include an assessment of the interest of farmers, men, women and youth. (b) The project will also seek to strengthen the climate resilience of market gardening sectors targeting local markets in order to increase household self-sufficiency and food security, reduce the need to import lower quality products, while creating new jobs, especially for women and young people. The project will work with CRDEs to demonstrate and disseminate adaptation solutions whose effectiveness has been demonstrated within the framework of the CRCCA project and will develop solutions based on soil-less cultivation of short-cycle varieties, which can be grown on small areas in urban or peri-urban areas (where the majority of the Comorian population is concentrated), using hydroponic systems with reduced water and input requirements, and therefore attractive and more accessible for young Comorians.

The project will also contribute to strengthening the climate resilience of poultry and goat farming value chains targeting local markets through the identification and assessment of new climate-resilient breeds. Integrating the rearing of climate-resistant goat and poultry breeds into the family economy will help increase self-sufficiency and food security for families, reduce the need to import lower quality products, while creating new jobs accessible to women and PWDs.

For poultry farming, the project will support the development of the CRDEs’ capacities to develop Kuroiler type breed chicken farming practices adapted to the Comorian climate, to demonstrate them, and to provide training to farmers. The project will build on a study conducted in 2019 by the Tanzanian company AKM Glitters on behalf of the Diboini/Hamalengo CRDE and UNDP-Comoros, to assess the situation of the poultry sub-sector in Comoros and recommend solutions adapted to the Comorian context and climate, with the intention of relaunching the subsector in the aftermath of the devastation caused by the cyclone Kenneth.

Goat and cattle breeding is practiced by many people in rural areas, especially young people and women. Goats generally possess high thermotolerance compared to large ruminants such as cattle that enable them to maintain their production under extreme climate conditions and to play an important role in mitigating and adapting to climate change, namely i) their higher capacity than other farm ruminants to effectively convert feed sources into milk and meat, ii) their lower methane emissions in comparison to other domestic ruminants. For the rearing of goats, the project will promote a sustainable intensification approach through the hedging technique (embocagement) which has long been proven in the Comoros, especially in Ndzuani and the building of goat sheds[7] to protect them from predation. By creating a balanced environment combining trees, culture -including fodder, compost, and livestock in an enclosed space where the composting of animal and plant waste enriches the bocage according to the logic of the circular economy, and by associating water and soil conservation measures (bunds, ponds, living hedges), this approach will mitigate the effects of heat stress and ensure a supply of quality fodder and thus improve the resilience of goat herds to the effects of climate change. This approach allows at the same time to address the problems linked to extensive agriculture and slash-and-burn agriculture still practiced in the Comoros, to mitigate soil erosion and degradation, to reduce the need for chemical fertilizers and to maintain biodiversity.

Through value chain analyses conducted for the climate adapted crops, varieties or breeds, the project will identify the options with favorable prospects for profitability. The value chains analyses will follow guidance provided in UNDP’s “Toolkit for value chain analysis and market development integrating climate resilience and gender responsiveness”[8] and will support their promotion with CRDEs, farmers, cooperatives, and the private sector by publicizing the successes of the new approaches by the beneficiaries (champions) themselves and by facilitating visits to demonstration plots and sites where new techniques have been successful. Communication approaches could use the contrast of “before and after” or “with and without” images. Messages targeting older farmers will be broadcasted through local radios and the project will include training of these older farmers in the use of phones and social media.

2.2 Capacity development plan elaborated and implemented to strengthen INRAPE’s capacities to characterize new climate-adapted Comorian agrobiodiversity products, and control the quality of export products. The project will build on the support provided by the Japanese government (source of co-financing) for the construction of a new multidisciplinary laboratory for INRAPE[9], which responds to the institutional assessments carried out as part of the UNDP project (2013-2016) for the development of a strategy to strengthen a sanitary and phytosanitary system (SPS) capable of supporting the development of the country's agricultural operations. The project will support the development of the capacities of this national laboratory so that the country has the necessary skills and equipment to carry out characterization studies independently and demonstrate the uniqueness of Comorian varieties, to certify and label them, and to preserve access to them for the benefit of the people of the country.

2.3 Web and mobile trading platforms developed to connect agricultural producers and buyers in national and international markets and ensure timely access to market information for climate resilient agricultural products. To enhance access to national markets, the project  will build on the physical connectivity provided through WB co-financing for the rehabilitation of small ports to improve transportation between the islands, and on interventions carried out by development partners through projects aimed at improving the business climate. The GEF investment will focus on the development of a web and mobile trading platform to access market information and that connects actors in the agricultural value chains and agricultural service providers, processors, and buyers by taking advantage of the intervention of the International Trade Center (ITC) which set up a platform in Ndzuani to communicate price information of Comorian products to cooperatives (to be identified in the baseline). Support has been limited to Ndzuani so far because ITC targeted well-established cooperatives and avoid opportunistic ones set up to benefit from project support. The project will draw on this experience to replicate the successful interventions as well as the platform set up by UNDP to improve the competitiveness and accessibility of products and services. This platform can be used to provide agricultural advice and information by experts, and to offer services for the development of profitable agriculture. The connection of producers and traders makes it easier to find all the information on innovations and business opportunities in the agricultural and agrifood sector and facilitates the necessary dialogue to develop equitable benefit sharing agreements.

2.4 Awareness campaign conducted to enhance understanding by institutional and private actors  of the sector of the climate change risks and adaptive measures. The project will carry out an awareness campaign targeting institutional and private actors involved in the agriculture sector, including smallholder farmers, and the general public, especially young people, on the ongoing and imminent devastating effects of climate change on agriculture and on new opportunities identified through the project interventions. The goals of the campaign will include demonstrating the potential revenue that can be generated to spark interest from young people and the private sector. This campaign will be conducted in collaboration with the chamber of commerce and business incubators. The awareness campaign will be an opportunity to promote the profession of farmer, by highlighting champion farmers and their success stories.

2.5 Negotiation and signature of agreements ensuring fair benefit sharing among actors in climate-resilient value chains. The project will identify and set up necessary processes and mechanisms required to ensure tangible and maximum benefits accrue to farmers through: (a) Dialogue facilitation between the private sector and representatives of local farmers to strengthen and formalize the links between these parties for the development of products that are integrated into value chains; (b) Development of business models (through which prices are determined) integrating the optimization of benefits for local farmers, rules for benefit sharing, and incentives to comply with the rules associated with targeted certifications. These models may provide for a contribution to the financing of CRDEs based on the user-pays principle; (c) Negotiation and signature of agreements with relevant actors in each value chain.

Component 3. Implementation of agroecological practices adapted to climate change in targeted intervention areas includes one outcome: Outcome 3. Increased adoption of climate-resilient practices and crops/varieties by smallholder farmers and value chain actors facilitated by support systems and adequate provision of inputs and resources. This outcome will be mainly the result of investments on the ground, following approaches to mitigate the risks associated with climate change, to develop a local, quality and low-cost supply of agricultural inputs, climate-adapted seeds, tools and small equipment to enable the adoption of climate-smart practices, and to support the implementation of a set of practices and approaches that strengthen the climate resilience of agricultural and livestock production. The strategy to achieve this outcome is based on initiating smallholder farmers to the concept of risk management, identifying approaches and practices whose effectiveness in reducing climate vulnerability has been demonstrated by CRDEs and supporting their adaptation by farmers, facilitating access to microcredit on terms adapted to the conditions of farmers, improving the local supply of agricultural inputs for increased adaptability, and developing incentives linked to effective and proven adoption of sustainable and climate-adapted production. To contribute to the sustainability of this outcome, the project will adopt an approach where any project contribution for protective structure (such as goat sheds, greenhouses and shade shelters) and equipment (such as micro-irrigation systems, small tools) will involve a counterpart (in-kind contribution as work) from the beneficiaries in order to promote ownership and maintenance. In addition, the income from part of the agricultural production linked to the use of the infrastructures will be allocated to the maintenance and renewal of the infrastructures. Maintenance will be carried out by an infrastructure management committee comprising users supervised by CRDE staff, such that the government should not have to invest further beyond the project for their replacement. The project will include training on maintenance and the importance of savings not only as a risk management strategy but also to ensure the maintenance and renewal of equipment and infrastructure that contribute to strengthen climate resilience of agricultural production.

3.1 Agronomic approaches and practices (e.g. water and soil conservation, crop diversification, mixed production systems, fodder cultivation and conservation, protective structures) developed and piloted by CRDEs to reduce climate vulnerability of the agricultural sector. The CRDEs will identify and pilot promising approaches to reduce the climate vulnerability of the agricultural activities of farmers in their territory. Successful practices will be promoted to farmers by relay farmers. Project interventions to better manage the risks associated with climate change will focus on: (a) raising awareness among farmers of the concept of risk management in the face of climate change and the adoption of sustainable strategies and practices that contribute to the health of agroecosystems and related services on which they depend (soil conservation, protection of pollinators, mixed production systems such as agroforestry, hedging[10] and agropastoralism); (b) diversification of agricultural production and sources of income for households and small farmers in their plots (e.g., new climate-resilient crops and poultry breeding); (c) investments in protective structures such as greenhouses, shade shelters and goat sheds, and (d) the adoption of approaches and practices whose effectiveness in reducing the vulnerability of agriculture and livestock to new climatic conditions has been demonstrated by pilot tests carried out by the CRDEs.

Approaches to be tested and piloted by CRDEs include : (i) Wherever appropriate, the project will encourage the development of agroforestry systems where various associations of cash crops, fruit, food crops or livestock will be tested. Agroforestry systems provide multiple economic, environmental, and social benefits in a context of climate change through the protection of crops, livestock, soils and rivers, the diversification and spreading out of agricultural income through short, medium and long-term production of food products, fodder, wood and other non-timber products, in addition to other significant benefits such as the creation of habitats for biodiversity, landscape improvement, as well as carbon sequestration. Agroforestry can play a crucial role in improving resilience to uncertain climates through microclimate buffering and regulation of water flow. Promoting diversity through agroforestry systems will also increase the availability of alternatives for birds and reduce predation on valuable crops (which is aggravated by extended droughts). (ii) Diversification of tree and shrub species and establishment of living hedges to reduce exposure to strong winds whose frequency is increased by climate change. (iii) The construction of goat sheds for farmers communities to protect animals from extreme weather conditions, hedging (embocagement) and agropastoralism to reduce climate vulnerability and reduce pressures on natural ecosystems, growing legumes as fodder in the bocages, growing and storing dry fodder (hay) and producing silage for livestock feed. (iv) Practices for improving the moisture holding capacity of the soil (organic mulch and gravel), the use of compost to increase soil organic matter, and micro-irrigation to lengthen cultivation period and diversify the cultivated varieties. (v) Water and wind erosion mitigation by the adoption of practices that promote soil cohesion, such as the use of cover crops, compost and green manure, the use of soil conservation and restoration techniques such as the construction of stone walls and anti-erosion lines planted with vetiver. Vetiver is a beneficial, inexpensive, and easy-to-maintain means of protection. Thanks to its resilience capacity in a wide range of ecological and climatic conditions[11], vetiver is effective in preventing and combating soil erosion in a climate change context. Yet, its use is not known in the Comoros and it is currently difficult to find. (vi) To help maintain healthy populations of pollinators, the project will conduct an assessment of threats affecting them (e.g. bee parasites, bushfires[12] and pesticides such as neonicotinoids), identify control measures to be implemented, required resources, and actors to be mobilized.

3.2 Financial products developed and made accessible to smallholder farmers to support the adoption of climate-resilient practices.  Project interventions will involve (a) raising smallholder farmers’ awareness on savings and credit as a risk management approach, building on interventions planned under the WB PIDC project (identified as co-financing to this project) which aim to encourage savings in the SANDUKs micro-credit institution, and providing financial education; and (b) facilitating access to suitable financing through negotiations with local micro-credit institutions (SANDUKs) for the development of credit products adapted to the reality of farmers, i.e. credit at low rates tied to firm loan conditions to invest in climate-smart productive activities, and repayment schemes adapted to agricultural production cycles, thus contributing to reducing the risks for farmers’ investments. Risk reduction measures (eg capacity building of micro-credit institutions, communication and marketing support) to be put in place will be examined within the framework of the PPG.

3.3 Local supply of agricultural inputs, small-scale equipment and climate-resistant  varieties seeds developed. The project will help reduce dependence on external supplies and increase the autonomy and adaptability of farmers to climate change by: (a) strengthening CRDEs capacities to produce quality seeds of climate-adapted crops and varieties meeting the needs of farmers (for self-sustaining agriculture) and the needs of the target markets (for cash crops), and by supporting this production, (b) supporting artisanal microenterprises involved in the recycling of metal waste for the manufacture of tools and adapted micro-irrigation systems (recovery of metal waste and abandoned car wreck) to manufacture agricultural tools meeting the needs of smallholders, (c) improving the capacities of microenterprises currently involved in the artisanal making of low-cost drip irrigation systems to meet the needs of farmers and cooperatives involved in the project; (d) developing capacities to produce organic fertilizer and supporting this production. The capacity development needs and resources available to support trainings will be identified during the project preparation (PPG).

3.4 Agricultural practices to strengthen agriculture and pastoral resilience, including the provision of climate-adapted crop varieties and breeds, implemented. The project will provide support for the implementation of farm and agro-pastoral plans at the individual and cooperative levels (developed under Output 1.3) through the adoption of practices and approaches that strengthen climate resilience (as identified and demonstrated under the output 3.1), for the establishment of nurseries and seed reserves, for soil conservation and restoration activities, including composting and green manure, and for implementing micro-irrigation systems. The project will support the use of protective structures and the adoption of mixed systems combining livestock, agriculture, fodder cultivation and trees, including agroforestry, hedging (embocagement), agro-pastoralism, and soil conservation and restoration, helping to restore soil productive capacity and other ecosystem services (water, fodder, pollinators, and carbon capture) that contribute to climate resilience of agroecosystems. The solutions proposed by the project will be to reduce soil erosion and increase diversity within crop plots and agroforestry systems, which in turn, will reduce the vulnerability of agricultural systems to pests and diseases which occurrence is increased as a result of climate change (as presented in the section on Effects of climate change on the agroecosystem and agricultural practices as experienced by smallholder farmers - Part II: Project Justification, 1a. Project Description) as fields that support a variety of crops are less attractive to predatory insects. The project will contribute to halt agricultural encroachment at the expense of forests (mostly within protected areas) by improving the productivity of agricultural plots, by restoring plots where soil is degraded, by collaborating with the authorities responsible for protected areas[13] to ensure that agricultural activities within village terroirs are conducted in harmony with the conservation objectives of protected areas, and by promoting mixed systems such as agroforestry that promote biodiversity.

Under the PPG, the need to invest in infrastructure to channel water from structures set up by the UNDP-GEF CRCCA and UNDP-GCF projects to the plots of CRDEs and farmers will be assessed.

3.5 Incentives (traceability and certification) in place to foster the adoption of climate resilient and sustainable practices across traditional and new value chains. This will include the following: (a) Certifications. The introduction of incentives to encourage the adoption of high-quality standards including climate-smart practices and varieties, organic farming and fair trade, to access higher added value niche markets, will help encourage farmers to maintain practices that promote resilience to climate change and ensure the financial sustainability of these adaptation measures. The selected certification will define a set of criteria that will be integrated into specifications to be followed by the various actors involved in the various stages of the value chain. These criteria should include adaptation measures to ensure climate resilience. A national committee composed of independent experts will be responsible for verifying the compliance of the various stages related to production (including cultivation, harvesting, storage, processing, transport) with the requirements of the specifications for the product to be eligible for certification. The criteria to be met for certification will be distributed to the producers concerned. The project will support value chain actors to gain access to these certifications and will also support the integration of climate resilience into the certification processes set up as part of the projects supported respectively by the WB and AFD (source of co-financing) for cloves and vanilla in other intervention sites. (b) Transparency and technology. Technology (e.g. blockchain) is available and can be used to ensure transparency through product traceability at all stages of the value chain by tracking the social and environmental impacts of products at every stage of their value chain, from local farmers to consumers, and thus support certification process. The project will assess the relevance, applicability (with users) and profitability of using a platform (via an application) to track and verify that each step in the value chain throughout the production process, meets adaptation criteria that can make these value chains more climate resilient. Using this tool, each step in the process is verified and recorded with time, date and geolocation as a secondary means of verification. (c) Facilitating change. To reduce farmers' reluctance to change and improve the efficiency of the transmission of technical knowledge to illiterate farmers, the project will adopt a strategy to through demonstration at the level of CRDEs, close supervision and long-term follow-up ensured by relay farmers. This transmission will be supported by the production of illustrated technical sheets, and the organization of visits - by and for the farmers - of sites where successful practices have stood the test of time, such as the plots developed through embocagement in the Nioumakélé (Ndzuani). The relay farmers involved in such a scheme will be identified and remunerated by the CRDE and thus become key partners in providing local support to farmers. At the same time, the project will put in place incentives to make the sector more attractive to young people. (d) Improvement of the perception of the farming profession. In order to change the negative perception of the farming profession by young people, the project will support an awareness campaign led by young people involved in value chains which will highlight the potential medium and long-term benefits of this profession. The awareness campaign may be supported by spot messages in the media and on the packaging of commonly used agricultural products.

Component 4: Knowledge Management, Monitoring-Evaluation, and Gender and PWDs’ Inclusiveness. This component will enable mainstreaming transversal issues of knowledge management and gender and PWDs inclusiveness into other project components and outputs focusing on knowledge and on gender. Knowledge management is critical not only for the achievement of the project’s objective, but for the sustainability of achieved results and replicability of climate-resilient solutions. Documenting, analysing and addressing gender and PWD issues as cross-cutting elements will allow to develop inclusive solutions to the climate adaptation challenge in agriculture, and ensure that men, women and PWDs benefit equally from the project support and that the concerns and experiences of women and of PWDs are an integral part of the implementation and monitoring and evaluation of the project. Lessons and successful experiences will be captured through the participatory monitoring and evaluation as part of the project annual planning process, through the participatory development of agroclimatic knowledge involving actively farmers, CRDEs, and researchers in a co-learning process, and recording and disseminating successful experiences among CRDEs, and with other relevant stakeholders in the country and in the region.

Outcome 4 Improved development, management, and dissemination of knowledge related to adaptation of the agricultural sector to climate change to support the replication of climate-resilient solutions among CRDEs, and at national and regional scale. This outcome will be achieved through the following outputs:

4.1 .Lessons learned from the project interventions documented and disseminated. This will be achieved through the annual monitoring and evaluation of project achievements using the indicators of the strategic results framework, and the identification and dissemination of related learnings with project partners, including projects in areas aimed at strengthening the climate resilience of agriculture, in the Comoros and in the countries of the region. Along with capacity building of CRDEs, and interventions on knowledge development and improvement of access to information, the project will support the management of knowledge developed through participatory monitoring and evaluation (involving beneficiaries) of project interventions, including the development of climate-adapted agricultural practices and their adoption by farmers, the improvement of the climate resilience in all segments of the various value chains and the development of new value chans for climate-resilient crops.

4.2 Agro-climatic knowledge for climate adaptation developed through strengthened monitoring and research-action involving farmers. CRDEs must become a place of experimentation, development, demonstration, teaching and promotion of new climate-adapted practices and crops and thus be at the heart of the generation and dissemination of technical knowledge allowing to adapt the agricultural sector. This learning and dissemination mechanism must also be deployed outside the CRDEs and set up within the plots of farmers who are experimenting with new approaches, techniques and varieties in order to involve them in the monitoring and evaluation of the results of these innovations and thus encourage their appropriation of successful approaches. Knowledge development may be based on interventions such as the following: (a) Contribution to the national database on agricultural yields and production developed by the FAO. This will involve training technicians within CRDEs on data collection, the use of GPS and entering observations into the database at the level of each CRDE, and the compilation of simple statistics to generate and disseminate technical knowledge and enable the agricultural sector to adapt to climate change. (b) Action-research programs involving farmers. This will involve establishing the necessary partnerships with INRAPE, the UdC including the University of Patsy (Ndzuani), the National Horticultural Center of Mvouni (Ngazidja), the CRDEs, relay farmers and farmers to carry out participatory action-research programs to generate new technical knowledge to adapt the agricultural sector to climate change. The possibility of associating one or more regional institutions to support research and training will be explored during the PPG (University of Reunion, National Center for Applied Research in Rural Development (FOFIFA[14]) (Madagascar) and CGIAR (Réunion).

4.3 Tools for experience and knowledge-sharing among CRDEs and actors in value chains are developed and operationalized. This will include the following: (a) The project will recruit a communication officer to coordinate the sharing of information through the development of short, practical guides in the form of booklets or illustrated sheets for farmers to record best practices and facilitate their adoption and follow-up in the local communities served by the targeted CRDEs as well as in all the CRDEs. (b) The project will support the experience-sharing mechanism among CRDEs and between CRDEs and farmers through a platform specific to CRDEs (under development with the support of a Comorian office). The project will support the consolidation of the digital platform set up within the CRDE network to, among other things, facilitate the exchange of information and the sharing of experiences between all actors in the value chains and create bridges between different segments, namely between producers and buyers. (c) The project will support the production of an online newsletter to share information relating to the adaptation and climate resilience of the agricultural sector, including activities and events linked or not to the project, including thematic articles, reports and interviews produced by CRDEs teams.

4.4 Gender and PWDs action plans based on comprehensive analyses are implemented, monitored, and evaluated to promote an inclusive approach to the adoption of a climate-resilient agriculture. During the PPG, an exhaustive gender analysis will be carried out to document gender issues in the agricultural sector and identify specific gender barriers. Based on this analysis, a gender action plan will be developed to be implemented, monitored, and evaluated as part of the project. Also, an analysis of the issues related to people living with disabilities (PWDs) in the agricultural sector will be carried out to identify the barriers specific to PWDs and to develop an action plan to increase their inclusion in the efforts to adapt the agriculture sector to climate change. The adoption of an inclusive approach towards gender, PWDs and youth to improve equity in value chains and access to income-generating activities, will involve the following: (a) The project will seek to improve income equity within value chains and improve the involvement of women, especially the elderly, and PWDs, in income-generating agricultural activities by promoting small scale family farming (e.g., family garden near the house, poultry farming). The project will promote the adoption of a more inclusive approach in identifying solutions designed within families. (b) The importance of demonstrating new practices and varieties will be essential to increase the motivation of young family members to support older ones. The development of specialized professions within value chains, such as the production of seeds, artisan scrap metal workers, or manufacturing biodegradable packaging, will diversify the types of jobs accessible to different segments of society. (c) In certain sites, according to their will, the project could support groups and associations to set up cooperatives (dairy, food, market garden cooperatives) or to strengthen their capacities allowing certain sections of the value chain to be integrated within of the cooperative, for example collection or processing, and improve profitability for all members of the cooperative.

 




[1] Bourgoin C, Parker L, Martínez-Valle A, Mwongera C, Läderach P. 2017. Une évaluation spatialement explicite de la vulnérabilité du secteur agricole au changement climatique dans l'Union des Comores. Work Document No. 205. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Wageningen, Les Pays-Bas. Available from: www.ccafs.cgiar.org

[2] Mwongera C. Nowak A., Notenbaert A.M.O, Grey S., Osiemo J., Kinyua I. Lizarazo M. et E. Girvetz. 2019. Climate-Smart Agricultural Value Chains: Risks and Perspectives. in T.S. Rosenthal et al. (eds.) The Climate-Smart Agriculture Papers.

[3] ECOCROP is a software tool that identifies 2568 plant species for given environments and uses (food, fodder, energy, erosion control, industrial purposes) which also contains a library of crop environmental requirements.

[4] The tool could present the following information: 1. Crop calendar indicating for each month what must be done for each crop (sowing, cultivation, flowering, harvesting), taking into account current meteorological data and, if relevant, the various cultivation areas. 2. Agroecological practices sheets covering, as useful, the following subjects: a) Culture sheets (for all traditional and new crops supported by the project): botanical information, cultural practices, pests and diseases, physiological disorders (symptoms, possible causes, solutions); b) Cultivation without harmful pesticides: control methods, natural or low impact pesticides; c) Plot maintenance; d) Irrigation: practices to minimize water requirements, rainwater harvesting, manual watering systems and micro-irrigation; e) Fertilization: knowledge of the nature of the soil, assessment of needs and different options for amending it; f) Composting: Preparation of various types of compost to meet different needs; g) Seed production. 3. Diseases, pests, weeds and invasive alien species (IAS): Sheets on the main problems affecting crops, including new diseases and pests recently introduced or favored by climate change: a) identification of the problem: description of signs and symptoms, photos of the effects on the different plants affected by the pest or disease; b) advice for prevention and control (favorable conditions, screening, preventive measures, physical and biological control)

[5] For example, compared to clove and ylang-ylang which require large areas (6m x 6m) and which cannot be harvested for several years after planting, ginger can be grown on an area of 0.25m x 0.25m, pepper and coffee can be integrated into agroforestry systems, and all can be processed locally to create local added value.

[6] For example, endemic varieties of bananas, yams, aromatic and medicinal plants, low caffeine coffee, high vanillin vanilla, ginger, nutmeg, aloe vera, large thyme, vetiver, turmeric, Plectranthus both Cuban Oregano type and Indian Borage type

[7] chevrières

[9] National Research Institute for Agriculture, Fisheries and the Environment

[10] embocagement

[11] With its developed and resistant roots, vetiver protects embankments and terraces, fertilizes and improves soil structure, and fights against pollution, erosion and flooding. It tolerates acid or alkaline soils (with pH from 3.0 to 10.5), saline soils or soils with high levels of metals and resists extreme climatic variations such as prolonged drought, floods, submersions as well as extreme temperatures ranging from 14°C to 55°C. After being affected by drought, salinity and other adverse conditions, this plant has the ability to re-grow very quickly when conditions improve.

[12] Bushfires can be started by pastoralists and by farmers who practice slash-and-burn agriculture. Since herders do not cultivate fodder, they depend on natural fodder which is increasingly affected by the lengthening of the drought period. Herders thus resort to bushfires, despite being illegal, to improve the palatability of pasture grasses. Often left unattended and uncontrolled, they spread over large areas and are harmful to the biodiversity of the affected forest areas, including pollinator species.

[13] The protected areas of the Comoros have been delineated by integrating villages and agricultural lands within their boundaries.

[14] FOFIFA is Madagascar's main agricultural research organization and conducts research on coffee varieties in the region including the Comoros

 

Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Enhanced capacity of national institutions and actors involved in agricultural development to guide, plan, supervise and implement climate-resilient practices.

Outcome 2: Increased resilience of agricultural actors through the identification and promotion of new climate-resilient value chain options with good prospects for profitability, increased access to national and international market information and equitable benefit sharing.

Outcome 3: Increased adoption of climate-resilient practices and crops/varieties by smallholder farmers and  value chains actors facilitated by support systems and adequate provision of inputs and resources.

Outcome 4: Improved development, management and dissemination of knowledge related to adaptation of the agricultural sector to climate change to support the replication of climate-resilient solutions among CRDEs, nationally and in the region.

 

Project Dates: 
2023 to 2028
Timeline: 
Month-Year: 
PIF Approval
Description: 
June 2022
Proj_PIMS_id: 
6628
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land
Barriers: 

Barrier 1. Insufficient capacities at different levels to plan and implement innovative agro-pastoral practices adapted to changing climatic conditions, oversee their adoption and train relevant parties.

(i) Limited capacities of CRDEs to provide local advisory, extension and agricultural support services to adapt practices to climate change: The weak capacities of CRDEs do not allow them to adequately fulfill their mandate, which is to supervise agricultural development, due to i) insufficient staffing caused by the constraint of hiring staff within the civil service, and ii) deficient skills. In some cases, the staff in place do not have the skills required to fulfill the functions entrusted to them (especially in the case of partisan recruitment) and certain profiles defined within CRDE staff - in particular planning and monitoring-evaluation - are not fulfilled. On the one hand, many technicians working in CRDEs are inadequately trained and have clearly insufficient technical capacities. On the other hand, technicians with adequate skills are available but are not recruited due to recruitment constraints within the public service. The CRDEs do not have the necessary resources to ensure the salary of the technicians who have acquired relevant work experience through their involvement in the CRCCA project. As a result, some CRDEs are not sufficiently operational, are understaffed and have insufficiently qualified staff. Continuing education opportunities for staff, especially to be better able to face the challenges of climate adaptation, are limited by the lack of a relevant curriculum in academic institutions. (ii) Insufficient capacities of the various actors responsible for planning, developing, disseminating climate-resilient practices is another key obstacle to their widespread adoption and implementation. Such capacity gaps exsit for the following actors and include: Insufficient technical capacity of state actors (DNSAE, regional directorates of Agriculture, CRDEs), local authorities (municipalities - mayors and councillors), non-state actors (national NGOs), and the private sector (especially for cash crops: collectors, vanilla preparers, exporters) to identify, develop and implement strategies and tools to oversee the adaptation to climate change of long-term agro-pastoral activities. (iii) The vulnerability of farmers is linked in particular to a lack of know-how and adaptive capacity and weak entrepreneurial capacities. Farmers and breeders have little mastery of sustainable cultivation techniques (soil preparation, organic fertilization, selection and access to adapted varieties, fodder cultivation, irrigation, pest and disease control), and lack the knowledge, know-how and models to adapt their practices on land that has lost its fertility, in unpredictable and restrictive hygrometric conditions, and to develop sustainable agriculture that strengthen climate resilience, including agro-pastoralism and agroforestry. The practices and calendars that have traditionally guided farmers are no longer adequate in the face of new climate conditions. The poor computer literacy and lack of openness to technological innovation of older farmers further limit their ability to adapt their practices to the challenges posed by climate change. (iv) There is insufficient technical knowledge and access to guidance /advice and information on technical pathways, technologies, infrastructure and markets to support the transition of agricultural systems to greater climate resilience based on healthier ecosystems. The traditional cropping calendar is inadequate; farmers still rely on predictions of elders based on unscientific practices, lack the knowledge for the identification and treatment of diseases and pests, and do not know enough about the diversification opportunities achievable in the Comoros. Short-term weather conditions are available and adequately cover the country, but the data is not translated into a crop calendar. Knowledge of parasite and disease infestations is insufficient and inadequately disseminated (mandate of INRAPE). Lack of information on prices (especially for cash crops) limits negotiating capacities. Access to information about market opportunities and requirements is inadequate.

Barrier 2. Lack of knowledge of alternative climate-adapted options with the potential to support a prosperous, diversified and equitable agricultural economy and insufficient political and private support for their adoption.

The vulnerability of Comorian agriculture to the effects of climate change is largely due to its lack of diversity and lack of knowledge and capacity to identify and develop alternative climate-resilient value chain options, and to assess their productive and commercial potential. In fact, the agricultural sector in Comoros is based on a narrow base limited to three cash crops and a few vegetable and food crops vulnerable to the effects of climate change. Furthermore, Comorian food products, which are mainly de facto organic[1], are more expensive than imported products despite the transport costs associated with imports. Imported food and vegetable crops, mainly from Tanzania and Madagascar, are grown industrially and therefore at lower cost. Consumers who can afford it prefer local products because they recognize the superior quality of organic terroir products. However, consumers with limited means are more likely to be reluctant or unable to buy it. The higher cost of local Comorian products is explained by the artisanal nature of the work, the remoteness of certain production areas which hamper access to local markets, and lack of access to market information for CRDEs, farmers, cooperatives, and other value chain actors. As a result, traditional agriculture is unprofitable, particularly in rural areas remote from urban markets, which limits young people's interest in this profession. Constraints to the fluidity of national markets, limited market connectivity (national and international), and lack of access to market information limit sustainable economic opportunities for smallholder farmers, due in particular to the country's insular nature, geographic remoteness, lack of reliable and regular transportation means between islands and suitable port infrastructure and lack of connection with reliable and predictable buyers. The profitability of agricultural activity is even more limited for smallholder farmers who are not integrated into cooperatives. They are therefore particularly vulnerable to other actors in the value chains who may take precedence in determining the conditions of production and the prices granted for the products, resulting in an inequitable sharing of profits. Another significant limitation to the profitability of Comorian agricultural products is the lack of processing and marketing capacities.

The diversification of agriculture through the development of new climate-resilient options that would give an edge in international markets, such as uniqueness of properties, is hampered by the lack of analytical capacity to perform the required characterization analyses. The Comoros agrobiodiversity, e.g. local coffee and ginger varieties, have unique characteristics that could be leveraged in niche markets. These characteristics must be documented and certified on the basis of biological and physico-chemical analyses which, currently, must be carried out by laboratories located in countries whose commercial interests may be in competition with Comorian interests, in addition to requiring complex logistics for the transport of samples to be analyzed.

Public and private investments for building the climate resilience of agricultural value chains and their diversification are limited due to the widespread negative perception of agriculture in Comorian society, coupled with the lack of awareness of its vulnerability to climate change and of its potential to evolve into a productive and resilient sector by decision-makers and investors disconnected from the reality on the ground. Another obstacle to improving the climate-resilience of agricultural practices is linked to the low attractiveness of agricultural activity for the younger generations who perceive the profession as obsolete and too risky because they do not have the assets or capital to deal with the risks inherent in adopting innovative agricultural practices. Faced with the urgency of daily needs, the elderly - who constitute a large part of the smallholders - are reluctant to adopt new practices because of resistance to change when facing new technologies, of too large gap between significant labor-intensive investments for soil conservation and restoration and other climate-adapted practices and the achievement of tangible effects, in a context where their livelihoods are precarious and known alternatives limited, leading them to pursue unsustainable land management practices for small short-term gains.

Barrier 3. Limited use of technologies and approaches to mitigate climate-related risks and low access to credit on appropriate terms to support smallholder farmers’ shift towards climate resilient agricultural value chains.

The adoption of resilient agricultural practices and approaches is hampered by the weak capacity to manage risks and uncertainties generated by climate change which is linked to the lack of knowledge on alternative options (barrier 2), on risk management approaches and on agricultural practices that increase resilience to climate change. Low financial autonomy and the difficulty of access to credit on appropriate terms for farmers, especially for men, worsens vulnerability to climate risks, and the culture of savings is insufficiently widespread in rural areas. Insufficient or lack of savings makes smallholder farmers very vulnerable to the effects of climate change since they do not have the resources to, for example, buy seeds for a second sowing following the failure of the first due to shifted or adverse weather conditions, or to purchase the equipment needed to adopt agricultural practices that increase climate resilience.

Lack of timely access to affordable agricultural inputs: Micro-irrigation equipment, tools, and seeds of varieties resilient to the new climatic conditions are difficult to access because they are imported and expensive. The lack of autonomous and timely local production of quality seeds and local supply of low-cost equipment maintains the dependence of farmers on external suppliers and results in prohibitive costs for the supply of suitable seeds, micro-irrigation equipment and with suitable tools

Lack of access to arable land due to the shortage and degradation of agricultural land and land tenure insecurity: Many plots are no longer fertile due to unsustainable soil management and support is needed to ensure restoration of soil fertility by techniques of soil conservation and restoration, agroforestry and agropastoralism, such as hedging. Also, the farmers who operate the state plots rent them out on the basis of an annual contract which allows them to cultivate them (about 10,000 KMF (≈ $ 23) per year). This situation is not conducive to the investments needed for the adaptation of agricultural practices.

Barrier 4: Limited consolidation and dissemination of knowledge on successful models and strategies (including developed by farmers) for the adaptation of agricultural practices to climate risks hinders their large-scale replication and limits the impact of efforts aimed at climate adaptation of agricultural value chains. CRDEs and national institutions concerned with climate adaptation of the agricultural sector do not have access to a sound knowledge base built from reliable data to support expert advice to manage climate risks appropriately and integrate it into agricultural land development plans and other guidance tools to support farmers in their decision-making. Farmers are thus left to resort to their traditional knowledge and non-adapted crop calendars and tools leading to inappropriate timing for agricultural works and maladapted practices, which results in a significant decrease and even a loss of yields.

Knowledge of climate-smart practices by all agricultural stakeholders is limited and not adequately recorded and disseminated. Also, the limited access of actors in agricultural value chains to appropriate information on agriculture, livestock, and climate prevents them from integrating climate risks into their decision-making. There is hardly any research being done in agriculture, and even less on the adaptation of the agricultural environment to climate change, whether by INRAPE, the University of the Comoros or the National Horticultural Center. In recent years, rare agricultural censuses have been carried out sporadically. There is currently no systematic monitoring of agricultural production at the national level, nor involvement of producers in the monitoring and evaluation of productions resulting from the adoption of new practices. Currently, the collection of agricultural data is limited to farmers supervised by CRDEs and to the production of CRDEs. Each CRDE collects data separately following a protocol defined by partners (through projects), so that the data cannot be compiled to give an overview of agricultural production in the country. The dissemination of knowledge developed by CRDEs is mainly through relay-farmers and limited to farmers in their territory and is not shared with all other CRDEs, even less so with other farmers, so that farmers who depend on poorly performing CRDEs have limited exposure to adaptation solutions that could improve the climate resilience of their agricultural activities. Capacities to develop and access best practices, information and technical know-how to support the development of guidelines for climate change adaptation in agriculture are nascent and need to be strengthened.

Barrier 5: Limited understanding of challenges and barriers specific to women and persons with disabilities (PWDs) in adopting practices that promote agricultural climate resilience. Limited understanding of women and PWDs specific challenges and barriers limits the design and implementation of appropriate measures to address them and adopt an inclusive approach when strengthening agricultural resilience. Statistics show that the agricultural sector employs more women than men in the Comoros (CDN 2021). According to an ongoing project[2], 75% of farmers in Mwali are women. However, although women work more than men, men are much more often the owners of agricultural land and cultural traditions reduce the participation of women in decision-making. Women are mainly responsible for food crops and market gardening and in poultry farming. They also work in cash crops but very little in their marketing. Gender-specific differences, needs, roles, climatic and socio-economic vulnerabilities and priorities regarding different tasks across agricultural value chains have evolved in recent years, may vary among islands, and are not clearly documented. People living with disabilities (PWDs) are present in all communities but are mostly kept out so that they cannot earn a fair living, nor contribute to the economy and national growth. Although their representation within the population is not adequately documented in the absence of a comprehensive demographic census, it is estimated that over 60% of PWDs have never attended school and 67% are inactive[3]. Although new approaches and techniques that are less labor intensive are now available, PWDs are not encouraged to get involved in value chains. Lack of awareness of the obstacles to the integration of PWDs into agricultural value chains and their equitable access to the resulting benefits limits the development of solutions.

Such knowledge is essential for designing interventions where women and PWDs will be fully involved in all stages of the project, including those that involve decision-making and planning, capacity building that meets their specific needs, and concrete support for the application of climate-resilient agricultural practices. Also, women representation in governance bodies within CRDEs, cooperatives, unions, and other instances across the value chains is not representative of their actual participation in the sector. Without adopting a fully inclusive and participatory approach with particular attention to women, youth and PWDs, projects cannot ensure that vulnerable community members benefit equitably from the CRDEs extension services, such as demonstrations and close support for the adoption of climate-adapted practices and varieties that contribute to a sustainable development of agriculture in the future. A specific focus on women and PWDs and their economic empowerment is crucial for the sustainability of the long-term solution proposed by the project and, more generally, for the resolution of gender-related issues for a climate-resilient development.




T[1] The use of pesticides is limited in Comoros due to their unavailability and high cost.

[2] PREFER project, quoted on March 13, 2022 in the Gazette des Comores.

[3] UNDP 2021, Country Programme Document

 

Square Photo: 

Enhancing climate resilience in Thailand through effective water management and sustainable agriculture

While Thailand has made remarkable progress in social and economic development over the last four decades, rising temperatures and more frequent and extreme droughts and floods driven by climate change pose an increasing threat to the country’s economy. Water management has emerged as a leading concern.  

This project will help build the resilience of farmers in the Yom and Nan river basins (Sukhothai, Phitsanulok and Uttaradit provinces) through improved climate information and forecasts, the introduction of more climate-resilient agricultural practices, and expanded access to markets and finance.    

At the same time, it will work with subnational and national agencies to improve risk-informed planning and decision-making, promote cross-sectoral coordination, and upgrade critical infrastructure such as irrigation canals and floodgates, taking advantage of ecosystem-based adaptation approaches.  

 

 

 

 

 

English
Region/Country: 
Coordinates: 
POINT (100.54687496761 13.768731166253)
Primary Beneficiaries: 
This project will directly benefit 62,000 people in the provinces of Phitsanulok, Sukhothai, and Uttaradit in the northern region of Thailand of the Greater Chao Phraya River Basin, at the confluence of the Yom and Nan Rivers. Approximately 471,561 people in the project districts are also expected to indirectly benefit, with wider benefits for 25,000,000 people living in the Greater Chao Phraya River Basin.
Funding Source: 
Financing Amount: 
US$17,533,500 GCF grant
Co-Financing Total: 
US$16.264 million from the Royal Thai Government through the Royal Irrigation Department | $113,000 Krungsri Bank | Bank for Agriculture and Agricultural Cooperatives $16 million line of credit to help farmers invest in adaptation measures
Project Details: 

Thailand’s extreme vulnerability to climate change is shaped by an extensive coastline, a large rural population highly dependent on agriculture, and extensive populous urban areas located on flood prone plains.

Severe rain, flood and drought events are expected to increase in the near and longer-term future. The country’s agricultural sector will be particularly impacted by changing patterns of precipitation, with implications for agricultural livelihoods and local and national economies. Between 2040 and 2049, the projected negative impacts on agriculture are estimated to induce losses of between $24 billion and $94 billion.

In 2011, 66 out of the country’s 77 provinces were affected by flooding, with over 20,000 square kilometres of agricultural land damaged, and nearly 900 lives lost.  The following year, Thailand suffered $46.5 billion in damages and loss, and required an estimated $14 billion in loans for rehabilitation and reconstruction as a result. 

The recent drought in 2015-2016 is estimated to have resulted in losses of $3.4 billion. 

Poor households will suffer disproportionately from the impacts of climate change. Poverty in Thailand has a predominately rural profile, which fluctuates according to vulnerabilities in the agricultural sector, such as faltering economic growth, falling agricultural prices, and droughts. 

Proportionally, the Central and Northern Regions of Thailand have the highest levels of poverty. Sukhothai, Phitsanulok, and Uttaradit provinces – those covered by the project – have higher poverty levels compared with other parts of the country.   

Climate-informed water management and climate-resilient water infrastructure are critical to Thailand’s preparedness and response to climate change. Thailand’s National Adaptation Plan 2018, highlighted flood control and drought management as key priorities, with a focus on Chao Phraya River Basin. 

Given the cost of upgrading existing water infrastructure across the country, the Royal Thai Government is seeking to complement its grey infrastructure with ecosystems-based adaptation measures. As agriculture households are the most vulnerable to changing climatic conditions, an integrated solution which brings together water management and agriculture is key. 

This project therefore focuses on adapting water management and agricultural livelihoods in the Yom and Nan river basins to climate change induced extreme weather events (droughts and floods), through interventions across three outputs: 

·       Output 1:  Enhancing climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

·       Output 2:  Improving water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

·       Output 3:  Reducing volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Better integration of ecosystem-based adaptation (EbA) measures will have environmental benefits, while capacity-building interventions will support cost-efficient and effective water and agriculture planning. 

The project design – which includes artificial intelligence to support climate-informed planning, precision agriculture for efficient water use and applies the internet of things (IoT) concept for sharing and applying data – has been guided by Thailand 4.0, which aims to shift Thailand’s agriculture sector towards an innovation-driven and interconnected sector. 

At the same time, the project also supports low-tech interventions to help farmers respond to changing rainfall patterns.  These include on-farm ecosystem-based adaptation measures (for example, farm ponds), small-scale equipment to support water saving farming practices (for example, system for rice intensification) and community nurseries.  

Training will be provided to ensure that extension services can support farmers with adaptation measures, and the project will provide support to market access for products resulting from climate resilient practices.   

The project builds on existing initiatives, including work by the Ministry of Agriculture and Cooperatives to enhance Thailand’s agriculture sector adaptation planning (supported by UNDP and FAO through a BMU funded project) and work by the Ministry to implement the Agricultural Strategic Plan on Climate Change 2017-2021 whereby the Royal Irrigation Department takes the lead for the Strategy 2 (Adaptation Actions). 

The Office of National Water Resources – which functions as the regulating agency in proposing policies, formulating master plan on water resources management, responsible for management and supervision as well as integration on the implementation plan of water related-agencies in accordance with the Water Resource Management Act (2018) – has developed the 20-year Master Plan on Water Management (2018-2037), aimed at solving Thailand’s chronic drought, flood and wastewater problems. The Master Plan also stresses the importance of the need to bring in new ideas and technologies to address water related challenges which are exacerbated by climate change.

Expected Key Results and Outputs: 

Output 1:  Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning

Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning

Activity 1.3. Expand access to climate information for application at the household level

Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

Activity 2.1.   Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure 

Activity 2.2.  Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning

Output 3:  Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services

Activity 3.2.  Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture

Activity 3.3.  Capacity building for farmers to support market access for climate resilient agriculture products

Monitoring & Evaluation: 

UNDP will perform monitoring, evaluation and reporting throughout the reporting period, in compliance with the UNDP POPP, the UNDP Evaluation Policy.  

The primary responsibility for day-today project monitoring and implementation rests with the Project Manager.  UNDP’s Country Office will support the Project Manager as needed, including through annual supervision missions.

Key reports include annual performance reports (APR) for each year of project implementation; an independent mid-term review (MTR); and an independent terminal evaluation (TE) no later than three months prior to operational closure of the project.

The final project APR along with the terminal evaluation report and corresponding management response will serve as the final project report package and will be made available to the public on UNDP’s Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.

Contacts: 
UNDP
Charles Yu
Regional Technical Advisor - Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Programme Meetings and Workshops: 

Inception workshop, 2022 TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1:  Enhance climate and risk informed planning in the water and agricultural sectors through improved climate information and cross sectoral coordination

Activity 1.1 Strengthen capacity to generate tailored climate information to inform water management and agriculture planning

Activity 1.2. Facilitate inter-ministerial coordination for climate-informed and integrated planning

Activity 1.3. Expand access to climate information for application at the household level

Output 2: Improve water management through strengthened infrastructure complemented by EbA measures, for greater resilience to climate change impacts

Activity 2.1.   Climate-informed engineering designs for the 13 schemes of the Yom-Nan river basin, and upgrade of 2 water infrastructure 

Activity 2.2.  Complementing of grey infrastructure with EbA measures and integration of EbA approaches into water management policy and planning

Output 3:  Reduce volatility of agriculture livelihoods in drought and flood prone areas through strengthened extension support and local planning, investment in on-farm adaptation measures and greater access to finance and markets

Activity 3.1. Application of climate information in household agriculture planning and strengthening related support through extension services

Activity 3.2.  Implementation of on-farm climate resilient measures to improve drought and flood resilience and improved access to finance for sustainable agriculture

Activity 3.3.  Capacity building for farmers to support market access for climate resilient agriculture products

Project Dates: 
2022 to 2027
Timeline: 
Month-Year: 
October 2021
Description: 
GCF Board Approval
Proj_PIMS_id: 
5923
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation and Infrastructure
SDG 10 - Reduce Inequalities
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land
SDG 17 - Partnerships for the Goals

Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards

Frequent and more intense floods, mudflows, landslides, avalanches and other climate change-related disasters in Uzbekistan are putting lives and livelihoods at risk and slowing progress to reach targets outlined in the Paris Agreement and Sustainable Development Goals.

To address these challenges, the Green Climate Fund-financed “Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards” project will respond to a critical need in Uzbekistan to modernize its early warning system into an impact-based Multi-Hazard Early Warning System (MHEWS ). The MHEWS will improve early warnings on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions, an essential element of the country’s climate risk management framework.

Several climate change-induced hazards (such as floods) have caused significant economic damages and led to the loss of lives. For example, it is estimated that 7.6 million people are vulnerable to flooding in Uzbekistan. The economic impact of flooding due to climate change is estimated to be about US$236 million. These hazards related to heavy rainfall and temperature extremes are either already increasing in frequency and/or intensity or are expected to do so under climate change, particularly over the eastern mountainous regions of Uzbekistan. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards. The improved early warning systems will inform future planning and reduce risks for vulnerable communities, support resilient livelihoods, good health and well-being, and improve food and water security for the people of Uzbekistan.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, and improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (63.720703099213 41.483205853498)
Primary Beneficiaries: 
311 million direct beneficiaries, 2 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$9.9 million
Co-Financing Total: 
US$30.6 million (Uzhydromet and MES)
Project Details: 

The Government of Uzbekistan through its Ministry of Emergency Situations (MES) implements a state program to modernize the early warning system for natural disasters[1]. This GCF project will provide the critical technical and financial resources, access to innovative technologies and expertise for the implementation and scale-up of this national initiative. The GCF-financed project will promote the transformation of climate hazard forecasting and warning from a reactive (ex-post) hazard-based system to one that is proactive (ex-ante), user-oriented and impact-based.

The project puts a strong focus on strengthening the “last mile” delivery of disaster-related communication and interaction with end users, including vulnerable communities. The improved capacity of Regional crisis management centers (RCMCs) and local communities to use and interpret climate risk information into practical early responses will directly benefit at least 11 million people (34% of total population) currently at risk from climate hazards and enhance the community resilience as a whole.

Uzhydromet’s capacity as a WMO Regional Specialized Meteorological Centre (RSMC) will be strengthened, building on the CAHM[2] (World Bank/WMO) project. The proposed GCF investment will develop automated procedures and modelling capacity that can serve as an example for other developing Central Asian countries, as well as being the driver of significant institutional change, catalysing increased efficiency in climate hazard warning generation and dissemination and developing new operational procedures between MES and Uzhydromet.

Climate change has been leading to more frequent and more intense hydrometeorological disasters in Uzbekistan and to a greater exposure to these disasters across the country. Uzbekistan sets climate change adaptation as a priority in its first Nationally Determined Contribution (NDC)[3] under the Paris Agreement. In particular, the NDC clearly highlights the need to establish a Multi-Hazard Early Warning System (MHEWS).

This project will respond to a critical need of Uzbekistan to modernize its early warning system into an impact-based MHEWS (initially focused on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions), an essential element of the country’s climate risk management framework. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

The GCF grant is required to upgrade the existing hazard forecasting and warning system in Uzbekistan so it can effectively deal with the additional pressure brought about through increases in climate variability and change. This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.




[1] Cabinet Resolution No. 242 of the Republic of Uzbekistan "On further improvement of state system for warning and emergency applications of the Republic of Uzbekistan” from 24 August 2011

[2] Central Asian Hydro-Meteorological project

 

Expected Key Results and Outputs: 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities

The proposed intervention will create a more efficient monitoring network for weather, climate, hydrology and cryosphere, through both upgrading existing (automating) and installing new monitoring equipment (automatic weather stations (AWS), automatic hydrological stations, upper air sounding stations, and strategically placed low cost radars. This equipment and other existing data streams will be integrated into high availability/redundant single databases. Hazard-specific forecasting procedures will be developed and operationalized for climate-induced hazards. Training of Uzhydromet staff to undertake forecasting, operation and maintenance and data QA/QC/archiving procedures will also accompany these activities. Activities follow the GFCS and in this output are designed to address aspects related to: i) observations and monitoring; and ii) research, modelling and prediction. Uzhydromet will be the immediate beneficiary under all activities of Output 1, while their end beneficiaries include all the users of the upgraded hydro-meteorological observation network, modelling and forecasting capacities.

Activity 1.1 Upgrading and modernization of the meteorological and hydrological Observation System. This will include upgrading/automation of 25 meteorological observation stations and equipment (software, workstations etc), modernizing the ground-based infrastructure (telemetry processing, hydrogen generators etc) for 2 upper-air stations (Uzhydromet/GoU will support the establishment of 2 more), installing 2 online X-band doppler radar systems to cover current gaps in mountainous areas, upgrading and technical equipment of 90 hydrological stations , and establishing benchmarks and up to date equipment for instrument calibration (vacuum chambers, mobile laboratory etc). AWS and hydrological stations will be installed/upgraded at existing facilities and premises of key locations in the mountains above hazardous valleys and in the areas of high precipitation/landslides/mudflow risks, not already covered by investments through the CACILM and CAMP4ASB projects, as shown in Figure 46 (page 66) of the FS. Uzhydromet is strongly engaged with the WMO and maintains its standards and compatibility with existing systems. In particular it requires that goods and service comply with WMO 2003 Guidelines on Climate Observation Networks and Systems (TD No. 1185) and WMO Guide to Meteorological Instruments and Methods of Observation (the CIMO Guide No. 8, 2014 edition / 2017 update). These requirements will be taken into account during project implementation, and demonstrated compatibility with existing systems is part of any procurement (ITB/RFQ) tender documents under UNDP processes. All equipment will report data to central servers at Uzhydromet and will conform to WMO standards, including reporting to the Global Climate Observing System (GCOS), Global Basic Observing Network (GBON) and Global Telecommunication System (GTS). The project will also assist the government to identify long-term requirements and to enable budgeting and planning for the maintenance of all observing systems.

Activity 1.2 Upgrading Uzhydromet’s capacity to store, process and develop hazard products, as well as to communicate hydrometeorological data to regional divisions. This is a climate services information system (as described in GFCS) and involves the establishment of an operations centre, ICT servers and networking equipment to integrate data streams (hydrometeorological and satellite-based observations) and automate processes and analyses (including hazard forecasts). Software and processing routines will enable data and maps to be exported in common formats for sharing with partners and importing into the MES risk management system (see activity 2.1 below). A local cloud-based solution will be implemented to store and manage data that will benefit from offsite backups and easier access for the MES risk management system. Specifically this activity will: i) Integrate hydrometeorological data (from both automatic and manually operated stations) into a single database as a basis for developing products based on all available observed data. Automatically transmitted data from different providers/manufacturers will be integrated and undergo quality control/assurance within a single database in real time and will be available for interrogation via geo-visualization software. This activity will also: i) Expand the hydrological drought early warning system for Amu Darya (developed by the UNDP/AF project) to the Syr Darya and Zeravshon rivers. All historical streamflow and flood data for the two rivers will be collected and forecast models, with data ingestion and data processing routines, will be derived;  ii) Develop automatic procedures for calculating avalanche risk in real time. Software and code will be developed to automatically update avalanche hazard maps based on snow accumulation from satellites (and AWS) and established procedures for estimating avalanche extent; iii) Develop code and procedures for automatically calculating mudflow risk maps based on precipitation observations and forecasts for 2-3 days lead time; iv) Develop a landslide risk model for Eastern Uzbekistan based on geophysical and geotechnical characteristics, including subsurface water and extreme rainfall. The skill of all developed forecast systems will be assessed using retroactive forecasts and used to assess their utility for forecast based actions in activity 2.1 and 2.2.

Activity 1.3 Re-training and advanced training of Uzhydromet staff on monitoring and forecasting technologies and procedures (training of MES staff is covered in output 2 below). International experts will train weather forecasters to work with new products of the KOSMO model (with a resolution of 13 km and 2 km). Refresher courses and advanced training will be provided for new software and equipment, including the introduction of new methods for the analysis and prediction of hydrometeorologically important variables and climate hazards. The project will facilitate organization of on-the-job trainings, engagement with universities, courses and seminars with the involvement of foreign specialists. Training of IT specialists of Uzhydromet will be conducted for work with the computer center and operation of the KOSMO model, the UNIMAS, MITRA information reception and transmission system, workstation software (for weather forecasters, agrometeorologists, GIS-METEO, etc.) and EU Copernicus programme on satellite data, all of which will be used for impact-based forecasting where needed. Trainings on AWS installation, general user training and technical support will be provided. These increased capacities will also assist Uzhydromet in fulfilling its regional role as a WMO RMSC, in accordance with the GFCS capacity development, and help improve their capacity for regional cooperation.


Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness

The proposed intervention will integrate and develop ICT systems to use the hydro-meteorological hazards predicted in output 1, and combine these with vulnerability data to identify risks and provide information for planning and mitigating their impacts. It will improve the efficiency of the current early warning system by automating the sharing and production of risk-related data, as well as the communication of warnings. The project will also develop methodologies for and support hazard and risk mapping and risk zoning for key climate-induced hazards (floods, landslides, mudflows, droughts and  avalanche). Specifically it will introduce an advanced, impact-based information management system for combining data on socio-economics (population, livelihoods, poverty indicators), infrastructure (roads, utilities, buildings, bridges etc) and the natural environment (landcover, vegetation, soils etc) in order to operationally assess the risks associated with each hazard forecast. This information will be transmitted and shared with RCMCs in key hazard-prone districts in Uzbekistan so that regional teams have the most up to date information available for planning their operations. Building on the existing mobile-based public dissemination platforms, the project will develop geographically specific risk based warnings tailored to the areas affected by each hazard (e.g. mudflows, avalanches, landslides and flooding). Based on the user interaction guideline of GFCS, inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will inform the design and dissemination of warnings and alerts to communities at risk.  MES and its RCMCs will be the immediate beneficiaries under all activities of Output 2, while their end beneficiaries include all the users of the Multi-Hazard Early Warning System.

Activity 2.1 Developing and installing a modernised and efficient system for assessing climate risks based on dynamic information on both hazards and vulnerabilities, including socio-economic risk models for decision making and prioritization of resilience building long-term/future investments. This would enable establishing an impact-based MHEWS, where hazard forecasting is linked to the risk and exposure information (socio-economic risk model).  This involves installing both hardware and software to enable an advanced, impact-based information management system to be built, which will combine data on current vulnerabilities (e.g. indicators of poverty, education, health, housing etc), public and private assets (including infrastructure, roads, railways, housing, mines, airports, hospitals, schools etc), the environment (crops, lakes, rivers, tourism areas etc) and hazard impacts (input from Output 1) to operationally assess the risks associated with each hazard forecast. Based on evaluated risks and the skill of each impact-based forecast, a set of feasible ex-ante actions will be identified for different lead times. This activity will also develop software and standard operating procedures to automatically ingest hydrological and meteorological observations, weather and seasonal forecasts, and derived drought/avalanche/mudflow/landslide forecasts from Uzhydromet (through activity 1.2) into the system to be combined with available vulnerability data. Traning to MES staff will be delivered on risk assessment, operations and maintenance of the systems. The system will also import long-term climate change scenarios to be used for forward planning and evaluation of future risks.

Activity 2.2 Developing and introducing technical guidance, institutional and coordination frameworks to increase the efficiency of: i) data collection and archiving (activities 1.1 and 1.2); ii) hazard mapping and modelling (activity 1.2); iii) risk assessment (activity 2.1); iv) impact-based warning and forecast-based actions (activity 3.2); and v) dissemination of information to RCMCs (activity 2.3). These protocols are also required to ensure that new climate information sources (e.g. AWS, AWLS, radar and satellite observations – activity 1.1) are translated into products that are useful for decision making and investment by MES and Uzhydromet (based on feedback obtained through activities 3.1 and 3.3). Thus, under this activity the project will explore and facilitate promotion of forecast-based-financing (FBF) by developing draft SOPs and prototype FBF protocols/decision-making systems.  This activity will include development of SOPs (both for ingesting and sharing data, as well as for forecast based actions to be undertaken when specific risk-related triggers/thresholds are reached), a national to regional EWS protocol, and communication protocols to accompany introduction of the new technologies. Guidance and procedures will be developed to support the application of socio-economic risk models and enhanced risk zoning in development planning and decision-making (activity 2.1). Corresponding training to MES staff will be delivered.

Activity 2.3 Designing and implementing a system for information dissemination to RCMCs and area specific mobile alerts including an information visualization system for RCMCs with software. This involves setting up information visualisation and analysis systems (video walls, telecommunication systems, servers and ICT storage) at 7 RCMS, to enable them to visualise the maps and impact forecast information provided through the risk analysis and warning system (activity 2.1) and combine it with local (regionally available) information on current vulnerabilities and field-based information. This will enable them to better target advice and direct regional response teams. This activity will further develop (improving the existing MES dissemination system) area-specific mobile and SMS based warnings for mudflows, avalanches, landslides and flooding. This will reduce the chance of false alarms sent to those not at risk, as well as improve the content based on information from the improved MES risk and impact-based forecast system (activity 2.1 and 2.2). Inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will be used to design the dissemination system, following the co-design and co-production user interaction guideline of GFCS.

Output 3: Strengthened climate services and disaster communication to end users

The proposed intervention will strengthen the effectiveness of delivering climate information services and disaster warnings to users in Uzbekistan at two levels. On the overall national level, the project will initiate the establishment of the National Framework of Climate Services as a mechanism to systematically bring together producers and users of hydrometeorological and climate information and to ensure that information and services reach their end recipients both in the various sectors of the government and the society and at the different geographic levels down to local communities. Disaster-related information and services being the specific focus of the project, it will work with the various public and private stakeholders to reorient the existing financial / economic model behind the provision of such services to make it more cost-efficient and sustainable in the long-term, i.a. using private investment and partnership opportunities on the domestic and the international markets. Finally, on the warning dissemination and communication aspect, updated communication technolgoies will be utilised to support real-time risk evaluation by Regional disaster managemen agencies (RCMCs) and first responders and ensure ‘last-mile’ delivery of early warning risk information to the communities at risk and population at large. In collaboration with  Red Crescent Society and other community-level NGOs, RCMC will organize trainings and annual community forums to help communities at risk better interpret, understand and react to those warnings, as well as facilitate forecast-based actions and responses. Uzhydromet (and, in the long run, other parts of the Government of Uzbekistan, as well as other providers and users of climate services) will be the beneficiaries under Activity 3.1, as the NFCS provides a platform where the various service providers and end-users are engaged in the co-designing, testing and co-production to improve the content and delivery of products and services. Uzhydromet and MES (and Uzbekistan’s Government in the long run) will be the beneficiaries of Activity 3.2, as the development and promotion of a sustainable business model for disaster-related information and services in Uzbekistan will provide additional operational funding to the two institutions which currently to a large extent rely on government budgets. MES and its RCMCs as well as the communities in the 15 targeted districts as well as Uzbekistan’s population at large will be the beneficiaries under Activity 3.3.

Activity 3.1  Establishing National Framework for Climate Services for Uzbekistan

The Global Framework for Climate Services (GFCS), promoted and facilitated by the World Meteorological Organization in cooperation with GFCS partner organisations, is a framework that envisions better risk management and more efficient adaptation to climate variability and change through improvements in the quality, delivery and use of climate-related information in planning, policy and practice. GFCS, i.a. endorsed by the GCF Climate Services Strategy, focuses on developing and delivering information services in agriculture and food security, disaster risk reduction, energy, health and water, and organises its work around observations and monitoring; climate services information systems; research, modelling and pre- diction; user interface platforms; and capacity development. A strong focus of GFCS is on a multi-stakeholder approach to the definition and the actual delivery of services, thus bringing users and co-producers of climate and hydrometeorological information together and to the centre of the design and production process as opposed to more traditional supply-driven approaches. The establishment of the NFCS would typically involve:

i) an assessment of gaps, needs and user perspectives (i.a. through interviews) with respect to the current and desirable climate services;

ii) based on this assessment, the drafting of NFCS Uzbekistan concept and action plan;

iii) extensive consultations regarding the concept with the various sectors, users and co-producers of climate services; and

iv) reaching a broad agreement and Governmental endorsement for NFCS implementation.

Following an accepted WMO blueprint for the conceptualising and establishment of a NFCS, the project will undertake a baseline assessment of climate services in Uzbekistan, followed by multi-stakeholder consultations and the participatory development of the country's NFCS concept and Action Plan to be endorsed both by stakeholders and at the high executive level, ready for implementation once supplementary NFCS-earmarked funds become available as a follow-up to the project.

As part of this activity, a platform will be set up to engage end users in the design and testing of new disaster-related climate information services and products. Similarly, a National Climate Outlook Forum will be established and supported as one mechanism to help shape and deliver climate services with longer time horizon, i.a. with a particular focus on disasters such as hydrological droughts. A connection will then established between the Forum and WMO’s Regional Climate Fora operating in Europe (NEACOF) as well as Asia (FOCRAII).  Both the NFCS user dialogue platform and the National Climate Outlook Forum will (as well as the NFCS process at large) will be managed by Uzhydromet.

Activity 3.2  Designing sustainable business model for disaster-related information and services

While it may not be realistic to expect any significant level of private financing during project implementation given the existing public service management model and the time required for transition, there is long-term potential for private sector investment in climate information services and for expanded service provision to private sector based on enhanced hydrometeorological and climate information in Uzbekistan, including those related to natural disasters and early warning. Linked to the NFCS process above, the project will conduct a comprehensive analysis and discussion of long-term sustainable financing options for disaster-related services in Uzbekistan beyond current state-funding model, in particular drawing on blended finance through dedicated national funds and public-private partnership opportunities.  This will include seeking financing, from both public and private sources, for forecast based (ex-ante) actions identified in activities 2.1 and 2.2. Based on the analysis and consultations, a sustainable value chain-based business model for disaster-related information will be developed and agreed with the key stakeholders, and the necessary legal and organisation changes will be outlined and planned on the national (adjustment of legislation) and the inter-institutional levels (Uzhydromet, Ministry of Emergency Situations, users of the services, private investors).

Activity 3.3 Strengthening disaster warning dissemination and communication with end users

The project will significantly strengthen interaction with the end users with the aim to communicate and facilitate proactive responses to disaster information and warnings in Uzbekistan. Within the 15 RCMCs, outdoor communication boards[1] will be set up in identified communities at highest risk to alert and inform the population in real time about threats or emergencies, following which, through cooperation between MES RCMCs and the Red Crescent Society, communities will be trained to interpret and use information on climate hazards and early warnings. Printed visual information (leaflets) will be provided to RCMCs and Uzbekistan’s communities on climate hazards and associated early warnings. With expected increase of user interaction level, regional staff of MES RCMCs will be further trained in the effective use of this information to suppport community interactions (crowd sourcing and survey data) and formulate forecast-based actions following the guidelines developed in Activity 2.2. Similarly, easy-to-understand and visual information will be channelled to mass media through existing agreements between them and MES / Uzhydromet, as well as to national NGOs. Finally, this activity will also complement the prior Activity 2.3 in the development of region-specific (as opposed to the currently used national-wide) broadcasting of early warnings, with the use of other modern communication channels such as social media and electronic messenger subscription groups. In addition, the project will establish a platform for organizing annual community forums on community-based EWS engaging target communities and representatives of vulnerable groups to exchange information, lessons learned, successes and opportunities. Through such platforms regular competitions will be organized engaging both youth and the most active community representative to advocate for structural and non-structure mesures and ensure their inclusiveness.  


[1] These are physical boards used to relay warnings and messages, to be installed/set up by MES in targeted districts (including in hazard-prone areas with limited mobile receptions or not immediately reachable by a Regional Crisis Management Center). Boards will be installed in popular public places used by communities or on regular commuter transport routes.


 



 

Contacts: 
UNDP
Nataly Olofinskaya
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities
Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness
Output 3: Strengthened climate services and disaster communication to end users

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
Proj_PIMS_id: 
6218
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 13 - Climate Action

Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’

The Green Climate Fund-financed “Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’” project responds to the coastal adaptation needs of Cuba due to climate-change related slow onset events such as sea level rise and flooding arising from extreme weather events. Impacts from these climate drivers are a matter of national security for the people of this small-island state and pose an existential threat to coastal settlements and communities. Projections show that if no intervention is made by 2100, up to 21 coastal communities will disappear with a further 98 being severely affected by climate related threats (flooding, coastal erosion and saline intrusion).

Cuba’s Southern Coast has been selected due its high vulnerability to climate change particularly in the form of coastal flooding and saline intrusion. 1,300 km of coastline, 24 communities, and 1.3 million people will directly benefit from the project. In protecting life on land and below the water, 11,427 ha of mangroves, 3,088 ha of swamp forest and 928 ha of grass swamp will be restored, which in turn will improve the health of 9,287 ha of seagrass beds and 134 km or coral reef crests.

The project will enhance adaptive capacity by holistically rehabilitating coastal land-seascapes, their interlinked ecosystems and hydrology. This will be achieved by rehabilitating ecosystem functions and connections within mangroves and swamp forests and reducing anthropic pressures to marine coastal ecosystems, thus enhancing the services supplied by integrated coastal ecosystems (particularly protection from saline flooding and erosion, and channelling freshwater to coastal areas and aquifers). It will also strengthen the adaptive capabilities of coastal governments and communities´ by building their capacity to utilize and understand the benefits of ecosystem-based adaptation, enhancing information flow between stakeholders and strengthening the regulatory framework for territorial management in coastal areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-78.594726920422 20.988793500139)
Funding Source: 
Financing Amount: 
US$23,927,294
Co-Financing Total: 
US$20,371,935 (US$16,242,488 MINAG, US$2,696,376 CITMA, US$1,435,071 INRH)
Project Details: 

Climate change impacts and threats

The Cuban archipelago’s location in the Caribbean, places it in the path of frequent tropical storms, and the long, narrow configuration of the country is such that no part of the country is very far from the sea (over 57% of the population lives in coastal municipalities).*

Coastal municipalities and their respective settlements are also extremely vulnerable to climate change (CC) due to increased storms and rising sea levels, resulting in increased coastal flooding caused by extreme meteorological phenomena such as tropical cyclones, extratropical lows, and strong winds from surges. From 2001 to 2017, the country has been affected by 12 hurricanes 10 which have been intense (category 4 or 5), the highest rate in a single decade since 1791. In the past 10 years the percentage of intense hurricanes affecting the country has risen from a historical average of 26% to 78% with accompanying acute losses. These intense hurricanes impacting Cuba since 2001 coincide with very high sea surface temperatures (SSTs) in the tropical Atlantic recorded since 1998.

The coasts of Cuba in the past three decades have also seen an increase in the occurrence of moderate and strong floods as a result of tropical cyclones and of extratropical systems; with extratropical cyclones being associated with the highest rates of flooding in the country.  Furthermore, warm Pacific El Niño events lead to an increase in extra-tropical storms which increase the risks of flooding along the coastline.

CC induced Sea Level Rise (SLR) will aggravate coastal flooding affecting in particular low-lying coastal areas. It is expected that through SLR, mean sea level will increase by 0.29 m by the year 2050 and between 0.22m and 0.95m by the year 2100 impacting 119 coastal settlements in Cuba. Combining increased storm surge and projected SLR, flooding of up to 19,935 km² (CC + Category 5 hurricane) and 2,445 km² (CC + normal conditions) can be expected by the year 2050.

These estimates could be higher when compounded by the impact of surface water warming on the speed of storms, and new research that links it to increased wave heights in the Caribbean. Under this scenario, storms could be more frequent and move at a slower pace thus increasing the impact on island states such as Cuba.

CMIP5 projections indicate that by 2050, mean annual temperature in Cuba will rise by a median estimate of 1.6°C; total annual extremely hot days (temperature >35°C) will rise by a median estimate of 20 days (RCP 4.5) and 20.8 days (RCP 8.5). Associated increases in potential evapotranspiration will further lead to more frequent severe droughts, as already observable in eastern Cuba.

Cuban coastal seascapes and landscapes are a succession of ecosystems that have coevolved under current climatic conditions, including current distributions of extreme events. The progression of coral reefs, seagrass meadows, beaches, coastal mangroves and forest or grassland swamps represents an equilibrium that confers resilience to each ecosystem separately but also to the coast as a whole. The current resilience of Cuban coastal ecosystems to extreme events and SLR, is being undermined by both climate change effects (increased extreme events) and other anthropogenic pressures, tempering their capacity to provide their protective services. Mangroves have further suffered high levels of degradation affecting their ability to colonize new areas, reduce wave impacts, accrete sediments and stabilize shorelines. Additionally, coral reefs have shown signs of bleaching and degradation that have been attributed to mangrove and sea grass degradation (including the alteration of hydrological natural flows, presence of invasive species, water contamination, and habitat destruction), climate-related increases in surface water temperature and to increased impacts of hurricanes.

SLR will further increase current vulnerabilities and stresses on ecosystems due to increases in water depth and wave energy which will increase coastal erosion, coastal flooding and saline intrusion risks.

Coastal erosion

Current coastal erosion rates are attributed to a combination of natural dynamics (waves, currents, extreme events, hurricanes, etc.) and human interventions (natural resources extraction, wetlands filling, coastal infrastructure construction excluding natural dynamics, habitat loss, water diversion, etc). An increase in the magnitude of extreme events and increasing SLR will accelerate erosion related to natural processes, which currently averages 1.2 m/year (calculated between 1956-2002). This erosion rate poses a danger to communities, infrastructure and natural habitats that are not tolerant to saline intrusion and provide services to landward communities.

Flooding

Coastal flooding as a combination of high rainfall, high sea levels and storm surges has been identified as one of the primary climate change related threats to Cuba. Trends in the frequency of coastal floods during the period 1901-2011 have been observed in Cuba with the past three decades seeing an increase in the occurrence of moderate and strong floods, regardless of the meteorological events that generate them. Specific impacts and the extent of resulting damages depend on local bathymetry and topography, seabed roughness and coastal vegetation coverage and conditions, with the coastal regions of La Coloma- Surgidero de Batabano and Jucaro-Manzanillo being particularly vulnerable.

Hurricanes have also extensively damaged infrastructure. Hurricane Matthew, which crossed the eastern end of Cuba in October 2016, caused USD 97.2 million of damages (approximately 2.66% of GDP), making it the third most devastating hurricane to hit the island in the last decade, only behind Ike (2008) and Sandy (2012), with equivalent costs of USD 293 million (12.05% of GDP) and USD 278 million (9.53 % of GDP) respectively.

Saline intrusion

Saline intrusion into aquifers is the most common and extensive cause of freshwater degradation in Cuba’s coastal zones. Most of these aquifers, located near and beneath the northern and southern coasts, are open to the sea, making them very susceptible and exposed to saline intrusion as a result of SLR, and potentially leading to water that is too saline for human consumption and increasing the salinization of agricultural fields.  It is estimated that approximately 544,300 ha in the area of proposed interventions are already affected by saline intrusion.

Drought

Drought has been identified among the most important climate risks for all Caribbean islands, including Cuba. There has been an increase in drought events in the period 1961-1990 when compared to 1931-1960.  Severe droughts have been increasing in eastern Cuba and are projected to increase in the future. Future projections indicate a general reduction in rainfall by 2070 (particularly along the Eastern Coastline), along with an average reduction in relative humidity between 2% and 6% between 2030 and 2070, respectively. Reduced rainfall occurring mostly during the summer rainy season, with relatively smaller increases in winter and dry season rainfall. This situation adds an increase pressure on the aquifers, which cannot be filled by just one tropical storm, or during the rainy season.

Vulnerability Southern Coast of Cuba, project target site 

Cuba’s coastal ecosystems have been extensively studied through extensive research led by The Ministry of Science, Technology and Environment (CITMA), the Environmental Agency (AMA) and the Scientific Institute for the Sea (ICIMAR). ICIMAR’s research on coastal dynamics and vulnerability is the foundation for Cuba’s National Environmental Strategy (NES) and its State Plan for Facing Climate Change (“Tarea Vida”, 2017) which outlined coastal areas in eminent danger as national priority.

A research-based CC vulnerability ranking (high, medium, and low) was designed considering a combination of factors: geological, geomorphological and ecosystem degradation highlighting that vulnerability to sea-level rise and associated events is higher in the country’s low-lying coasts. Settlements in these areas are more vulnerable to SLR and more likely to be affected by extreme weather events (hurricanes, tropical storms) because of their low elevation, largely flat topography, extensive coastal plains and the highly permeable karstic geology that underlies it; hence more exposed and susceptible to flooding and saline intrusion. These areas have been targeted as the project’s area of intervention, prioritized within “Tarea Vida,” with attention being paid to two coastal "stretches" totaling approximately 1,300 km of coastline and 24 municipalities covering 27,320 km2.

Main localities for direct intervention of EBA include settlements with high vulnerability to coastal flooding, facing saline intrusion and with a contribution to economic life including those with major fishing ports for shrimp and lobster. Settlements with coastal wetlands that represent a protective barrier for important agricultural production areas to reduce the effects of saline intrusion on the underground aquifers and agricultural soils where also considered.

Southern Coastal Ecosystems

Coastal ecosystems in the targeted coastal stretches are characterized mainly by low, swampy and mangrove-lined shores surrounded by an extensive, shallow submarine platform, bordered by numerous keys and coral reefs. In these areas mangroves and marshes could potentially act as protective barriers against storm surges, winds and waves and therefore reduce coastal erosion, flooding and salt intrusion associated risks. These ecosystems can keep pace with rising seas depending on sediment budgets, frequency of disturbances, colonization space, and ecosystem health.

There are numerous reported functional relationships between coastal and marine ecosystems, including sediment binding and nutrient absorption, which combined with water retention, create equilibrium dynamics and coastal stability. Freshwater infiltration is favored by swamp forests reducing saline intrusion risk and organic matter exchange facilitates favorable conditions for healthy seagrass beds and coral reefs. Restoration of these fluxes and connections is required to increase these ecosystems resilience to a changing climate and strengthening their protective role.

Coastal ecosystems and their complex interconnections provide a variety of services to communities, including coastal protection and disaster risk reduction. These services can be enhanced with healthy ecosystems, functional connections and when adequately integrated into land/marine planning policies.

Project focus

The project will focus on actions along Cuba’s Southern Coast that has been selected due its high vulnerability to climate change (open aquifers, low lying coastal plain, degraded ecosystems and concentration of settlements), particularly to storms, drought and sea level rise, which result in coastal flooding and saline intrusion.

Targeted shores cover approximately 89,520 hectares of mangroves (representing 16.81% of the country's mangroves) followed by 60,101 hectares of swamp grasslands and 28,146 hectares of swamp forests. These in turn will contribute to improving 9,287 ha of seagrass and 134 km of coral reefs and their respective protective services.

There is evidence of reef crests degradation which in turn could cause significant wave damage in both mangroves and sea grasses reducing further their ability to offer protection against the effects of CC on the coast of Cuba.

Restoration of degraded red mangrove (Rhizophora mangle) strips along the coastal edges, in stretches 1 and 2, is crucial. During wind, storms and hurricane seasons, the sea has penetrated more than 150 meters inland in these areas, exposing areas dominated by black or white mangroves, which are less tolerant to hyper-saline conditions, potentially becoming more degraded. During stakeholder consultations, communities highlighted the consequent loss of infrastructure and reduced livelihood opportunities (both fisheries and agriculture).

Coastal Stretch 1: La Coloma – Surgidero de Batabanó (271 km – 13,220 km2)

This stretch is made up of  3 provinces (Pinar del Rio, Artemisa and MAyabeque) and 13 municipalities (San Juan y Martinez, San Luis, Pinar del Rio, Consolacion del Sur, Los Palacios, San Cristobal, Candelaria, Artemisa, Alquizar, Guira de Melena, Batabano, Melena del Sur and Guines). The main localities along this stretch are: (1) La Coloma in Pinar del Rio Province; (2) Beach Cajío in Artemisa province; and, (3) Surgidero Batabanó in Mayabeque Province.  

The vulnerability assessment concluded that, by 2100, 5 communities in this stretch could disappeared due to SLR. Extreme events, waves’ strength and salinity have also been identified in this area; hence appropriate adaptation measures need to be in place to reduce the impact.

These risks are being exacerbated by the impacts of ecosystem degradation related to changes in land use, pollution past logging, grey infrastructure and inappropriate measures of coastal protection in the past, urbanization, and the reduction of water and sediments flows.

The impact of saline intrusion into the karstic aquifer is particularly troubling along this coastal stretch with important implications at a national level, as the main aquifer, in the southern basin which supplies water to the targeted coastal communities and agriculture, is also an important source of fresh water to the capital, Havana. To address the issue of saline intrusion in this area, the GoC has experimented with grey infrastructure (The Southern Dike), a 51.7 km levee built in 1991 aiming to accumulate runoff fresh water to halt the infiltration of saline water in the interior of the southern aquifer. The USD 51.3 million investment, with maintenance costs of USD 1.5 million every 3 years and a once-off USD 15 million (20 years after it was built), had a positive effect in partially containing the progress of the saline wedge. However, the impact of the dike resulted in the degradation of mangroves in its northern shore reducing the mangroves function to protect the coastline.

Coastal Stretch 2: Jucaro- Manzanillo (1029 km – 14,660 km2)

This stretch is comprised by 4 provinces (Ciego de Avila, Camaguey, Las Tunas and Granma) and 11 muncipalities (Venezuela, Baragua, Florida, Vertientes, Santa Cruz del Sur, Amancio Rodriguez, Colombia, Jobabo, Rio Cauto, Yara and Manzanillo).The main localities to intervene along this stretch include (1) Júcaro in Ciego de Avila Province; (2) Santa Cruz del Sur in Camagüey Province; (3) Manzanillo in Gramma Province (4) Playa Florida.

The communities in this coastal area are located within extensive coastal wetlands dominated by mangroves, swamp grasslands and swamp forest.

Water reservoirs for irrigation have reduced the water flow towards natural ecosystems, it has also been directed towards agricultural lands altering the natural flow indispensable for ecosystems.

Mangroves have been highly impacted by degradation and fragmentation, which has undermined their role in protecting the beach and human populations from extreme hydro-meteorological events, saline intrusion and coastal erosion. Only 6% of mangroves are in good condition, while 91% are in a fair state, and 3% are highly degraded. Wetlands in the prairie marshes have begun to dry due to a combination of climate drivers and land use management with a direct impact in reducing their water retention and infiltration capacity.

Coral crests of the area’s broad insular platform, have been classified as very deteriorated or extremely deteriorated and it is predicted that if no intervention on the sources of degradation from the island, is made, they will disappear by 2100. Reef elimination will increase communities’ flood risk to potentially settlements disappearing.

Saline intrusion is becoming increasingly significant in this area due to a combination of CC-related SLR and the overexploitation of aquifers.

Climate change vulnerability is exacerbated by construction practices (such as people building small shops and walkways) along the shoreline where fully exposed infrastructure can be found within flood zones, between the coast and the coastal marsh. This situation is aggravated by the limited knowledge of local actors and a false sense of security that was perceived during community consultations.

Baseline investment projects

Traditionally, Cuba´s tropical storms response and management strategies have focused on emergency preparation and attendance rather than on planning for disaster risk reduction. The GoC has successfully introduced early warning mechanisms and clear emergency protocols to reduce the impact of storms in the loss of lives. The development of Centres for Risk Reduction Management (CGRR) has also been successful in mobilizing local actors when storms are predicted to hit ensuring that emergency resources are available to address storms’ immediate impacts. While these are important steps in the face of an immediate emergency, they are insufficient to manage multiple ongoing threats (some of slow consequence of climate change).

In 2017, GoC approved its State Plan to Face Climate Change (“Tarea Vida”) in which identified and prioritized the impacts of saline intrusion, flooding and extreme events to the country coastal zones, focusing strategic actions for the protection of vulnerable populations and of key resources including protective ecosystems such as mangroves and coral reefs. The GoC has begun to look into various strategies to mainstream local adaptation initiatives using existing successful national mechanisms for capacity building and knowledge transfer and international cooperation best practices.

Initial investments made by the GoC have identified the country´s climate vulnerability, including drought and SLR vulnerability and hazard risk assessment maps. The development of the “Macro-project on Coastal Hazards and Vulnerability (2050-2100)”, focused on these areas´ adaptation challenges including oceanographic, geophysical, ecological and infrastructure features, together with potential risks such as floods, saline intrusion and ocean acidification. Cross-sectoral information integration was a key tool to identify climate risks and potential resources (existing instruments, institutions, knowledge, etc) to manage it. While this is an important foundation it has yet to be translated into concrete actions often as a result of lack of technical equipment.

International cooperation has financed projects that have further allowed the GoC to innovate on various institutional mechanisms such as the Capacity Building Centres (CBSCs) and Integrated Coastline Management Zones through active capacity building incorporating municipal and sectoral needs. Table 1 summarizes the most relevant baseline projects and highlights key results, lessons learned, and gaps identified. The proposed project aims to address such gaps, and incremental GCF financing is required to efficiently achieve efficient climate resilience in the target coastal sites.

* Footnotes and citations are made available in the project documents.

Expected Key Results and Outputs: 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

1.1 Assess and restore coastal wetland functions in target sites by reestablishing hydrological processes  

1.2 Mangrove and swamp forest rehabilitation through natural and assisted regeneration for enhanced coastal protection

1.3 Record and asses coastal and marine ecosystems‘ natural regeneration and protective functions based on conditions provided through restored coastal wetlands

1.4 Enhance water conduction systems along targeted watersheds to restore freshwater drainage in coastal ecosystems and aquifers to reduce and monitor saline intrusion in target sites

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

2.1 Develop a climate adaptation technical capacity building program for coastal communities and local stakeholders to enable adaptation actions and capacities

2.2 Integrate project derived information,  from EWS  and national datasets into a Knowledge Management Platform, to provide climate information products to monitor, evaluate and inform coastal communities on local capacity to manage climate change impacts.

2.3 Mainstream EBA approaches into regulatory and planning frameworks at the territorial and national levels for long term sustainability of EBA conditions and investments for coastal protection

Output 3: Project Management

3..1 Project Management

Contacts: 
UNDP
Montserrat Xilotl
Regional Technical Advisor
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

Output 3: Project management.

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
March 2021
Description: 
Project Approval
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

SCALA Argentina

Argentina is considered a high-income economy with a GDP of US$600 billion in 2016 and a population of over 44 million. In the last decades, the country has experienced marked growth in its agriculture and food sectors, accounting to 54 percent of its land use, and playing a strategic role in the socio-economic development of the country, with 54 percent of employment. Agriculture and animal husbandry and fragile ecosystems are also especially vulnerable to the intensification of extreme climate events, affecting the production and supply of food on a national and global scale. The country is considered a top emitter for agriculture, forestry and other land use sectors, contributing to 2.1 percent of the global emissions, and with domestic emissions made up of livestock (21.6 percent); agriculture (5.8 percent) and land-use change and forestry (9.8 percent). 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-65.039062495536 -36.796089507293)
Project Details: 

Argentina’s agriculture is highly innovative and has much to offer in terms of win-win climate actions. It has great potential to scale up actions and production processes that will simultaneously cut mitigate emissions and enhance resilience to improve productivity. Argentina is one of the 100 countries being supported by UNDP’s Climate Promise to enhance their NDCs. The country is also part of FAO’s Sub-Regional Project on "Low Emission Livestock, a contribution to the Sustainable Development of the Sector in South America, and many other projects related to climate management.

The government of Argentina considers the SCALA programme as strong support for the revision of its NAP in the agricultural sector, and to carry out actions that allow the implementation and achievement of the commitments established in the country’s NDC. The programme will leverage participatory methods to address Argentina’s institutional and financial barriers, which allow for a transformative shift in the agriculture and land use sectors. Moreover, to engage and mobilize the private sector to increase its investments in climate action. With the SCALA programme supporting Argentina over the next five years, UNDP and FAO will strive to foster a more inclusive multi-stakeholder process that eventually meets the needs of smallholder farmers, rural communities, women, and youth, who are the most vulnerable to climate change.

 

Project Status: 
Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

Argentina faces different types of barriers in achieving its adaptation and mitigation goals. There is a lack of planning for sustainable management of native forests `and agri-food systems. There are gaps in the articulation between managing bodies/ministries, as well as inefficient bureaucratic financing channels and there are difficulties for producers to access financing. The objective of the NAP in Argentina is to carry out the process in a participatory manner across managing bodies and ministries. The process requires economic efforts to ensure the full participation of all representatives and to support them in parallel processes for formulating provincial plans.   

Country Climate Plans: 

In 2016, Argentina submitted its nationally determined contribution (NDC) that identified several agriculture-related priorities. Argentina has prioritized the development of adaptative capacities and the promotion of agriculture’s strategic role as a solution to climate change. In 2020, the country signed the new United Nations Strategic Cooperation Framework (2021-2025) and confirmed its interest to push forward the agenda that seeks to enhance ambition and catalyze action for land-use and agriculture. Argentina submitted its second NDC in December 2020, ratifying a more ambitious commitment to the Paris Agreement and providing a specific and broader role to adaptation, with the national goal of decreasing 19 percent of its total GHG emissions by 2030. The country has committed to elaborate its Long-Term Climate Strategy by the end of 2021.

The key priorities communicated for the agriculture and land-use sector focus mainly on prioritization of adaptation, strengthening the role of agribusiness as a source of solutions to climate change, integrating agro-industrial production and encouraging the development of process and product technologies. To support the National Adaptation Plan (NAP) process, Argentina is implementing the Readiness Project for the NAP Process, financed by the Green Climate Fund and implemented by UNDP.

Along with these actions, the country aims to strengths the implementation of Minimum Budgets for the Environmental Protection of Native Forests, as well as achieve a substantial reduction in the deforestation rate. To support this goal the country implements the National Forest Management Plan with Integrated Livestock (MBGI), the Forest Watershed Plans and Comprehensive Community Plans (PIC), and the national forest extension system and the Deforestation Early Warning System (SAT). By 2030, the country also expects to deepen the development of fire, flood, and drought prevention measures - of great importance for the agricultural, livestock and forestry sectors.

SCALA Cambodia

The Kingdom of Cambodia is situated in mainland Southeast Asia with a population of over 14 million people, and with approximately 80 percent of this population living in rural areas. In Cambodia – which is ranked the 12th most vulnerable country in the world to climate change by the Global Climate Risk Index 2020 – increases in the frequency of floods, droughts, and windstorms in recent years cost 10 percent of the country’s Gross Domestic Product (GDP) in 2015 from loss and damages. The agriculture sector makes up a third of GDP and employs 57 percent of the country’s labor force. Approximately 80 percent of the country’s population lives along the Mekong River and Tonle Sap Lake, where flooding occurs due to increased water levels between early July and early October. Disruptions to logistical corridors caused by floods have a profound impact on agricultural supply chains, both domestically and for international trade. At the same time, 39 percent of the country's total GHG emissions come from the agriculture and land use sectors. 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (104.58023067979 12.935564448741)
Project Details: 

Cambodia aims to increase adaptive capacity for sectors and communities vulnerable to the impacts of climate change in the medium-to-long term of its sustainable development. The SCALA programme in Cambodia is being designed to help address several of these barriers through, for example, capacity building and strengthening the evidence base for the implementation of adaptation and mitigation activities. In addition, with support from the SCALA programme, climate change considerations will be integrated into sectoral planning, budgeting and coordination, and linkages with key stakeholders such as the private sector and community-based organizations will be developed. Cambodia will be supported by the SCALA programme until 2025 to strengthen coordination on climate action between ministries, the private sector and community-based organizations to support transformative change in the agriculture and land use sectors in alignment with adaptation and mitigation priorities outlined in the NDC and NAP.

 

Project Status: 
News and Updates: 
Cambodia strengthens climate action coordination with ministries, private sector and community-based organizations

11 November 2021 - The SCALA programme sat down with Dr. Prum Somany, Director at the Department of International Cooperation (DIC) and Assistant to Minister of Agriculture, Forestry and Fisheries to learn about how Cambodia plans to accelerate its adaptation and mitigation goals in the agriculture and land use sector.

Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

A key barrier for climate actions in Cambodia is limited resources: human, technical and financial resources, which could be enhanced with support from development partners and private sector financing.  There is also a need to enhance capacity and technical skills in data and information collection and management, particularly for Measuring, Reporting and Verification (MRV). In Cambodia, some of the other barriers include limited staff capacity at the sub-national levels for the implementation of adaptation and mitigation actions, as well as coordination with line ministries and other stakeholders (civil society, community-based organizations, NGOs, and the private sector) to ensure that efforts and resources are concerted, and synergies are leveraged.

Country Climate Plans: 

Cambodia initiated its National Adaptation Plan (NAP) Financing Framework and Implementation Plan in 2017. Cambodia’s developing agri-business environment also needs assistance for enhancing sustainability, and the Cambodia Partnership for Sustainable Agriculture (CPSA) is paving the path for the sector, for targeted interventions in its value chains, such as rice, sugar cane, and cassava. Cambodia submitted its updated nationally determined contribution (NDC) to the UNFCCC in December 2020, which outlined adaptation and mitigation goals in the agriculture and land use sectors. The NDC has 17 prioritized adaptation actions under agriculture, focusing on agribusiness, the development of rice and other cash crops, horticulture, livestock aquaculture production. The NDC adaptation component outlined the need for agriculture support services, capacity building, enhanced institutional arrangements, the development of new technologies and increased research. Cambodia prioritized mitigation actions under the forestry and other land use (FOLU) sectors intending to reduce 50 percent of emissions by 2030 via the REDD+ programme. The Ministry of Agriculture, Forestry and Fisheries (MAFF) and other relevant ministries will also undertake a bio-digester programme as part of the mitigation actions outlined in the updated NDC.

SCALA Colombia

Colombia is the third most populous country in Latin America and preserves a natural wealth, close to 10 percent of the planet’s biodiversity. Climate change impacts are expected to pose significant and long-term effects on fragile and unique ecosystems and accelerate the pace of land degradation, impact water quality and agricultural production. As of 2019, 15.8 percent of the population is employed by the agriculture sectors, being especially threatened by climate induced weather events, such as La Niña, whose characteristics are strong periods of drought followed by intense rain. Agriculture in Colombia is indeed vulnerable to soil aridity, erosion, and desertification, all of which already pose serious threats and are expected to increase with climate change, according to the World Bank Knowledge Portal. According to its updated nationally determined contribution (NDC) in 2020, Colombia represents only 0.4 percent of global emissions with 71.3 percent of domestic greenhouse gas emissions coming from agriculture and land use.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-73.124999994088 3.2666614182019)
Project Details: 

The SCALA programme will also focus on the department of Cundinamarca, which is hosted in the capital city of Bogota. The programme seeks to develop a model that allows internalizing national guidelines at the territorial level. In turn, this will enable the methodologies and processes used under the NAP_Ag programme to be scaled up in other departments of the country, moving beyond national planning and towards strengthening and planning at the territorial level. The community climate action labs are designed to upscale local adaptation models that prioritize a biodiverse productive landscape. Other programme activities in Colombia will include conducting an analysis of climate information available in the government of Cundinamarca and strengthening agroclimatic roundtables in the department.

Furthermore, SCALA will focus on enhancing private sector engagement with the design of a strategy to strengthen tools, mechanisms and incentives for climate finance in the agricultural sector. This will be supported by the design of ‘guidelines for certification’ in climate-adapted agriculture for rural microentrepreneurs, small producers and medium-sized emerging producers, as an incentive to access institutional programs, social protection mechanisms, services and financial relief.

 

Project Status: 
Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

Colombia has encountered a few notable barriers while implementing its climate plans, such as a lack of local capabilities, limited access to climate information and low involvement of the private sector. To overcome these challenges and to bridge the divide between national and local levels, the SCALA programme offers a range of supports articulated around the primary goal to accelerate the implementation of the NAP, NDCs and the Integral Management Plan for Climate Change (Plan Integral de Gestión del Cambio Climático PIGCCs).  The SCALA programme will also build on the achievements made under the NAP-Ag programme and the NDC Partnership Climate Action Enhancement Package (CAEP).

In line with the NDC priorities, the SCALA programme and Cololowmbia will prepare for the implementation of adaptation actions in five agricultural sub-sectors: rice, corn, meat and milk, sugar cane and cocoa. This includes field and practical work with communities, unions, institutions, and territorial entities in the three regions of the country with the most significant agricultural potential. Specific activities include capacity-building for institutional actors of the Andina Centre, participatory characterization of climate change impacts on sustainable agro-food systems, cost-benefit analysis (CBA) and Evaluation of Damage and Loss tools.

Country Climate Plans: 

Colombia submitted its first NDC in 2018, which outlined both mitigation and adaptation goals, as well as means of implementation. In December 2020, Colombia submitted a revised NDC with more ambitious adaptation priorities to increase capacities on private sector and producers in 10 sub-sectors (rice, maize, potato, beef cattle, dairy, sugar cane, cocoa, banana, coffee and sugar cane). Energy and Agriculture, Forestry, and Other Land Use (AFOLU) are considered the most important sector for mitigation. The revised NDCs state that Colombia is committed to emit a maximum of 169.44 million tonnes of CO2 eq by 2030 (equivalent to a 51% reduction in emissions compared to projected emissions in the 2030 scenario of reference). In the agriculture and land use sector, this will be achieved with strategies reducing greenhouse gas emissions in key areas, namely the production of cocoa, rice, coffee, plantation forestry and cattle. Other commitments focus on improving the participation of three regions (Andina, Caribe and Orinoquía) in national agriculture roundtables and facilitating access to agroclimatic information for 1 million producers by 2030. 

Colombia was part of the IKI-funded NAP-Ag programme from 2015 to 2020, which facilitated the design of the Integral Management Plan of Climate Change for the Agricultural Sectors (PIGCCS), and its Action Plan (2019), which represents the national landmark for sectoral climate change planning. It addresses adaptation and mitigation articulately and converges with the broader national and territorial commitments on the stabilization and consolidation of affected areas by the armed conflict and the progress towards the Sustainable Development Goals. Beforehand, the country adopted its NAP in 2012, "Plan Nacional de Adaptación al Cambio Climático (PNACC)”, and a roadmap for its elaboration in 2013, “Hoja de ruta para la elaboración de los planes de adaptación dentro del PNACC”. In 2020, under the adaptation planning funded by Green Climate Fund, the country elaborated a series of Strategies to strengthen the business sector in climate risk management to maintain competitiveness

SCALA Costa Rica

Costa Rica is in Central America and has a varied topography that includes coastal plains separated by rugged mountains, including over 100 volcanic cones and inhabits around 5 percent of the planet’s biodiversity. Costa Rica is among global leaders in responding to climate change, with a long history of environmental protection, sustainable development, and action on climate change mitigation. Costa Rica’s vulnerability to extreme climate events and natural hazards is a result of the presence of populations in areas prone to volcanic eruptions and unstable lands, degraded by wide-spread cattle ranching, or in poorly planned settlements prone to landslides and flooding. A total of 36 percent of Costa Rica’s land use is attributed to agriculture, and it accounts for 14 percent of the country’s employment. 

English
Region/Country: 
Level of Intervention: 
Project Details: 

The SCALA programme can contribute to strengthening market access for products developed through low-carbon value chains to help increase the capital flow to communities (at the farm level) that adopt technologies and help contribute to scaling up climate action. The SCALA programme will support Costa Rica in transforming how the agriculture and land use sectors operate and incorporating adaptation and mitigation measures. In addition to the support on soil management practices, SCALA in Cosa Rica will support the resilience of family farmers to cope with pathogens, so they have the resources to invest in sustainable low-carbon practices. The country is currently developing a road map for its National Adaptation Plan and aims to strengthen conservation initiatives and expand its environmental services payments program to include ecosystem-based adaptation. Costa Rica continues to promote renewable energies, stronger environmental management practices through agroforestry systems and watershed management, as well as tools for municipal-level land use planning to reduce the long-term vulnerabilities of its population and enhance its food security.

 

 

Project Status: 
News and Updates: 
Costa Rica prioritizes transformative climate practices in its agri-food chains

22 October 2021 - To learn more about how Costa Rica is scaling up its climate ambition in land use and agriculture to meet the targets of its NDC and related climate strategies, the SCALA programme sat down with the Minister of Agriculture and Livestock, Mr. Renato Alvarado to unpack the opportunities and challenges in this process as part of a new interview series.

Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

Costa Rica has developed policies and prioritized implementing transformative action in value chains, however, knowledge remains a key barrier because transformative change requires the adoption of new technologies. A second barrier experienced in Costa Rica is the availability of financing mechanisms that reduce risks for different actors, including investors, in the value chain. Lastly, there is a need to strengthen the institutional frameworks that oversee these processes, mainly at the early stages. The COVID-19 pandemic was a huge challenge – like for many countries, but Costa Rica managed to keep the value chains in operation and reported growth in agricultural exports, while still maintaining adequate levels of supply to the national market during these challenging times. The pandemic exposed how valuable the agriculture sectors are and demonstrated the resilience of agricultural producers.

Country Climate Plans: 

Costa Rica’s National Climate Change Adaptation Policy (2018-2030), states the priorities with respect to agricultural sustainable production, namely the 1) promotion of adaptation based on ecosystems outside the State's natural heritage, through the conservation of biodiversity in biological corridors, private reserves and farms under forest regime 2) promotion of water security in the face of climate change, through the protection and monitoring of sources and proper management of hydrological basins. The National Development Plan (2019-2022) reaffirmed the ambitious goal to promote a carbon neutral economy by 2021 and laid out strategies to promote renewable energy, reduce GHG emissions, and consider adaptation initiatives.  

In 2016, Costa Rica submitted its first NDC. Costa Rica’s National Climate Change Adaptation Policy (2018-2030), as well as the National Decarbonization Plan (2018-2050) and the NAMA coffee, NAMA livestock, NAMA sugarcane and NAMA Musaceae (banana), reflect some of the country’s key agri-food chains, which are livestock, coffee, rice, Musaceae and cane sugar. The country’s NDC aims to consolidate an agricultural model that is based on sound approaches in existing policies and strategies. To date, the country has developed a National Low Carbon Livestock Strategy, a National Low-emission Coffee Strategy, and the Low Carbon Banana Strategy, which focus on reducing risks and vulnerabilities in these value chains.

SCALA Cote D'Ivoire

Côte d’Ivoire is located in West Africa along the Gulf of Guinea with the Atlantic running along its southern coast. As one of the world’s top exporters of cocoa, palm oil, banana and cashews and with two-third of the actively working population is percent employed by the agriculture sectors, Côte d’Ivoire is vulnerable to variations in weather and climate, as well as external shocks in its export trade. Côte d’Ivoire has the second largest economy in West Africa. High rainfall in the south fuels a fertile agricultural industry, which contributes to 27 percent of country’s GDP. A heavy economic reliance on agriculture, in addition to continued environmental degradation, rising temperature, prolonged dry season and deforestation all contribute to the country’s vulnerability to climate change. In addition, agriculture contributes 12 percent of total GHG emissions with livestock contributing the largest proportion (63 percent). 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-5.3118896546725 8.0592309607409)
Project Details: 

To support the country in implementing these plans, the SCALA programme partnered with Côte d'Ivoire for the next four years. The SCALA programme will help Côte d'Ivoire accelerate the implementation of its NAP and pursue action to achieve the commitments outlined in its forthcoming NDC. The programme will work with government stakeholders to overcome barriers at the institutional, technical, and financial levels to support a transformative shift in the agriculture and land use sectors. Through the SCALA programme, FAO and UNDP will strive to create an inclusive multi-stakeholder process between institutions and partners in Côte d'Ivoire that will help fill gaps, improve capacities and reach the country’s climate targets.

 

Project Status: 
Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

Côte d'Ivoire has made considerable efforts to mainstream adaptation and mitigation priorities into its national development plans. However, there are different barriers at the institutional level impeding the achievement of adaptation goals, such as the absence of regulations governing the coordination of actions to combat climate change, and the lack of cooperation between the national and sub- national levels. As for mitigation goals, the absence of an intersectoral coordination mechanisms for the NDCs and the lack of a measurement, reporting and verification (MRV) framework are considered the main barriers. Regarding technical resources and knowledge, the limited availability of adequate and evidence-based information, inconsistency of existing data and insufficient research conducted on emission factors are considered as important constraints. Moreover, financial barriers are also viewed as considerable obstacles to achieve climate targets. For instance, the unavailability of specific resource mobilization strategy for climate change adaptation, the insufficient level of financial resources mobilized for mitigation, both internally and externally, and difficulties in accessing climate finance from external mechanisms. Lastly, there is low awareness of the private sector in climate risk assessments and investments in adaptation measures.

 

Country Climate Plans: 

Côte d’Ivoire ratified the Paris Agreement in 2016 and submitted their first NDC the same year. The NDC intends to reconcile development and reduction of GHG emissions. Due to the country’s vulnerability to climate change impacts, especially in the key agricultural exports sector, adaptation is also a priority.

The revision of the NDC is ongoing, and the NAP process has been underway in Côte d’Ivoire since 2015. The adaptation planning is crucial in 11 identified priority sectors that are most vulnerable to climate change, including agriculture, fisheries, forestry, land use and gender as a cross-cutting theme. The second generation National Agricultural Investment Program 2017-2025 aims to increase added value of agricultural products; strengthen agricultural production systems that are respectful of the environment; and promote inclusive growth.

Along with the ongoing NDC submission, Côte d'Ivoire has several climate plans and policies in place, such as the National Strategy for Climate-Smart Agriculture 2018-25, National Strategic Plan for the Development of Livestock, Fisheries and Aquaculture 2014-20 and National Strategy for Forest Conservation, Rehabilitation and Extension, to build resilience and reduce GHG across key sectors.

 

SCALA Egypt

The Arab Republic of Egypt is a developing country in Northern Africa. This terrain consists of a vast desert plateau that has a fresh water renewable resource - the River Nile and its Nile Valley and Delta. Most of Egypt’s population and infrastructure are concentrated in the Nile Delta and along the Mediterranean coast, which makes the country vulnerable to the impacts of sea level rise, particularly inundation and saltwater intrusion. About 15 percent of the most fertile arable land in the Nile Delta is already negatively affected by sea level rise and saltwater intrusion. With this negative impact, climate change studies predict a reduction in productivity of two major crops in Egypt - wheat and maize – by 15 percent and 19 percent, respectively, by 2050. Nevertheless, agriculture is the biggest employer involving over 31.2 percent of the total population.  The agriculture sector contributed 14 percent to the GDP in 2009 and contributes 10 percent of the country's total GHG emissions. 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (29.102783190725 26.326248946066)
Project Details: 

The Ministry of Environment and the Egyptian Environmental Affairs Agency has officially approved and cleared the implementation the SCALA programme in Egypt. A background desk review of relevant climate change plans and documents has been undertaken, as well as a baseline report has been produced. This will be further informed by the stocktaking and climate action review exercise for the identification and validation of climate actions with transformative potential in the AFOLU sectors.

Through initial consultations with the Ministry of Environment and Ministry of Agriculture & Land Reclamation, it has been recommended that the SCALA programme supports the NAP development process under the recently launched GCF-NAP Readiness project. SCALA deliverables therefore will be designed to serve as inputs to the NAP project through which Egypt’s overall NAP will be developed. Contributions will mostly be towards evidence generation through climate risk and vulnerability assessments, innovative climate research on water management and irrigation adaption measures, capacity needs assessment reports on disaster risk reduction and early warning mechanisms in AFOLU sectors, and environmental impact assessments of land use plans.

By supporting the preparation of National Adaption Plan Framework, which will target to address the mitigation and adaptation barriers, the SCALA programme in Egypt will contribute to the country’s long-term goal of decreasing climate vulnerability and building climate resilience of AFOLU sectors. By establishing a framework for improving institutional and technical capacity for climate change adaptation planning it will help the country enhance climate action needed by 2030. The programme will support assessments of climate risks and vulnerabilities, determining climate change mitigation and adaptation priorities, and integrating climate change mitigation and adaptation into national and sectoral planning and budgeting.

 

Project Status: 
Display Photo: 
Project Dates: 
2020 to 2025
SDGs: 
SDG 13 - Climate Action
Barriers: 

The main barriers towards implementation of mitigation and adaptation measures and progress in the agriculture, forests, and other land use (AFOLU) sectors are in institutional and technical capacity to undertake evidence generation through climate risk vulnerability assessments. Most policymakers and technical experts in the Ministries still require enhanced understanding of climate change impacts and the technical skills necessary to craft and implement appropriate CCA integration and interventions. There are institutional barriers related to the functioning of the Measuring, Reporting, and Verifying (MRV) systems on mitigation and adaptation measures and progress in the AFOLU sectors. Egypt plans to build institutional coordination and capacity on climate risks management and to undertake climate adaptation planning, as well as overcome the barrier of insufficient financial resources and budget allocations dedicated to adaptation actions.

Already, the government of Egypt has embarked on preparing a NAP framework; a process that involves assessing and addressing institutional and technical capacity gaps for adaptation planning and management of adaptation actions, national level climate risks and vulnerability assessments and identification of sectoral adaptation priorities, and mapping of mid- and long-term climate change adaptation financing options. 

Country Climate Plans: 

In 2011, a National Strategy for Adaptation to Climate Change and Disaster Risk Reduction was released. This strategy lays out the path to overcome the challenges raised by climate change and estimates the investment required to reach its strategic goals. Egypt ratified the Paris Agreement in June 2017 and submitted their nationally determined contribution (NDC), which focuses on the sustainability of agriculture, the environment, water resources, energy, and land management as priority areas.  

Egypt’s NDC pledges to reduce its GHG emissions; particularly reducing CO2 emissions by 20 percent from the baseline emissions level of 250MtCO2 emissions by 2030. Each sector of the economy has set mitigation targets; particularly for the agriculture, forest, and other land-use sectors, the mitigation targets include recycling agricultural waste and manure and the implementation of a national MRV system. Additionally, the NDC outlines Adaptation Action Packages with specific adaptation goals for the most vulnerable sectors, including agriculture. Such adaptation actions include building an effective institutional system to manage climate change associated crises and disasters at the national level.

UNDP office in Egypt is implementing a Green Climate Fund (GCF)-financed National Adaptation Plan (NAP) Readiness project aiming to formulate and advance Egypt’s National Adaptation Plans Process. This NAP process targets to build/enhance climate resilience in all the sectors of the economy by improving institutional and technical capacity for climate change adaptation (CCA) planning, examining climate risks, determining CCA priorities, integrating CCA into national and sectoral planning and budgeting, and increasing investment in adaptation actions. This NAP process also targets to identify private sector actors with potential to invest in climate change actions. Already there is a large and fast-growing small and medium-sized enterprises (SME) sector and a large domestic market.