CBA Full Proposal Template and Guidelines

See guidelines at end of document for instructions for completing this proposal

<table>
<thead>
<tr>
<th>PROPOSAL SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
</tr>
<tr>
<td>Project Site</td>
</tr>
<tr>
<td>Proponent</td>
</tr>
</tbody>
</table>
| **Authorized Representatives** | Machel Donegan, CEO
John Lamey, President of the Board |
| **Cooperating Organizations** | Forestry Department- Field Officers have identified farmers who would benefit from the project and participate in the agro-forestry programme. The Forestry Department will also supply the timber trees needed at a reasonable rate. They will also be responsible for the distribution of trees and technical assistance to farmers for the agro-forestry component of this project.
Rural Agricultural Development Authority (RADA) - Land Husbandry and Extension Officers will assist in identifying the highest priority areas for these activities and will also be assisting in implementing an education programme designed to strengthen the concept of better land husbandry to reduce environmental degradation. They will also assist in the selection sites and the implementation of the demonstration plots.
The College of Agriculture, Science and Education (CASE) – CASE will provide technical assistance through members of staff from the Faculty of Agriculture and through the placement of interns with PEPA. |
| **Project Dates** | Project Expected Start Date: November 1, 2010
Project Expected End Date: October 31, 2011 |
| **Total Project Cost (USD) (local currency)** | Total Project Cost :USD 65,000.00 (J$ 5,588,700.00) |
| **Amount Requested from CBA (USD) (local currency)** | Amount Requested: 37,700.00 (J$ 3,238,300.00) |
Co-financing (USD) (local currency)

| Applicant’s Contribution: USD 27,300.00 (J$ 2,350,000.00) |

Project Objective
The purpose of this agro-forestry project is to reduce climate change risks to communities in the Rio Grande watershed through sustainable natural resource management in agricultural areas that are prone to substantial rainfall and hurricane damage such as erosion and landslides after heavy storms. This project would prevent land degradation through reforestation and sustainable management in agricultural land that would result in water conservation and reduce carbon emissions. This project would also increase and support plant biodiversity by introducing both endemic and other soil stabilizing species to predominantly mono-cropping farms.

Brief Project Description
This agro-forestry programme will promote community-based watershed management in the Rio Grande Watershed and support the initiatives of RADA and the Forestry Department to address the problems of deforestation, soil erosion and nutrient depletion that occur as a result of improper land management practices, heavy rainfall and hurricane vulnerability. The primary goals of the project is to educate and inform community stakeholders about the functions and values of a watershed, the values of the watershed to the community, and the specific actions community members can take to protect the watershed and ensure the continued provision of essential services. This project seeks to enable individual stakeholders to participate in a number of activities designed to address local actions that affect or are affected by the functions of the watershed by supporting and enhancing the efforts of RADA and the Forestry Department. This project will be multi-faceted, featuring a comprehensive education programme being implemented simultaneously with the practical land management measures required to reduce environmental degradation in the watershed.

1.0 RATIONALE

1.1 Community/Ecosystem Context
There are about 2,000 people in the proposed project area (the communities of Bellevue, Moore Town and Cornwall Barracks). The project proposed would benefit more than just the community members in the direct project area because this is a watershed enhancement project, the entire watershed area and anyone who uses the roads, water, or depends on agricultural goods produced in this area would benefit. This could also have a positive effect on the coastal waters that are currently affected by sediment and fertilizer as a result of erosion and improper farming practices in the target area. The tree planting component of this project will also help to reduce carbon emissions and result in benefits to areas outside of just this watershed.

Ages in these communities range from infancy to elderly. There is an even distribution of male and females. The communities of Moore Town and Cornwall Barracks have a strong Maroon population. A significant percentage
of the population are self employed farmers, followed by traders, carvers and rafters. The farmers, who are predominantly males, are vulnerable because their livelihoods are dependent on hillside farming that while a significant contributor to the erosion problem, is also negatively impacted by the very same problem. The traders (higglers) are mostly females and trade mostly in cash crops acquired from the small farmers making them just equally vulnerable.

The ecosystem is a naturally lush forested watershed. Portland is prone to heavy annual rainfall. Because storms and prevailing winds generally approach from the east, this region is exceptionally vulnerable to devastation by tropical storms or hurricanes. The Rio Grande Watershed is particularly susceptible to flooding and landslides as a result of its topography and fast flowing rivers. Due to population growth and increased hillside farming, more and more trees have been removed compounded by wind and water which has increased the amount of soil erosion.

The communities within the watershed enjoy a close and meaningful relationship with the natural environment, particularly with water and land. They depend highly on water for farming and domestic purposes and on land for food and to generate income through several means. Unfortunately, due to population growth and lack of employment, citizens depend highly on farming which is usually done on steep slopes and at times in an unsustainable manner; this practice then increases the load on the already erosion susceptible land and sometimes result in accelerated erosion.

The communities in this watershed have a close relationship with the land and water. They use fresh water for farming and personal use. They use the land to generate food and income. Unfortunately, due to population growth and improper farming, much of the land is susceptible to erosion.

This project is directed at the community’s livelihood, both qualities of life through a safe and clean watershed and by enabling them to generate income through sustainable farming.

1.2 Current (Baseline) Climate and Risks

The summer (June through August), is the warmest time of the year. The coolest months are in the winter. Rain falls all year long with the rainiest months being October through February and May. Tropical storms and hurricanes occur during the months of June through November which typically bring strong winds and heavy rain fall.

The current risks to this watershed are excess rainfall and high winds leading to erosion and landslides. This risk is enhanced with predicted global warming bringing more intense storms and more flooding. Typically there are storms during hurricane season, but heavy rain fall all year long.

Hurricanes and tropical storms have severe negative effects on the community. Banana crops have been damaged due to high winds. Other crops have been taken out by land slides. The communities have impacted also by flooding and erosion, that has led to landslides damaging roads, structures and farm land. The flooding has resulted in the displacement of residents, while landslides have resulted in communities being marooned. These impact the entire community, both genders and all ages groups.

Most of the families in the Rio Grande are farmers or are dependent on farming to meet their economic needs. In addition to the economic displacement suffered by damage to farms, the residents also suffer from social displacement as a result of landslides. Access to Port Antonio (the main town) is critical to the residents to sell produce and purchase household and other supplies.

In the immediate aftermath of these events, women would generally work on restoring the homes to a functional or occupational level while the men would typically work to ensure access to the communities. The men also work on the rehabilitation of farms to salvage products or to make preparations for re-planting. Children are generally sent to relatives outside of the area prior to or just after floods or hurricanes. This is sometimes difficult because of blocked or collapsed roadways or can make this difficult. Typically the people who leave are displaced by structural damage to their homes or the loss of their livelihoods are destroyed and can only fend for themselves or generally leaving to find employment elsewhere on the island or overseas.
There are significant family social networks to help persons affected or displaced by climate induced disasters. There are also active churches in the area that provide support. The Office of Disaster Preparedness and Emergency Management (ODPEM) have also provided aid following some of the disasters.

There have been past efforts in reforestation led by USAID and there are some residents who are currently practicing agro-forestry to stabilize soil. RADA and the Forestry department are both currently engaged in long term land management strategies designed to address climate change and other risks.

1.3 Future Climate Risks

Science has predicted that there is and will be an increase in ocean temperature resulting in increased storm surges during hurricane season. Global warming would also increase the frequency and intensity of drought and floods. The assessment is agreeable with local experience. In recent years there has been an increase in drought frequency and storm intensity.

1.4 Impacts Context

The community would be negatively affected in several ways. The increased frequency and severity of tropical storms would increase soil movement by wind and water resulting in more severe landslides and the heavy rainfall associated with the storms would result in increased flooding. The community would also be devastated by the loss of cash crops due to the strong winds associated with tropical storms. In addition the agriculture sector which is critical to the livelihood of the community would be impacted by the following activities as a result of climate change:

- adversely affect crops in regions where summer heat already limits production;
- increase soil evaporation rates;
- soil erosion would continue to remove top soil making it less fertile. The land would require more water and fertilizer;
- increase the chances of severe droughts.

The community consists primarily of subsistence farmers, who would not be able to afford the mitigating cost of combating prolonged periods of drought. The farmers would also be unable to produce in the quantities required to adequately supply the needs of the community members. The intensity of storms and hurricanes would also pose a problem, the destruction of crops before the farmers are able to harvest would result in many farmers being unable to replant at the previous levels and in some cases the farmers would be forced to seek other employment to support their families.

Erosion would increase and soil stability would suffer. The likelihood and magnitude of landslides would increase resulting in greater damage to roads, farms and structures in the communities.

These situations would dramatically affect the local environment and economy. Coffee and Banana are the two biggest crops and they would both be severely damaged or totally destroyed by landslides and or wind damage. A period of drought conditions would also affect crops negatively and result in decreased yields. The community would have to develop new strategies to cope; some of these would include the diversification of crops that are grown, water harvesting techniques and improved techniques for hillside farming. The community members will also have to explore the option of decreasing their reliance on agriculture or investing in value adding mechanisms and becoming engaged in more non-traditional activities. The women would play a more prominent role in the advent of non-traditional economic efforts and the men would play a lead role in crop diversification or improved farming practices.

The local networks would be able to assist with short term recovery and provide assistance in the immediate aftermath of the more severe events. The long term recovery and the planning necessary to avoid or mitigate future events and to combat the long term impacts would have to be driven by external agencies.

The strategies that are currently being employed would have to be intensified to combat risks if they become more severe. Farmers currently employ methods such as, reforestation, water harvesting, conservation tillage, crop rotation or diversification, contouring or terracing and mulching. Unfortunately it is not being done at the rate...
required to adequately respond to the current risks; therefore if the risks became more severe a concerted effort would have to be made to intensify the application of the current strategies and to incorporate other strategies.

1.5 Project Approach

Land degradation and biodiversity are both threatened by poor farming practices and deforestation. The poor practices such as the methods used to prepare land for planting result in the unnecessary removal of native vegetation and the exposure of land to the elements. This has resulted in the loss of native flora and the related loss of native fauna as result of habitat loss. It has resulted in a loss of soil fertility, the erosion of soil and reduced water quality within this watershed.

Because trees are being removed faster than they are being planted there is a reduction in carbon sequestration. The increased frequency and severity of tropical storms will increase the likelihood of soil erosion, many weeds respond more favourably to increasing carbon dioxide than cash crops, warmer temperatures will reduce soil fertility and disease pressure on crops will likely increase.

This project would help to remove the baseline pressures through; the intensification of reforestation in the target area, the diversification of crop production, the improvement in farming practices as a result of workshops/demonstrations to farmers, the increase in soil fertility and stability that will result from the activities implemented, increasing knowledge of sustainable hillside farming will decrease the amount of fertilizer/waste run off into streams and by increasing the awareness of the need to preserve/maintain native flora and cover crops. Planting trees will reduce the amount of carbon emitted into the atmosphere through increased carbon sequestration. The incorporation of cover crops and conservation tillage will both serve to not only mitigate against climate change but to reduce the vulnerability of the farms in the target area to the risks associated with climate change. Also educating community members and school aged children of the environment, proper farming techniques and global warming will help to ensure that this community is more resilient to climate change.

This project will benefit the communities within this watershed by allowing them to farm sustainably and reduce erosion, landslides and increase water quality. The education programme will allow for the community to become more knowledgeable about their environment, how climate change is affecting it and how to prevent damage to their communities.

The project activities will be highly replicable; PEPA will document the activities and lessons learned in the form of a manual. This manual will be distributed to CASE, RADA, the Forestry Department and other relevant agencies to serve as a resource for the implementation of similar projects in other areas. The benefits of tree planting will be evident to the participants who will be encouraged to share this message to others. The field officers from the state agencies will be able to use the project as a local reference when interacting with farmers in other watersheds. Local practices will be influenced through participation in the project activities; this will demonstrate the benefits of improving current practices to participants and observers. While the project staff will advocate for policy change particularly as it relates to the preservation of natural resources through land management protection.

The general low levels of awareness relating to the causes and impacts of climate change will be addressed through presentations and the distribution of resource materials. PEPA’s technical capacity will be increased through collaboration with state agencies and CASE.

2.0 COMMUNITY OWNERSHIP

2.1 Project Formulation

The project was developed as a component of PEPA’s strategy for environmental preservation. PEPA aims to work with stakeholders and resource users in both watershed and coastal areas to manage and protect the natural resources of the parish. To achieve this PEPA aims to implement or augment land management projects in each of the 5 watersheds located in Portland.
PEPA and its partners (RADA, CASE) visited the target communities and held community meetings with the stakeholders and potential participants. Meetings were also held with the RADA Extension Officer for the area. The farmers are the most susceptible to the impacts of climate change hence the most vulnerable members of the community; the dependence on agriculture as the main economic activity enhances the need to intervene at this level above all others. Farming is the largest income generating activity in the Rio Grande watershed. Due to heavy rainfall, hurricanes, and improper hillside farming practices, soil erosion has caused damage to farms, made roads inaccessible, and made it more expensive to produce crops due to topsoil loss and the need to purchase fertilizer. This agroforestry project will increase soil stabilization therefore holding more water and nutrients for farming and reducing erosion and landslides.

2.2 Project Implementation

Community meetings will be held to gather information for project implementation. There will be six 4 environmental presentations for community groups and in 2 schools. There will be 6 workshops to promote and improve hillside farming techniques with alley crop demonstrations plots for farmers and community members to visit.

This is a large scale community project that requires multiple farmers and community members to become involved. The participation of multiple land owners and farmers are important for the implantation and desired outcomes. The purpose of having such a large project area is to ensure improvements to soil stability and water quality throughout the entire watershed. The groups will be responsible for mobilising their membership for active participation in all project activities. The groups will also be responsible for the and maintenance of the project activities and the continued implementation of the practices developed during the project.

All groups will benefit from this project. Meetings will be held with representatives from all groups invited. The church groups, youth groups and Parent Teachers Associations will all be asked to participate in the project activities. While the direct beneficiaries will be the farmers and predominantly males, the females will benefit significantly through the consistent availability of products and the reduced disruption of market routes. The entire community will also benefit from reduced disruptions in livelihoods, the cost of disaster recovery and improved quality of life. In addition because the agricultural sector is the main income earner for the area the entire community will benefit in-directly from the implementation of the project.

2.3 Phase-Out Mechanism, Sustainability

Through environmental and sustainable farming education, the local farmers will become aware of the importance of soil stability for their crops, their community and for the watershed as a whole. Workshops will prepare farmers to carry on these sustainable farming techniques to practice sustainable hillside farming on their land and pass the knowledge to future generations. The community will also benefit from increased access and interaction with representatives from state agencies with objectives or activities that are similar to those of the project.

This project will continue to be sustainable; partnerships with RADA and the Forestry Department will be established to ensure that farmers have contacts with these agencies for further information and resources to continue sustainable hillside farming for generations to come. PEPA along with the local forestry department and RADA will do monitoring to ensure that farmers are implementing the techniques properly and to support the farmers with additional help and information requested. The ongoing implementation of proper hillside farming and erosion control will ultimately be ensured by community knowledge and practices; participation in the project should highlight the benefits of improved practices. The increased levels of awareness should also ensure that community members continue to implement the practices.
Contribution of the volunteers to the CBA Project

| Project Activities (to which persons plan to contribute on a voluntary basis) | Description of the voluntary contribution (capacities, knowledge, know-how, manual labor, materials, tools, etc.) | Total number of volunteers to be mobilized | Women | Men | Elderly persons | Youth | People with disabilities | Local | National | International | Number of volunteer days anticipated | Monetary value of the voluntary contribution including labor and materials (enter as co-financing in the budget) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Land preparation and seedling planting. | Participants will clear the land in preparation for the planting of seedlings. The volunteers will also be responsible for planting the seedlings. | 75 | 10 | 40 | 25 | 75 | 180 | $ 1,055,000.00 |
| Workshops | Community members will donate venue. PEPA staff members, volunteers and partners will coordinate and deliver presentations, including the preparation of resource material. | 10 | 3 | 3 | 4 | 8 | 2 | 80 | 350,000.00 |
| Presentations | PEPA staff members and volunteers, partners, CASE interns and Peace Corps Volunteers will make presentations to schools and community groups. The materials and equipment for the presentations are currently available to PEPA and being used in the delivery of our education program. | 8 | 3 | 3 | 2 | 5 | 3 | 180 | 500,000.00 |
| Coordination & transportation for awareness activities. | Project coordinator will volunteer to coordinate presentations and provide transportation to presentations. | 1 | 1 | 1 | 1 | 445,000.00 |

For reference: What are the mechanisms for volunteerism that already exist in the community before the CBA project (for example, traditional mechanisms for mutual assistance, associations, etc.)? The mechanism for volunteerism that currently exists is evident in the form of traditional groups and associations. These groups and associations meet and identify areas that volunteer help is needed to aid community development.

For reference: Number of volunteers in the community already engaged in climate change adaptation activities before the CBA project. There is currently no organized volunteer effort in climate change adaptation activities.

For reference: What are the opportunities or obstacles that could facilitate or impede people from engaging in voluntary activities? The community members would be sensitized to the need for adaptation and the role they can play through presentations/community meetings. The community
members would identify with the importance of the project activities as a means of mitigating against current problems they face but do not necessarily attribute to climate change. An obstacle would be the assumption that the project activities would not make a significant difference in alleviating the concerns faced by the community.
3.0 PROPOONENT DESCRIPTION

3.1 Organization’s background and capacity

Portland Environment Protection Association was founded in June 1988 and is an association of community organizations, service clubs and civic organizations, bound together by our common interest to protect the natural environment of the parish of Portland specifically and the country of Jamaica in general. Currently there are over sixty (60) organizational members and over one hundred (100) individual members of PEPA. The Organization is listed in the International directory of Environmental Non-Government Organizations, ENGO’s.

PEPA came about through deep concern from citizens who were cognizant of the need to preserve the natural environment and associated resources. The thought was, without swift action, rapid depletion of the Parish’s natural resources could preclude sustainable development.

The mission of this organization is to promote public awareness and action to protect the environment, to ensure the wise use of natural resources for sustainable development.

PEPA has continually helped the Parish of Portland prepare and adapt for climate change through various projects implemented in this parish. Some of these projects include environmental and conservation education, mangrove habitat restoration and protection, non biodegradable recycling and currently an agroforestry and watershed education project in the Swift River watershed [WU16] that is designed to reduce soil erosion, education community members, and increase water quality and conservation.

4.0 PROJECT DESCRIPTION

4.1 Objective, Outcomes, Planned Outputs:

Project Objective: The purpose of this agro-forestry project is to reduce climate change risks to communities in the Rio Grande watershed through sustainable natural resource management in agricultural areas that are prone to substantial rainfall and hurricane damage such as erosion and landslides. This project would prevent land degradation through reforestation and sustainable management in agricultural land that would result in water conservation and reduce carbon emissions. This project would also increase and support plant biodiversity by introducing both endemic and other soil stabilizing species to predominantly monocropping farms.

Outcome 1.0: Reduced Erosion and Landslides

- Output 1.1: Soil stabilization through seedling distribution and tree planting
- Output 1.2: Improved farming techniques through the implementation of presentations and workshops [WU17]
- Output 1.3: Establishment of demonstration plots to exhibit alley cropping and other soil conservation techniques.

Outcome 2.0: Reduced Carbon Emissions [WU18]

- Output 2.1: Planting of 5,000 native and timber tree seedlings
- Output 2.2: Climate change awareness presentations to schools and community groups.

Outcome 3.0: Increased Water Conservation and Quality

- Output 3.1: Soil stability will lead to decreased erosion hence a reduction in siltation resulting in improved water quality.
- Output 3.2: Reduction in the amount of fertilizer needed as a result of the retention of fertile soil will result in reduced fertilizer runoff into streams.
- Output 3.3: Farmers will learn about and implement water harvesting techniques, resulting in the conservation of water.
4.2 Timetable

<table>
<thead>
<tr>
<th>NO. (#)</th>
<th>PLANNED ACTIVITIES FOR PROJECT</th>
<th>TIME-LINE (IN MONTHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seedling distribution & planting</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>2</td>
<td>Farmers Presentations</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>3</td>
<td>School & Community Group Presentations</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>4</td>
<td>Demonstration plots</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>6</td>
<td>Monitoring & evaluation</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
</tbody>
</table>

4.3 Risks and Barriers

No significant barriers have been identified thus far; while some reluctance is anticipated to any changes to traditional practices the demonstration plots will be used to convince the participants of the effectiveness of the new methods. The presentations will also be designed to address the anticipated scepticism from community members on the impact of climate change and how current practices contribute to climate change.

An anticipated risk is low levels of participation; this will be addressed through project sensitization meetings at the start of the project and participatory planning during the project preparation stage.

4.4 Monitoring and Evaluation Plan

4.4.1 Initial Vulnerability Reduction Assessment (VRA) Analysis

The meetings were attended by 10 men and 8 women. It included 4 youths (under the age of 25), 14 farmers, 2 Higglers, 2 Peace Corps Volunteers (based in the communities working with farmers) and 2 persons employed in the commercial sector. All the participants had the similar opinions of climate change and its impact. While some participants were more vocal, all participants had the opportunity to offer an opinion or voice their differences. While all the participants were of the opinion that rainfall patterns were now less predictable it was felt that it was not as result of necessarily as a result of climate change but more a natural pattern and things would eventually return to the way it was and this was just a part of the cycle. A few participants were of the opinion that less rainfall is currently being experienced compared to 20 years ago. All the participants were of the opinion that landslides were more as a result of topography, rainfall, soil type and other natural factors rather than manmade actions. The participants however all welcomed the possibility of increased information on climate change and the other potential project activities. The farmers however requested that fruit tree and live barriers should be component of the solution. Interesting the participants made the point that last year had longer than usual dry periods and this year they were experiencing longer than usual wet periods. It was felt that this served to weaken soil structure and contributed to landslides. It was also mentioned that the farmers felt that the farming of coffee
contributed more to decrease in slope stability and that the level of participation in farming has decreased as a result of the decline of the banana trade.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Question/Questions Used</th>
<th>Score</th>
<th>Reasons for Negative Responses</th>
<th>Reasons for Positive Responses</th>
<th>How could the score be improved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vulnerability of livelihood/welfare to existing climate change and/or climate variability.</td>
<td>How were the farmers and the community affected by the long dry spells last year? How are the farmers and the community being affected by the higher than usual rainfall this year? How is the community affected by landslides?</td>
<td>7</td>
<td>Land was dry and traditional crops did not do well. Community was more vulnerable to landslides once the heavy rains returned.</td>
<td>1. Farmers switched to crops that did well in dry conditions. 2. Farmers practiced nontraditional farming practices to great effect eg. Mulching.3. Farmers accustomed to high level rainfalls and plant crops that do well in heavy rainfall.</td>
<td>If the farmers were able to effectively irrigate their farms cost effectively.</td>
</tr>
<tr>
<td>2. Vulnerability of livelihood/welfare to developing climate change risks.</td>
<td>What would happen if events become twice as intense?</td>
<td>5</td>
<td>1. Reduced yield currently being experienced would increase. 2. Increased mulching would encourage pest e.g. Rats. 3. Worsening of road conditions.</td>
<td>1. The ability to plant at higher elevations where it’s cooler. 2. Proximity of farms to rivers and streams for irrigation.</td>
<td>Assistance to reduce cost of irrigation systems. Benching of sites that are currently prone to or have experienced erosion by state agency.</td>
</tr>
<tr>
<td>3. Magnitude of barriers (institutional, policy, technological, financial, etc) barriers to adaptation.</td>
<td>What current concerns would prevent community from adequately adjusting if events become more intense?</td>
<td>5</td>
<td>1. Affordability. 2. Limited assistance from state agencies.</td>
<td>1. Community spirit and strong sense of volunteerism. 2. Ability of community to implement cheap and traditional methods of adaption e.g. Watering fields using buckets of water from rivers.</td>
<td></td>
</tr>
<tr>
<td>Assets available to community for adaptation (volunteers, skills, commitment, indigenous knowledge, community leadership, etc.)</td>
<td>What resources and skills are available to the community to help adjust to changes?</td>
<td>5</td>
<td></td>
<td>1. Community spirit and unity. 2. Willingness to volunteer. 3. Strong leadership skills. 4. Local/traditional knowledge. 5. Experience or resilience gained in</td>
<td></td>
</tr>
</tbody>
</table>

Vulnerability Reduction Assessment Reporting Form
4.4.2 Project M&E Plan

<table>
<thead>
<tr>
<th></th>
<th>Approximate timing of VRA sessions</th>
<th>Who ran/ will run the VRA meeting</th>
<th>Who will be responsible for collecting VRA data</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Month 1</td>
<td>Project staff</td>
<td>Project staff[WU21]</td>
</tr>
<tr>
<td>Second/midterm</td>
<td>Month 6</td>
<td>Project staff</td>
<td>Project staff</td>
</tr>
<tr>
<td>Final</td>
<td>Month 12</td>
<td>Project staff</td>
<td>Project staff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IAS Indicator to be measured</th>
<th>How it will be measured</th>
<th>When it will be measured</th>
<th>Target value to be achieved by project end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hectares of land sustainably managed by project</td>
<td>Through the cumulative impact of the project actions on individual farms of the participants[WU22].</td>
<td>During the final month of the project.</td>
<td>50 hectares</td>
</tr>
<tr>
<td>Number of individuals who have benefited from SGP project</td>
<td>Registration sheets will be used to log involvement in all project activities.</td>
<td>Continuously throughout the project</td>
<td>1000 direct beneficiaries.</td>
</tr>
<tr>
<td>Number of CBOs/NGOs participated/involved in SGP project</td>
<td>A database of CBOs/NGOs will be established.</td>
<td>Continuously throughout the project</td>
<td>10 CBOs/NGOs</td>
</tr>
</tbody>
</table>

VRA Score: 6.5
4.5 **Project Management**

4.5.1 **Management Structures**

4.5.1 PEPA staff consists of Chief Executive Officer (CEO), Mr. Machel Donegan, one Project Coordinator (part time), and two US Peace Corps Volunteers and supplemented by a board of directors and a cadre of community volunteers. The ten (10) member Board of Directors sets PEPA policy and priorities and the CEO directs and oversees the daily activities of the PEPA staff. Volunteers support PEPA staff and members, using their expertise to facilitate implementation of PEPA initiatives. The board is presided by Mr. Jonathan Lamey, (President), Mr. Alec Dehaney, Mr. Don Callum, Mrs. Sybil Rendle, O.D., Mr. Boyd Lewis (Treasurer), Ms. Jackie Neil (Secretary), Dr. Robert Logan, Mr. Christopher Mundle, Ms. Naomi Zuckerman and Mr. Machel Donegan. The board also invites a legal advisor to the meetings, Ms. Yvonne Ridguard and Mrs. Marguerite Gauron serves as President, Emeritus.

4.5.2 **Relationship and Responsibilities of Proponent and Project Partners**

PEPA will work with the Social Development Commission, the Forestry Department, the Rural Agricultural Development Authority, the College of Agriculture, Sciences and Education (CASE), the Green Destination Management Group, and active community groups. The SDC will assist with the community animation and the identification of active CBO’s. Forestry and RADA will provide field officers and technical assistance. PEPA will work in collaboration with CASE to implement an education programme designed to strengthen the concept of better land husbandry and to establish demonstration plots, community compost sites, alley cropping and vegetative barriers on individual farms to reduce environmental degradation. RADA Land Husbandry and Extension Officers and PEPA Field Officers will work together to identify the highest priority areas for these activities.
5.0 PROJECT COSTS AND OTHER SOURCES OF FUNDING

5. **Total Project Cost and Amount Requested table**

Budget is included as an attachment using an excel template.

<table>
<thead>
<tr>
<th>Budget Items (Description)</th>
<th>Budget Items (Cost)</th>
<th>Amount requested from CBA</th>
<th>Amount from Community</th>
<th>Amount from other (add columns as necessary or use Excel template)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(sum above)</td>
<td>(sum above)</td>
<td>(sum above)</td>
<td>(sum above)</td>
</tr>
</tbody>
</table>

(Note: Please add columns and rows as necessary or use Excel template)
6.0 EXHIBITS/ATTACHMENTS

6.1 Mandatory

a.) Location map (Project Site). This may be a very rough sketch over a country map (may be the same map used in the project concept).
b.) Latest financial statements if any OR explanation of why no financial statement is available.
c.) Brief curriculum vitae or résumé of project manager/coordinator and person in charge of accounting for the funds. Letter from a partnering organization if one will assist in accounting for funds.
d.) Detailed terms of reference for all consultants to be hired by the project.
e.) Document/letter showing proof of approved co-financing
f.) Photographs of community project development meeting and of the project area

6.2 Optional

a) Topical outline of training modules or other capacity building activities
b) Organizational Chart of NGO/CBO
c) Other information you think would improve your proposal