Clean Development Mechanism (CDM) and Climate Finance

Training Workshop and Public Consultation on Developing Standardized Baseline-Grid Emission Factor

Paris Agreement

Increased ambition of the long term goal

- Implementation of NDCs
- Higher ambitions by Parties
- Collaborative actions

168 out of 197 Parties have ratified the Paris Agreement

Context: Post Paris Agreement

- **Significant increase** in the number of countries taking climate action, often within the **national scope**
- However, the emission levels do not fall within 2°C or 1.5 °C scenarios
- Achieving 2°C or 1.5 °C depends on enhanced reductions before and after 2030 and on long-term changes in key social, economic and technology drivers
- **Carbon finances** will be the main driver of the mitigation activities needed to be implemented to fill the gap

Linking CDM with Green Climate Fund

GCF

 GCF offers funding opportunities to transformative projects targeting mitigation and adaptation to climate change

CDM

 CDM rewards emissions reduction projects/ programmes with carbon credits based on actual performance.

Baseline setting for evaluation of GHG mitigation projects

Training Workshop and Public Consultation on Developing Standardized Baseline-Grid Emission Factor

Paramaribo, Suriname 26-27 October 2017

Baseline Scenario/emissions:

- a) describe future GHG emissions in the absence of defined mitigation efforts and policies
- b) Counterfactual emissions scenario against which emission reductions are counted

Why robust/credible baseline

- a) To ensure a project will result in real GHG emissions reductions that would not have occurred in the absence of the project.
- b) Serves as a reference level to define national mitigation goals and targets
- c) Provide a benchmark for mitigation targets
- d) Support national climate change policy preparation
- e) Estimate the mitigation impact and assess progress in implementation
- Baselines are constructed and/or depend on the type of mitigation goals

Example of a baseline-scenario goal

Investments analysis- with/without climate finance

Choose an appropriate financial indicator, such as IRR, NPV or benefitcost ratio, to demonstrate additionality

Financing models for GHG mitigation projects linking CDM

Climate finance under the Paris Agreement

Why Standardized Baseline

Moving away from project by project baseline determination

- Sector-specific standards (regional, national, or subnational)
- Either calculates baseline emission factor for broad class of mitigation activities (measures) taken up in the sector, or baseline emission factor for entire sector
- Reduce transaction costs

- Addresses the environmental integrity and transparency issues
- Payment for performance to ensure delivery
- Provide visibility to the contribution of institutional investors in mitigating climate change
- Robustly setting baseline matters !

Why Standardized baseline?

- Baseline, baseline factors developed using SBs can be used for wider mitigation actions including NAMAs and NDCs, to calculate impact of an mitigation intervention (emission reduction).
- SBs are not only used for an offsetting mechanism, but also for wider mitigation outcomes including those for;
 - a) Carbon finance
 - b) Climate finance
 - c) Result based finance
 - d) NAMAs and NDCs

 SB is a reliable, UN-recognized tool that offers a transparent means to develop baseline or baseline factors for monitoring, reporting and verification purpose of mitigation outcomes.

Grid Connected Projects

- What would have happened in the absence of project intervention:
 - a) the baseline scenario is the operation of grid-connected power plants and the addition of new generation sources – in the absence of intervention
 - b) Emission factor (tCO2/MWh) serving as a performance indicator applicable to multi-project

Off-grid projects

- What would have happened in the absence of project intervention
 - a) Operation of existing Mini-grid
 - b) For users who didn't have access to electricity prior to project implementation, BL depends upon type of technology and consumption level of users

Present Status

- About 30 SBs are approved
- 12 bottom up and 8 top down submissions are under processing
- Sectors covered are:
 - ✓ Electricity generation
 - ✓ Rural electrification
 - ✓ Cement
 - ✓ Charcoal
 - ✓ Waste (LFG flaring and electricity/power generation)
 - ✓ Rice mill
 - ✓ Rice cultivation
 - ✓ Cook stoves
 - ✓ Forestry

Approach to derive baseline emission factor for off-grid projects Provisions under CDM Methodologies

UNFCCC secretariat, SDM programme

Standardized Methodologies for off-grid

Meths.	Title	Default
		Baseline EF
		tCO2/MWh
AMS-	Electricity generation by the user	0.8
I.A.		
AMS-	Mechanical energy for the user with or without	0.8
I.B.	electrical energy	
AMS-I.F.	Renewable electricity generation for captive use	0.8
	and mini-grid	
AMS-I.L	Electrification of rural communities using	6.8/1.3/1.0
	renewable energy	
AMS-	Electrification of rural communities by grid	0.8
III.AW.	extension	
AMS-	Electrification of communities through grid	6.8/1.3/1.0
III.BB	extension or construction of new mini-grids	
AMS-	Integrated methodology for electrification of	6.8/1.3/1.0
III.BL	communities	
	(covers the scope of all above methodologies)	

AMS-IIII.BL. Electrification of communities

BASELINE SCENARIO

In the absence of the project activity, the end users would have used fossil fuel based lighting, stand-alone diesel electricity generators for appliances other than lighting (e.g. TV) or would have been supplied by carbonintensive mini-grid.

AMS-IIII.BL. Electrification of communities

PROJECT SCENARIO

Consumers are supplied with electricity by new construction of renewable energy system or hybrid energy system or rehabilitation/refurbishment of renewable energy system or connection to a national or regional or mini-grid.

AMS-III.BL: Scope

- Displacement of fossil based lighting system, standalone DGs or DG-mini-grid
- Consumers [partly or fully]
 - Not connected to national/regional grid
 - supplied with fossil fuel systems
- □ Technology/measures:
 - New construction / Rehabilitation or refurbishment (renewable energy system, hybrid energy system)
 - Hybridization of existing fossil-fuel minigrids
 - Installation, extension of a mini-grid
 - Extension of a grid

Type of grid	Mini-grid with 24-hour service	i) Mini-grid with 4- to 6-hour service ii) Productive applications iii) Water pumps	Mini-grid with storage
Load factor	25%	50%	100%
< 15 kW	2.4	1.4	1.2
>= 15 to < 35 kW	1.9	1.3	1.1
>= 35 to < 135 kW	1.3	1	1
>= 135 to < 200 kW	0.9	0.8	0.8
>=200 kW ***	0.8	0.8	0.8

$$BE_{T3,y} = \sum_{w=1}^{P} \left(EC_{T3,w,y} \times EF_{C02,T3} \right)$$

Baseline emissions using default factors (for consumers without prior access to electricity)

- Displacement of carbon intensive lighting and electricity sources
- Default EF using tiered approach based on consumption level and type of consumers

Tiered emission factors:

Tranche 1: $[EC_x < 55 \text{ kWh/year}] = 6.8 \text{ kg CO}_2/\text{kWh};$ Tranche 2: $[55 < EC_y < 250] = 1.3 \text{ kg CO}_2/\text{kWh};$ Tranche 3: $[EC_z > 250] = 1.0 \text{ kg CO}_2/\text{kWh}.$ For $EC_k > 500 \text{kWh/y} \rightarrow 1.0 \text{ kg CO}_2/\text{kWh}$ and no tranche applies.

Parameter	SI unit	Description	Value
EF _{grid,CM,y}	tCO ₂ /MWh	Combined margin CO ₂ emission factor for the project electricity system applicable to wind and solar power generation project activities.	0.697
EF _{grid,CM,y}	tCO ₂ /MWh	Combined margin CO ₂ emission factor for the project electricity system applicable to all project activities other than wind and solar for the first crediting period.	0.682

Table 1. Emission factor for the six independent regional mini-grids of The Gambia

Mini-grids	Emission factor tCO ₂ /MWh
Essau	0.8
Kerewan	
Farafenni	
Kaur	
Bansang	
Basse	

