Agriculture/Food Security

Taxonomy Term List

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Enhancing Whole of Islands Approach to Strengthen Community Resilience to Climate and Disaster Risks in Kiribati

The Republic of Kiribati is a small island state with 33 low-lying and narrow atolls dispersed over 3.5 million km² in the Central Pacific Ocean and a population of approximately 110,000 people. 

Climate change and climate-induced disasters are projected to exacerbate the vulnerability of Kiribati’s people by causing more frequent inundations leading to damage of coastal infrastructure and exacerbating already problematic access to clean water and food.

Despite an existing strong policy framework and previous efforts, several barriers exist that prevent Kiribati from achieving its adaptation goals. 

Implemented with the Office of the President (Te Beretitenti), this project aims to benefit 17,500 people (49% women) on the five pilot islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati.

It is expected to contribute to several Sustainable Development Goals: SDG5 Gender Equality, SDG6 Clean Water and Sanitation, SDG12 Responsible Consumption and Production and SDG13 Climate Action.

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-157.34619142837 1.8735216654151)
Primary Beneficiaries: 
17,500 people (49% women) on the islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati
Financing Amount: 
GEF Least Developed Countries Fund project grant US$8,925,000
Co-Financing Total: 
Co-financing of US$769,667 from UNDP | $47,723,920 from the Government of Kiribati
Project Details: 

Background: Projected impacts of climate change on coastal infrastructure, water and food security in Kiribati

Climate change and climate-induced disasters are projected to cause more frequent inundations leading to damage of coastal infrastructure/ community assets and exacerbating the already problematic access to clean water and food.

Geographically, Kiribati’s narrow land masses and low-lying geography (in average 1-3 meters above mean sea level other than Banaba Island) results in almost the entire population being prone to flooding from storm surges and sea-level rise.

The low-lying atoll islands are already experiencing inundation leading to a loss of land, buildings and infrastructure. Mean sea level is projected to continue to rise (very high confidence) by approximately 5-15 cm by 2030 and 20-60 cm by 2090 under the higher emissions scenario.

Sea-level rise combined with natural year-to-year changes will increase the impact of storm surges and coastal flooding. This will lead to increased risks of damage to coastal homes, community infrastructure (community halls, schools, churches) and critical infrastructure, such as health clinics and roads. Further, increasing damage and interruption to roads, causeways and bridges, might lead to isolation of communities.

Sea-level rise also results in greater wave overtopping risk, and when marine flooding occurs, saltwater infiltrates down into the freshwater aquifer causing contamination. This risk will increase with sea-level rise and increased flooding and impact both water security and food security from agricultural production.

With limited groundwater reservoirs, access to clean water and sanitation is already a serious problem in Kiribati, impacting health and food security. Agricultural crop production can be expected to be increasingly affected by saltwater inundation, more extreme weather patterns, pests and diseases. This negative impact on food security is further exacerbated by the projected impact on coastal subsistence fisheries, affecting the main stable food source and livelihood. 

Barriers and challenges

While Kiribati has a strong policy framework around climate adaptation – with adaptation and disaster risk management recognized as national priorities within the Kiribati Development Plan and Kiribati’s 20-year Vision (KV20), and a national Climate Change Policy and Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 –  several barriers exist that prevent Kiribati from achieving its objectives, including:

  • Limited integration of CCA&DRM in national and sub-national development plans and frameworks;
  • Insufficient institutional coordination at national, sectoral and sub-national levels;
  • Limited technical and institutional capacities at national and sub-national levels;
  • Weak data management, monitoring and knowledge management (due in part to challenges in gathering and analysing data from dispersed and remote island communities without effective communication and information management systems); and
  • Limited community knowledge and adaptive solutions for CCA&DRM at outer island level.

 

Project interventions

This project will address the exacerbation of climate change on coastal infrastructure, water security and food security by increasing community resilience to the impacts of climate change, climate variability and disasters and building capacities at island and national levels, with benefits extended to household level and in community institutions/facilities such as schools, health clinics, community halls, agricultural nurseries, and Islands Councils.

It is expected to deliver adaptation benefits to the entire population on the five islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati, estimated at approximately 17,500 people (49% women).

The Project will address key challenges and vulnerabilities to climate change through four interrelated components:

  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: WoI-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies

 

It is expected to support progress towards the following Sustainable Development Goals:

  • SDG 13: Take urgent action to combat climate change and its impacts;
  • SDG 5: Achieve gender equality and empower women, by ensuring women’s equitable participation in Project planning and implementation and by actively monitoring gender equity and social inclusion outcomes.
  • SDG 6: Ensure availability and sustainable management of water and sanitation for all;
  • SDG 12: Achieve food security and improved nutrition and promote sustainable agriculture

 

Key implementing partners

  • Office of Te Beretitenti (OB – Office of the President) - CC&DM division
  • Kiribati National Expert Group on Climate Change and Disaster Risk Management 
  • Ministry of Internal Affairs 
  • Ministry of Finance and Economic Development 
  • Ministry of Environment, Lands and Agriculture Development 
  • Ministry for Infrastructure and Sustainable Energy 
  • Ministry for Women, Youth and Social Affairs 
  • Ministry of Fisheries and Marine Resources Development
  • Ministry of Commerce, Industry and Cooperatives
  • Ministry of Line and Phoenix Islands Development
  • Ministry of Justice 
  • Ministry of Information, Transport, Tourism and Communication Development (MITTCD)
  • Parliament Select Committee on Climate Change
  • Island Councils
  • Extension officers
  • Village Elders and Leaders  
  • Women and Youth
  • Community-based groups
  • KiLGA (Kiribati Local Government Association)
  • NGO’s
Expected Key Results and Outputs: 

Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge

Outcome 1 Capacities of national government institutions and personnel is strengthened on mainstreaming climate and disaster risks, supporting the operationalization of the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP)

Output 1.1.1 National and sectoral level policy, planning and legal frameworks revised or developed, integrating climate change and disaster risks

Output 1.1.2 National, sectoral and island level monitoring and evaluation (M&E) processes, related data-gathering and communication systems enhanced and adjusted to support KJIP implementation

Output 1.1.3 Coordination mechanism for the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP) enhanced

Output 1.1.4 Tools and mechanisms to develop, stock, and share data, knowledge, and information on climate change and disaster risks enhanced at the national level

Component 2: Island level climate change resilient planning and institutional capacity development

Outcome 2 Capacity of island administrations enhanced to plan for and monitor climate change adaptation processes in a Whole of Islands (WoI) approach

Output 2.1.1 Island and community level vulnerability and adaptation (V&A) assessments revised and/or developed for 5 targeted islands

Output 2.1.2 Island Council Strategic Plans developed/reviewed and complemented with Whole of Islands (WoI)-implementation and investments plans in 5 targeted islands

Output 2.1.3 Tools and mechanisms to develop, stock and share data, knowledge, and information on climate change and disaster risk enhanced at island level to strengthen information, communication and early warning mechanisms

Output 2.1.4 I-Kiribati population on 5 targeted islands receives awareness and technical training on climate change adaptation and disaster risk management

Component 3: Whole of Island implementation of water, food security and infrastructure adaptation measures

Outcome 3 Community capacities enhanced to adapt to climate induced risks to food and water security and community assets

Output 3.1.1 Climate-resilient agriculture and livestock practices (including supply, production and processing/storage aspects) are introduced in 5 outer islands

Output 3.1.2 Water security improved in 5 targeted project islands

Output 3.1.3 Shoreline protection and climate proofing of infrastructure measures implemented at 5 additional islands and communities

Component 4: Knowledge management and communication strategies

Outcome 4 Whole of Islands (WoI)-approach promoted through effective knowledge management and communication strategies

4.1.1 Whole of Islands (WoI)-communication, engagement and coordination strengthened at national, island and community levels

4.1.2 Whole of Islands (WoI)-lessons learned captured and shared with national and regional stakeholders

Monitoring & Evaluation: 

The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation.

Monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in UNDP’s Programme and Operations Policies and Procedures (POPP) and UNDP Evaluation Policy, with the UNDP Country Office responsible for ensuring full compliance with all UNDP project monitoring, quality assurance, risk management, and evaluation requirements.

Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.

The project will complete an inception workshop report (within 60 days of project CEO endorsement); annual project implementation reports; and ongoing monitoring of core indicators.

An independent mid-term review will be conducted and made publicly available in English and will be posted on UNDP’s Evaulation Resource Centre ERC.

An independent terminal evaluation will take place upon completion of all major project outputs and activities, to be made publicly available in English.

The project will use the Global Environment Facility’s LDCF/SCCF Adaptation Monitoring and Assessment Tool to monitor global environmental benefits. The results will be submitted to the GEF along with the completed mid-term review and terminal evaluation.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Results and learnings from the project will be disseminated within and beyond the project through existing information sharing networks and forums.

M&E Oversight and Monitoring Responsibilities

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks.

The Project Board will take corrective action as needed to ensure the project achieves the desired results. The Project Board will hold project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences.

The Implementing Partner is responsible for providing all required information and data necessary for timely, comprehensive and evidence-based project reporting, including results and financial data, as necessary. The Implementing Partner will strive to ensure project-level M&E is undertaken by national institutes and is aligned with national systems so that the data used and generated by the project supports national systems.

The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions.

Contacts: 
UNDP
Azza Aishath
Regional Technical Specialist - Climate Change Adaptation
Location: 
Programme Meetings and Workshops: 

Local Project Appraisal Committee (LPAC) Meeting TBC

Inception workshop TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: Whole-of-Islands (WoI)-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies
Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
GEF CEO endorsement /approval
Proj_PIMS_id: 
5447
SDGs: 
SDG 5 - Gender Equality
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
November 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Improving Adaptive Capacity and Risk Management of Rural Communities in Mongolia

With an observed temperature increase of 2.1°C over the past 70 years , Mongolia is among the countries most impacted by climate change. Increased temperatures, coupled with decreased precipitation, have resulted in a drying trend impacting pastures and water sources, and shifting natural zones. Changes have also been observed related to the frequency and intensity of extreme events, including disasters brought about by dzud (summer drought followed by harsh winters), drought, snow and dust storms, flash floods and both cold and heat waves.

Responses to climate impacts by herders have not been informed by climate information or by the potential impact of those responses on land and water resources. Unsustainable herding practices and livestock numbers are further stressing increasingly fragile ecosystems and related ecosystem services.

Livestock productivity and quality has been declining in the changing landscape due to drought conditions, heat stress, harsh winters and unsustainable practices, resulting also in reductions in outputs for subsistence and important income sources. Studies indicate that livestock sector production decreased by 26 percent compared to that of the 1980s, along with its contribution to the country’s economy.

Herder households make up one third of the population in Mongolia, approximately 160,000 households or 90 percent of the agriculture sector. Around 85 percent of all provincial economies in are agriculture-based.  While herder households are the most exposed to climate risks, their scale and thus potential impact also means that tailored interventions can support transformational change towards more climate-informed and sustainable herder practices, benefitting the sector, the economy and the environment.

Led by the Ministry of Environment and Tourism, with the Ministry of Agriculture and Light Industry as a key partner, this 7-year project project, seeks to strengthen the resilience of resource-dependent herder communities in four aimags (provinces) vulnerable to climate change: Khovd, Zavkhan, Dornod and Sukhbaatar, thus covering steppe, desert steppe, mountain, mountain steppe and forest steppe zones. 

With funding from the Green Climate Fund, the UNDP-supported project focuses on three complementary outputs:

  • Integrating climate information into land and water use planning at the national and sub-national levels
  • Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management
  • Building herder capacity to access markets for sustainably sourced, climate-resilient livestock products

 

It is expected to contribute to several Sustainable Development Goals: SDG1 No Poverty, SDG12 Responsible Consumption and Production, SDG13 Climate Action, SDG15 Life on Land and SDG17 Partnerships for the Goals.

English
Photos: 
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (105.11718747398 46.867702730128)
Primary Beneficiaries: 
The direct beneficiaries of the project will be 26,000 herder households (130,000 people) in the four target aimags. As Output 1 national policy, indirect beneficiaries include all 160,000 herder households (800,000 people). The project will directly benefit 4.5% of the Mongolian population and indirectly 26%.
Funding Source: 
Financing Amount: 
US$23,101,276 GCF grant
Co-Financing Total: 
Co-financing of US$56,200,000 from the Government of Mongolia including $20,000,000 from the Ministry of Environment and Tourism | $3,000,000 from the National Emergency Management Agency | + $33,200,000 Ministry of Food, Agriculture and Light Industry
Project Details: 

With the objective of strengthening the resilience of resource-dependent herder communities in four aimags vulnerable to climate change, this project seeks an integrated approach to address climate change impacts on herder livelihoods and on the natural resources on which they rely. 

This requires strengthening capacity to generate climate models for longer term climate resilient planning, while reconciling the ambitious economic development goals of livestock sector with the limits of increasingly fragile land and water sources due to climate change.

To do this, the project complements significant investment from the Government of Mongolia related to the livestock sector and natural resources management, while addressing key barriers through strengthening the computing and capacity needs for long term climate-informed planning, investments in water access points, and support to the policy transformations needed to remove incentives for maladaptive herder practices.  

The project will strengthen capacity of the National Agency for Meteorology and Environmental Monitoring (NAMEM) to collect and analyze the data necessary for climate-informed planning. 

This will include investments to computing equipment and data storage, as well as technical training to enable climate-informed and risk-informed livestock planning.  Support will also be provided to integrate climate change into aimag and soum level development plans to ensure that local planning considers climate change in regards to carrying capacity of land resources and guidance to herders on Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans

The project will apply Ecosystem-based Adaptation (EbA) measures to protect land and natural water resources, while also establishing or rehabilitating water wells for livestock.

Using community-based resources management, herders will coordinate on rotational pastures and sustainable use of water resources, as well as establishing means of maintaining EbA results and water well investments.  This will relieve pressure on rivers, streams and ponds as well as on over-utilized pastures which are increasingly fragile due to climate change.

Support to haymaking and pasture reserves, and related storage, will ensure livestock are better able to survive increasingly harsh winters, and losses to subsistence herders are reduced. Stronger and healthier animals are not only able to survive the harsh climatic events (i.e. dzud) but also are less likely to be affected by outbreak of infectious diseases. 

The project will also support the planned policy transformations under the National Mongolian Livestock Programme, by ensuring that changes are informed by climate risk. 

Analytical products will be developed to inform related programmes, such as government investments in livestock commodities development and dzud relief programmes to ensure that support does not inadvertently incentivize growing livestock numbers against land and water resources which are increasingly drying due to climate change. 

The project will also identify public-private-community partnerships for sustainably-sourced, climate-resilient livestock products; and in association with this, support the establishment and training of Herder Producer Organizations (or cooperatives) with support to include general business and market specific training in production, post-harvest processing, post-harvest value addition and on-site storage specific to the commodity value chain.

For more project details, please refer to the project Funding Proposal.

Expected Key Results and Outputs: 

Output 1: Integrate climate information into land and water use planning at the national and sub-national levels

Activity 1.1. Enhance technical capacity for long-term climate resilient development planning, and medium-term response planning capacity

Activity 1.2. Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans (incl. Integrated River Basin Management Plans (IRBMP))

Activity 1.3. Analytical products to support policy and regulatory transformation promoting sustainable land and water management and resilient herder livelihoods

Output 2: Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management

Activity 2.1. Enhance cooperation among herders on sustainable use and stewardship of shared land and water resources (formalized through Resource User Agreements)

Activity 2.2. Reforestation of critical catchment areas to protect water resources and ecosystem services

Activity 2.3. Establish haymaking and pasture reserve areas, and emergency fodder storage facilities to reduce volatility to livelihoods related to climate change induced extreme events

Activity 2.4. Improve water access through protection of natural springs, construction of new water wells, rehabilitation of existing wells and water harvesting measures

Output 3:  Build herder capacity to access markets for sustainably sourced, climate-resilient livestock products

Activity 3.1. Identify public-private-community partnership for sustainably sourced climate resilient livestock products

Activity 3.2. Establishment and training of Herder Producer Organizations (or cooperatives)   

Activity 3.3. Improve traceability for sustainably sourced, climate resilient livestock products

Activity 3.4. Generation and dissemination of knowledge products to support private-sector engagement and herder enfranchisement in climate-resilient and sustainable production in Mongolia

 

Monitoring & Evaluation: 

UNDP will perform monitoring, evaluation and reporting throughout the reporting period, in compliance with the UNDP POPP, the UNDP Evaluation Policy.

The primary responsibility for day-today project monitoring and implementation rests with the Project Manager.  UNDP’s Country Office will support the Project Manager as needed, including through annual supervision missions.

Key reports include annual performance reports (APR) for each year of project implementation; an independent mid-term review (MTR); and an independent terminal evaluation (TE) no later than three months prior to operational closure of the project.

An impact evaluation (within the project duration) will also be designed and conducted under Output 3, to assess project interventions. Results will be documented and used to inform implementation, as well as further programming. The evaluation will also contribute to the evidence base related to interventions to address climate challenges on land and water resources and climate-sensitive herder households. 

The final project APR along with the terminal evaluation report and corresponding management response will serve as the final project report package and will be made available to the public on UNDP’s Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.

Contacts: 
UNDP
Mariana Simões
Regional Technical Specialist for Climate Change Adaptation, UNDP
UNDP
Bunchingiv Bazartseren
Programme Analyst, Climate Change, UNDP Mongolia
Climate-Related Hazards Addressed: 
Location: 
Programme Meetings and Workshops: 

Inception workshop 2021, TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Integrate climate information into land and water use planning at the national and sub-national levels

Activity 1.1. Enhance technical capacity for long-term climate resilient development planning, and medium-term response planning capacity

Activity 1.2. Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans (incl. Integrated River Basin Management Plans (IRBMP))

Activity 1.3. Analytical products to support policy and regulatory transformation promoting sustainable land and water management and resilient herder livelihoods

Output 2: Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management

Activity 2.1. Enhance cooperation among herders on sustainable use and stewardship of shared land and water resources (formalized through Resource User Agreements)

Activity 2.2. Reforestation of critical catchment areas to protect water resources and ecosystem services

Activity 2.3. Establish haymaking and pasture reserve areas, and emergency fodder storage facilities to reduce volatility to livelihoods related to climate change induced extreme events

Activity 2.4. Improve water access through protection of natural springs, construction of new water wells, rehabilitation of existing wells and water harvesting measures

Output 3:  Build herder capacity to access markets for sustainably sourced, climate-resilient livestock products

Activity 3.1. Identify public-private-community partnership for sustainably sourced climate resilient livestock products

Activity 3.2. Establishment and training of Herder Producer Organizations (or cooperatives)   

Activity 3.3. Improve traceability for sustainably sourced, climate resilient livestock products

Activity 3.4. Generation and dissemination of knowledge products to support private-sector engagement and herder enfranchisement in climate-resilient and sustainable production in Mongolia

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
November 2020
Description: 
GCF Board approval
Proj_PIMS_id: 
5873
SDGs: 
SDG 1 - No Poverty
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action
SDG 15 - Life On Land
SDG 17 - Partnerships for the Goals

Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70 percent of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening of the already profound poverty levels. Climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas, forcing subsistence agro-pastoralist and nomadic pastoralist households living under deep-rooted levels of poverty into making livelihood decisions out of desperation because their co-dependence on water, agriculture and rangelands is becoming unsustainable. State and federal government budgets, already under strain with development challenges unrelated to climate change, are unable to cope with mounting tolls of a changing climate.

The "Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan" project supports climate change adaptation efforts among subsistence agro-pastoralist and nomadic pastoralist communities in dryland zones across nine states (West Darfur, Central Darfur, East Darfur, Western Kordofan, South Kordofan, Kassala, Red Sea , Northern and Khartoum state). The project will build climate resilience, health, well-being and food and water security for approximately 3.8 million people - almost 1.2 million direct beneficiaries and 2.5 million indirect beneficiaries - accounting for more than 32% of the total population across the nine targeted states, and about 9.2% of the total population of the country.

Its overall goal is to promote a paradigm shift in dryland pastoral and farming systems through i) an integrated approach by increasing resilience of food production systems; ii) improving availability/access to climate resilient water sources; and iii) strengthening capacities of institutions/communities on climate resilience. The project capitalizes on synergies in climate risk management practices across agriculture, water, and rangelands to enhance water and food security under changing climate conditions. Key results are enhanced resilience to climate risks among subsistence farmer and nomadic pastoralist communities and promoting an enabling environment for long-term (post-project) adaptation activities in Sudan. Moreover, the enhanced capacity of the state-level administration in areas of environmental governance, management of shared natural resources, inter- and intra-state relations and how to establish a network of early warning systems will help prevent conflicts and out-mitigation in the targeted areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (31.552734354975 15.424028679987)
Primary Beneficiaries: 
1,181,538 direct, 2,499,712 indirect
Funding Source: 
Financing Amount: 
US$25.6 million
Co-Financing Total: 
US$15.5 million
Project Details: 

The project introduces several interventions among highly vulnerable communities in the target communities. First, the project disseminates a set of sustainable technologies and practices including drought-resistant, early maturing seeds, establishment of integrated women-led sustainable farms, rehabilitation of communal rangelands, development of multi-purpose tree nurseries, and the establishment of shelterbelts to shield cultivatable plots from dust storms. Second, the project increases the availability of water resources through the construction and/or rehabilitation of hafirs (i.e. dugout enlargements into which surface-water runoff is converged during the rainy season), water yards (i.e. water extraction and distribution facility which includes borehole, storage tank, animal watering basins and tap stands), and sand water-storage dams (i.e. rain water harvesting structures). Third, the project strengthens local governance by building capacity among local leaders and stakeholders (i.e. village councils, village development committees, popular committees) regarding best practices, as well as increasing capacity of extension agents from state-level offices of the Ministry of Agriculture and Natural Resources and Ministry of Irrigation and Water Resources  on sustainable technologies/practices suitable for dryland areas.

In introducing these interventions, the project builds upon the lessons learned from recent climate change adaptation projects such as: The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer and Pastoral Communities; and the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these initiatives and applies a similarly integrated approach to crop, water and rangeland management that addresses recurring drought concerns and the linkages between agro-pastoralist and nomadic pastoralist livelihoods.

The barriers addressed by the project include weak drought contingency planning; low institutional capacity; limitations in food security research capacity; limited smallholder access to financing; and limited data infrastructure. Micro-credit and micro-finance systems that have been piloted successfully in other regions have been incorporated into project design to promote financial sustainability and overcome some barriers. The project facilitates transformational change in the short-term by building community resilience against climate change impacts, primarily recurrent drought, and in the long-term by integrating lessons learned into state-level planning, budgeting and implementation of risk reduction measures that will ultimately improve livelihoods in the targeted communities.

Project activities will directly benefit nearly 1,200,000 people in over 211,000 subsistence agro-pastoralist and nomadic pastoralist households. These direct beneficiaries are among 138 dryland villages across nine states. These households correspond to 10% of the total population in the targeted regions. Project activities will indirectly benefit an additional nearly 2,499,712 people through autonomous adoption by neighboring communities of the risk mitigation strategies that direct beneficiaries will implement. The project will take advantage of existing linkages with regional and global research institutions such as CGIAR and the Association for Strengthening Agricultural Research in Eastern and Central Africa.

The project’s paradigm shift potential is rooted in the fact that that the specific adaptation interventions can be leveraged to empower women in large numbers across adjoining communities. Providing women with access to information and knowledge on climate change issues can help reverse their lack of power and build their autonomy. In parallel, the implementation of a suite of adaptation initiatives will build resilience among vulnerable rural communities from future climatic shocks that would otherwise deepen their poverty, while also enabling them to diversify household incomes and assets. Moreover, effective adaptation within traditional agricultural systems will not expand in the poorest states in the absence of catalytic donor support.

The project is aligned with Sudan’s priorities as outlined in its Nationally Determined Contribution to the Paris Agreement and is line with Sudan’s Country Work Programme, as submitted to the Green Climate Fund (GCF). Based on a request made to UNDP by the Government of Sudan, Sudan’s National Designated Authority (NDA), the project is also a part of UNDP’s Entity Work Programme to the GCF and is fully aligned with Government priorities upon which UNDP is focusing.

Climate change challenges

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70% of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening already profound poverty levels. Notably, climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas of Sudan, forcing many subsistence agro-pastoralist and nomadic pastoralist households into making livelihood decisions out of desperation because their co-dependence on water, agriculture, and rangelands is becoming less and less viable. State and federal government budgets, already straining to cope with numerous development challenges unrelated to climate change, are simply unable to cope with the mounting tolls of climate change.

There is strong evidence confirming that Sudan’s climate has been changing over the past decades. First, there has been a steady decline in annual precipitation throughout Sudan. This is most pronounced in the Darfur States, where the data record from the sole meteorological station over the 40-year period from 1952-1992 indicates that rainfall has been declining by about 5.12 mm per year on average. Other areas such as Khartoum and South Kordofan show similar rainfall patterns (decline of 4.90 and 3.99 mm per year, respectively). These trends are reflected by mean annual normal rainfall isohyets. A comparison of the isohyets for the period 1941-1970 and 1971-2000 show that there is a southward shift by hundreds of kilometers.[1]

Moreover, a rainfall trend analysis for 21 meteorological stations across Sudan confirm that mean annual rainfall for the past two decades has been both decreasing and intensifying relative to the 40-year period from 1960 to 2000. This is illustrated in Figure 1 which shows the location of the meteorological stations (top) and indicates that, when compared to the historical period, average annual rainfall declined by an average drop of 9.3 mm per year during the 1990s (middle) and by an average of 23.4 mm per year 2000s (bottom).

These changes have posed profound adverse impacts for rural livelihoods. For faming activities, roughly 90% of cultivated areas depend exclusively on rainfall, with fluctuations in crop yield attributed almost solely to fluctuations in rainfall patterns. While irrigated agriculture is also practiced, it is minor in scope and limited to small areas along wadis and in small plots near hand-dug wells. For pastoralist activities, increasingly erratic rainfall patterns, as well as drought episodes, have led to the deterioration of natural rangelands. Declining rangeland productivity has been accompanied by an increase in seasonal fires, excessive grazing in communal lands, and by large livestock populations unsustainably concentrated around perennial water sources.

Second, there has also been a steady increase in temperature throughout Sudan over the period 1960-2010.  During the March-June and June-September periods, temperatures have been increasing between 0.2°C and 0.4°C per decade, on average. The decadal trend of increasing temperature is more intense during the March-June period. When averaged across all seasons, temperatures in the 2000-2009 period are roughly 0.8°C to 1.6°C warmer than they were in the 1960-1969 period. Figure 2 illustrates annual average temperature trends for a subset of 6 meteorological stations located across Sudan (top) for the period 1960-2010 (bottom).

Third, the above adverse changes in rainfall and temperature have been accompanied by recurrent drought episodes across Sudan since the 1970s. There have been widespread recurring droughts across Sudan during the period 1967-1973 and again during the period 1980-1984, the latter period being the more severe. In addition, there have been a series of spatially localized droughts during the years 1987, 1989, 1990, 1991, and 1993. These drought episodes have occurred mainly in Kordofan and Darfur states in western Sudan and in parts of central Sudan near Khartoum.

Such mounting evidence of decreasing rainfall and increased temperatures, have reduced available grazing lands, have led to crop failures, high livestock mortality and increased rural to urban migration. These climate-related impacts have also aggravated urban health and sanitation concerns. Together this evidence suggests that drought has been a major stress factor on farmer and pastoralist communities and has worsened regional conflicts over environmental resources. Additional information on the climate rationale underlying project design is provided in Annex 19f.

In the future, these climatic changes are projected to intensify. Dynamic downscaling of an ensemble of General Circulation Modeling outputs suggests that over the next two decades, average annual surface temperatures across Sudan will increase significantly relative to the historical climatic baseline, with increasing levels of rainfall variability. This is illustrated in Figure 3 which shows an ensemble of temperature and rainfall projections under Representative Concentration Pathway 8.5 (RCP8.5) for three meteorological stations with sharply differing annual historical rainfall regimes: Port Sudan (medium annual rainfall), Dongola (low annual rainfall), and Gedaref (high annual rainfall).

Baseline situation

The baseline situation is one in which rural households in Sudan are becoming increasingly unable to withstand and recover from climatic shocks, particularly drought. While there are other types of shocks that farmer/pastoralist households are forced to endure related to health, forced migration, or conflicts, they are largely derivative of an inability to effectively cope with recurring drought episodes. This vulnerability is likely to intensify for dryland households in Sudan in the absence of effective climate change adaptation interventions that build increased resilience to drought.

Since subsistence agro-pastoralist and nomadic pastoralist households derive a large share of their income from crop- and/or livestock-related activities, they are also particularly sensitive to drought. Household income from rainfed agriculture and pasture-based livestock production is far more vulnerable to climatic shocks than, for example, irrigated agriculture or other less shock-impacted activities such as the so-called cottage industries (i.e. a business activity carried on in an agro-pastoralist’s home). At present and likely for the foreseeable future, sensitivity to drought among dryland households is largely determined based on prevailing risk-hedging strategies that regard land, water, and livestock – and the mix of those resources – as essential to livelihood preservation. To the extent that household incomes are not diversified, or alternative income-generating strategies not introduced, sensitivity to drought is expected to remain unacceptably high.

The ability of farmer/pastoralist households to cope with droughts has been compromised by the increasing frequency of drought episodes. In the baseline situation, the time between climatic shocks is becoming shorter and shorter, leading to inadequate time to rebuild household assets to withstand subsequent weather-related shocks. Given the lack of governmental safety nets and access to credit, households are forced to rely on their own already depleted savings and assets to try and make up as best they can for food/income shortfalls. Hence, the liquidation of household assets to limit the harmful impacts of a drought episode is becoming less and less of a viable risk-hedging strategy, forcing households into increasingly desperate circumstances.

Taken together, the exposure and sensitivity of farmer/pastoralist households combined with their compromised coping capacity infers that overall vulnerability to climatic shocks is high in the baseline situation. Assent effective adaptation measures, climatic variability has become largely incompatible with traditional agro-pastoralist practices regarding crop selection, water resource management, communal rangeland management, drought preparedness, and household income generation. Additionally, access to tools and extension services designed to build adaptive capacity remains quite low given the overall lack of knowledge to make informed decisions under climate change.

States targeted for project activities

The target region of the project consists of 138 villages in dryland zones across 9 states in Sudan. The selection of these villages has been based on several common characteristics, namely subsistence agro-pastoralists and nomadic pastoralists who are highly vulnerable to climate change, with few opportunities for household income diversification and adaptation. Despite their vulnerability, local populations have little access to measures and practices that can increase their resilience in the face of climate change. A brief description of the major targeted state characteristics, together with key dimensions of vulnerability to climate change, is provided in the bullets below.

West Darfur: West Darfur is characterized by great environmental diversity with seasonal valleys that can sustain forests, rangelands, and agriculture. About 80% of the state's economy is based on cash crops and livestock production. Nevertheless, the state has a history of chronic food insecurity - it is the most food insecure region in Sudan with greater than 40% of the population unable to obtain a health daily diet.

East Darfur: East Darfur is largely characterized by nomadic tribes facing acute water scarcity. Increasingly rainfall variability has led to serious rangeland degradation and in some cases, the disappearance of essential grasses and herbs. Nomads who rely on these resources have been forced to cope by resorting to inferior options for feeding their livestock, namely lower quality tree leaves; limited crop residues, or moving across the border to South Sudan. East Darfur has become the home for significant numbers of displaced people from other Darfur states, all suffering from reduced rainfall. This has amplified the consequences of climatic change for the state and further exacerbated environmental degradation and socio-economic disruption.

Central Darfur: Central Darfur is characterized by diverse climate and soils, including volcanic soils in Jebel Marra (a mountainous area) sandy, clay and alluvial soils in the different valleys traverse the state towards the west to Chad and Central African Republic. Most economic activities are focused on agriculture and pastoralism, with 80% of the population comprised of farmers and pastoralists. Communities are suffering from recurrent droughts, increasing temperature and rainfall variability, which together with high poverty rates have led to a growing misuse of resources as evidenced by overgrazing and denuding of forests.

South Kordofan: The state is characterized by widespread poverty, lack of basic services, poor infrastructure and continued land disputes. While South Kordofan is less prone to drought conditions than its northern counterpart, the state is vulnerable to the impact of forced migration. That is, as agricultural regions in other parts of Sudan become less productive, South Kordofan may see an influx of climate refugees while lacking the infrastructure to accommodate rapid population growth. 

West Kordofan: West Kordofan is characterized by nomadic and transhumant tribes that concentrate in areas where water and other services are available. For farmers, higher temperatures and increased rainfall variability has led to crop failure, increased pest incidence, and out-migration by farmers. For pastoralists, lower humidity levels and higher temperatures have led to grassland degradation and animal diseases. The state has experienced diminishing levels of healthy drinking water due to lower rainfall as well as a higher incidence of certain climate-related epidemics.

Kassala: Kassala is characterized by widespread poverty and lack of basic services. Roughly 85% of the population live below the poverty line and rely on traditional rain-fed agriculture. Flash flooding is a growing risk with frequent seasonal flooding from the Gash and Atbara rivers in the western part of the state. While floods have occurred every 6-7 years over 1970-2000, they have been recently occurring every 4-5 years. Drought frequency has also been increasing, with two major droughts occurring in 2008 and 2011.

Red Sea: The Red Sea state is distinguished from other states in the Eastern region as the only state with a coastline (750 km).  The region supports varied and diverse coastal and marine habitats, including coral reefs, mangroves, and seagrass beds. Many species of birds and fish are supported by these ecosystems, many of which are not found anywhere else in the world. These resources also provide food and income for the communities living along the Red Sea coast. Water scarcity is a persistent problem across inland and coastal areas, while overgrazing is rapidly degrading rangelands.

Northern: The Northern state is characterized by an economy that depends upon both irrigated and rain-fed agriculture. In this region, rainfall is typically very low, temperatures are high in the extreme, and vegetative cover is sparse outside the immediate vicinity of the Nile. Rising temperatures, decreasing rainfall, fluctuations in River Nile water levels, and increased wind speeds have combined to result in a mix of drought and flooding with adverse effects on crop yields, rangelands, animal production, and riverbank erosion. Shifting climates have also hastened the arrival of new plant diseases, such as the date palm disease in the Elgab area, and new skin diseases, such as Jarab, which are not historically common in the state.

Khartoum State: Khartoum is the capital of Sudan and is in the tropical zone around the River Nile. It is characterized by rapid urban growth and the largest concentration of infrastructure. About 20% of the state population is located in rural areas and practice traditional cultivation and pastoralism. Dust storms are regular occurrences and river fluctuations threaten riverbank erosion and flooding. Increasing climatic variability have placed serious pressure on Khartoum’s crop yields, rangelands, and natural forests.

Related projects/interventions

The project builds upon the lessons learned from recent climate change adaptation projects such as: 1) The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; 2) the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer/Pastoral Communities; and 3) the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these projects and applies a similarly integrated approach to crop, water, and rangeland management that incorporate recurring drought concerns and understanding linkages between agro-pastoralist and nomadic pastoralist livelihoods. Some of the specific lessons that have been directly accounted for in project design are outlined below.

Rural water supply for domestic and small-scale irrigation using solar pumping has been readily adopted and effective in several rural settings, resulting in availability of water for agriculture and clean water for human an animal use and saving time of getting it;

Cultivation of drought-resistant horticultural crops (e.g., introduction of new vegetables and practicing cultivation in 3 seasons instead of one season cropping system in Gerf area in Gedarif State) has resulted in improved crop productivity;

Rehabilitation and improvement in irrigated agricultural production (e.g., in Wad Hassan village of Gedarif State) contributed to the creation of new income sources and labor opportunities, which contributed to improved socio-economic status of communities;  

Shelter belts around some farms in River Nile State demonstrably protected farms from hot wind and also created favorable microclimates, which helped to increase productivity and yields;

Afforestation in North Kordofan State - where 7 community nurseries were established, and 53,000 trees were planted – effectively protected agricultural lands and residential areas; and

Awareness-raising and capacity building through demonstration women’s farms led to improvement in crop productivity (e.g. fava beans) in river Nile State and led to women being more oriented to climate change adaptation practices.

 

Expected Key Results and Outputs: 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Activity 1.1:  Introduce drought-resilient seed varieties of sorghum, millet groundnut and wheat that have demonstrated greater yields in the face of climatic changes through village procurement systems;

Specifically, Activity 1.1 will involve a) developing and implementing a programme for drought tolerant and early maturing certified seed distribution; b) replicating successful implementation of drought tolerant and early maturing seed varieties of sorghum, millet, groundnut and wheat to neighboring communities through participatory process; c) establish climate adapted seed multiplication farms; d) conducting community-based drought tolerant and early mature seed procurement by ensuring farmer knowledge of technical aspects of seed production, handling and exchange, including establishment of seed multiplication farm at village level; and e) facilitation of access to micro-financing schemes . Drought tolerant and early maturing seeds constitute crop varieties that can better cope with heat, drought, flood and other extremes and help farmers adapt to climatic changes and lead to increases in agricultural production and productivity. The focus of seed varieties will be on adapted food and cash crops seed varieties that are currently available in Sudan that have shown desirable traits in withstanding climatic stresses such as drought, heat, and waterlogging. Seeds will be procured based on community-based procurement protocols that promote the role of the local farmers in procurement of quality seeds of improved varieties at household and community levels. It is predicated on the frequent circumstance of seed supply from the formal sector unable to reach or meet traditional farmers’ demand. The viability of community-based seed procurement programs is well established in rural Sudan thanks to past projects and local resource management practices. Seed multiplication farms consist of community-based drought-resistant seed supply on local farms through introducing improved seed varieties and strengthening farmers’ capacity and knowledge regarding technical aspects of seeds such as quality control, testing, storage, and certification. These farmers subsequently become a source of quality seeds of improved climate-smart varieties to the communities. The community–based seed supply can be a reliable and efficient way to access high quality seeds. Finally, micro-financing schemes (i.e., sandugs) will be established will be established through the village communities with mechanisms in place to facilitate access to funds.

Activity 1.2:  Introduce sustainable practices in agricultural production at the community level. This involves the introduction of greater irrigation efficiency in the management of water resources through the introduction of integrated women’s farms, home gardens, and demonstration plots;

Specifically, Activity 1.2 will involve a) establishing integrated women sustainable agriculture farms with access to micro-financing schemes; b) establishing sustainable women-centered home gardens, with access to micro-financing schemes; c) training farmers on sustainable wadi cultivated practices and subsequent cultivation in at least 5 specific wadi/depression zones; d) preparing technical manual and provide trainings to farmer groups on water management under climate change (for integrated farmland; home garden and Wadi); and e) setting up climate adaptation-oriented Farmers’ Field Schools. Women-run farms and gardens are enterprises for cultivation of a small portion of land which are around the household or within walking distance from the residence. They will be planted with vegetables and fruits and as well as extra-early maturing crops that can serve as a supplementary and urgent source of food and income during period of food scarcity. Women’s farms and gardens have proven to be a promising approach to enhance food security and wellbeing of resource-poor households in vulnerable areas, offering benefits of security, convenience, and marketable items. Sustainable wadi cultivated practices involve the implementation of climate-adapted technologies and practices that address the challenge of how to transition to a climate-adapt agriculture at needed scales for enabling agricultural systems to be transformed and reoriented to support food security under the new realities of climate change in rural Sudan. Two main categories of sustainable agriculture are the focus of project activities: a) improving water/soil management practices through the introduction of small scale irrigation and conservation tillage techniques and b) improving crop production practices through seed priming, fertilizer micro-dosing, adjusting planting density, and changing planting dates to conform to new climatic trends. Farmers’ field schools (FFSs) are based on the FAO’s Farmer Field School methodology[1] and have been introduced successfully in other parts of Africa to increase farmers awareness about climate change and climate-smart technologies. Among other things, they help farmers learn to integrate weather and climate information with disaster management and agricultural planning while creating awareness about disaster risk reduction and climate change adaptation. The project will address the short time frame to develop climate information by incorporating protocols and lessons learned from the GEF-funded Climate Risk Finance (CRF) project mentioned in Section B.1. That is, the logistical challenge of the time it takes to get climate data, then the time to build climate advisories and then the time to disseminate in FFSs and expect usage for impact will be overcome by the head start provided by the CRF project through the mobile-phone partnership established between the Sudanese Meteorological Authority, the Agriculture Research Center, extension service representatives, and a mobile phone company to develop and distribute climate information to local communities across 6 states in Sudan. As a result, rain-fed farmers and pastoralists now receive forecast/climate information and risk / agricultural / pest / livestock advisories by Short Message Service (SMS). At the same time, the CRF project is developing a Mobile Based Application comprising weather information, agriculture practices, crop insurance scheme, marketing information and advisory services that should be readily available by the start of project activities. Such information will be integrated into the FFS programme.

Activity 1.3:   Introduce rangeland management practices that reduce pastoral stress on communal lands through demonstration farms and rangeland rehabilitation techniques;

Specifically, Activity 1.3 will involve a) the development of technical guidelines for climate adaptive rangeland management; b) establishment of communal rangeland reserves for drought resistant ranged seed production; and c) Rehabilitation of 2,000 hectares of degraded rangelands and an additional 2,500 hectares of strategic rangelands by using site-suitable types of soil conservation and water harvesting techniques Technical guidelines will focus on climate-adaptive rangeland management techniques. Rangelands are a crucial resource for the poorest people in Sudan’s drylands, representing the major source of fodder in livestock production systems. Today, however, these areas are threatened by severe livestock population pressures and environmental degradation New rangeland management practices to be implemented include rotation grazing, reduced burning, reseeding, brush control, and scheduled rest periods.  Rangeland rehabilitation will consist of four main activities: reseeding, water harvesting, grazing management, and fire control. The modalities for introducing and sustaining these new practices will be addressed in Output 3 capacity building activities to ensure that the need for vegetation/soil recovery is community-learned and community-practiced.

Activity 1.4:   Establish shelterbelts/agroforestry to improve productivity and reduce land and environmental degradation.  This involves the plantation of trees to absorb energy from dust storms and protection of cultivatable areas

Specifically, Activity 1.4 will involve a) developing and implementing a programme for a total of 30 multi-purpose tree nurseries to be run by women groups; b) establishing shelterbelts with drip irrigation system; and c) establishing climate adaptive community-based afforestation. Shelterbelts will be equipped with drip irrigation systems to act as a barrier to reduce the harmful effect of wind velocities, wind erosion and sand drift and heat waves while improving existing harsh environmental condition. Community based afforestation will involve the planting of climate-resilient tree species and greater and continued community participation in the development of tree nurseries and the management and long-term protection of new forest cover. In addition to increasing resiliency against climate-related impacts, afforested areas will provide an important co-benefit of carbon sequestration. Principal species to be planted include Acacia Senegal with other Acacia species planted as needed, with a rotation of about 15 years and an uptake period of 30 years. Post-project sustainable management of nurseries, shelterbelts and afforested areas will rely on community mobilization/engagement, awareness-raising, and village institutional capacity building that has been achieved as part of Output 3.

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Activity 2.1:  Construct/rehabilitate water yards and drilling of shallow/borehole for drinking water for human and livestock and small-scale irrigation in targeted locations. This involves increasing the access to water by installing communal water infrastructure;

Specifically, Activity 2.1 will involve a) rehabilitation work for existing water yards to repair/replace components as needed (e.g., borehole, storage tank, animal watering basins, tap stands, solar pumps); b) drilling of new water yards, including boreholes, solar pumps, storage tanks and small-scale irrigated plots in vicinity of water yards; and c) conducting community training for maintenance in water yards, including access to micro-financing schemes. A total of 30 existing water yards will be rehabilitated, together with the installation of 50 new water yards among the targeted communities. Water yards are essentially a water extraction and distribution complex which includes borehole, storage tank, animal watering basins and tap stands. The borehole is equipped with a pump, typically powered by a diesel engine although in the proposed project, solar-powered pumping is the chosen alternative in order to avoid greenhouse gas (GHG) emissions. Project activities include both rehabilitation of existing water yards and the installation new ones. The installation of new water yards requires approval from State Water Councils which are part of the Ministry of Irrigation and Water Resources (MIWR), one of the Responsible Parties of the project. The MIWR has already committed to providing permission for the installation of new water yards. The procurement of all materials (i.e. pipe, fencing, solar panels, water storage tank, cement, sand, stone aggregate) for rehabilitating or installing new water yards are locally available, obviating the need for importing any goods from abroad.  The 80 new and rehabilitated water yards will each provide a daily storage capacity of 50 m3, or 1.46 Mm3 per year. Specific locations for rehabilitated and new water yards are indicated in Annex 2.

Activity 2.2: Establish sand water-storage dams in support of small-scale irrigation in targeted localities and villages. This involves the blocking seasonal wadis for groundwater storage and exploitation;

Specifically, Activity 2.1 will involve a) constructing sand water-storage dams in drought-prone areas; b) installing small pumping units around sand water-storage dam for sustainable agriculture; and c) providing training for operation and maintenance of sand water-storage dam and solar pumps for water management scheme, including access to micro-financing schemes. A total of 30 new sand water-storage dams and 50 solar-powered pumps will be installed at selected locations within the project sites. These are cost-effective rainwater harvesting structures which are used as a response to conditions of water scarcity due to severe drought and climate extremes in drylands. They are simple structures that consist of a reinforced concrete wall built up to 5 meters high across a seasonal water stream that transports runoff-water from catchment areas to streambeds. They are designed like ordinary dams, but the spillway is raised to enable sediments to sit in the dam. Project activities include constructing new sand water-storage dams which do not require a permit or approval from State Water Councils. The procurement of any materials for constructing sand water-storage dams are locally available, obviating the need for importing any goods from abroad.  Each sand water storage dam has an annual design capacity of 20,000 cubic meters. The 30 new sand water storage dams will contribute a total of 0.6 Mm3 in new annual water storage capacity. Specific locations for the new sand water-storage dams and pumps are indicated in Annex 2.

Activity 2.3:  Construct improved Hafirs and upgrade existing ones, excavating natural pond and cistern to increase availability of drinking water. This involves the construction of water storage infrastructure

Specifically, Activity 2.1 will introduce 75 new hafirs at selected locations within the project sites.  A hafir is simply an artificial excavation designed for harvesting rainwater. During the rainy season it will be filled by the discharge from seasonal streams and enhances the access of vulnerable communities to drinking water. Hafirs are usually constructed big enough to cater for the needs of the villagers/nomads and their livestock during the dry season.  Each improved hafir has an annual storage capacity of 50,000 cubic meters. The 75 new improved hafirs will contribute a total of 3.75 Mm3 in new water storage capacity.Project activities include both constructing improved Hafirs and upgrading existing ones. The installation of new hafirs does not require approval from State Water Councils. The procurement of any materials for rehabilitating or constructing new hafirs are locally available, obviating the need for importing any goods from abroad.

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Activity 3.1: Train extension officers and other government stakeholders on climate change resilience and adaptation related issues.  This involves the development of training materials tailored to local circumstances and delivered through a series of workshops;

Specifically, Activity 3.1 will involve a) conducting a training needs assessment for executing and concerned government agencies; b) developing manuals and technical guidelines for strengthening technical capacity for expanding climate-resilient practices throughout other communities; c) training extension staff from the Ministry of Agriculture and concerned government agencies; d) developing guidelines on adaptation measures for up-scaling to other localities; and e) developing a manual of best practices on climate change adaptation measures

Activity 3.2: Build capacity of beneficiaries for coping with climate change risks and local operation & maintenance of project interventions. This involves a series of seminars and workshops to raise awareness among village leaderships councils about climate change coping strategies

Specifically, Activity 3.2 will involve a) conducting climate resilience training of village extension networks, including role of micro-financing schemes; b) conducting training of village development committees, including role of micro-financing schemes and community procurement processes; c) carrying out awareness-raising campaigns on building resilience to climate change, including role of micro-financing schemes; and d) facilitating exchange visits of communities and extension staff across localities. A fair and transparent selection process will be established regarding beneficiary selection for capacity building. Several criteria will be employed to select training beneficiaries including specific level of stakeholder engagement; specific level of vulnerability, status as female-headed household, and other criteria to be determined.

 

Contacts: 
Tom Twining-Ward
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
June 2020
Description: 
GCF Board Approval
Proj_PIMS_id: 
5813
SDGs: 
SDG 2 - Zero Hunger
SDG 3 - Good Health and Well-Being
SDG 6 - Clean Water and Sanitation
SDG 13 - Climate Action

Strengthening the resilience of smallholder agriculture to climate change-induced water insecurity in the Central Highlands and South-Central Coast regions of Vietnam

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability. Every year the country is affected by a range of hydro-meteorological and climatological hazards, from droughts and forest fires to storms, floods and extreme temperatures.

Small-scale farmers with plots of less than one hectare, who are dependent on one or two rain-fed crops per year, are the most vulnerable to changes in water availability and its effect on agricultural productivity.

This project (2020 - 2026) will empower smallholder farmers in five provinces of the Central Highlands and South-Central Coast regions of Vietnam (Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa) – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (105.68847653638 21.135745258119)
Primary Beneficiaries: 
222,412 direct beneficiaries and 335,252 indirect beneficiaries
Funding Source: 
Financing Amount: 
Green Climate Fund: US$ 30,205,367
Co-Financing Total: 
Asian Development Bank: $99,590,000 (loan under WEIDAP project); Government of Viet Nam: $22,060,000 (WEIDAP project); Government of Viet Nam (MARD Central Govt): $ 406,277 (grant); Government of Viet Nam (MARD Central Govt): $77,550 (in-kind); Government
Project Details: 

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability and change. Every year the country is affected by a range of hydro-meteorological and climatological hazards: droughts and forest fires during January-April; tropical, hail and wind storms; coastal, riverine, and flash floods; heavy rainfall and landslides in June-December and extreme temperatures (cold and heat waves) throughout the year.

Increased exposure of people and economic assets has been the major cause of long-term increases in economic losses from weather- and climate-related disasters.

Changes in precipitation are leading to hotter and wetter wet seasons and hotter and drier dry seasons, resulting in periods of increasing deficits in surface and ground water availability for agricultural production with longer periods of severe water scarcity during the dry season and increased frequency and intensity of droughts.

As a consequence, overall agricultural productivity is falling, with the corresponding declines in yields and incomes particularly harmful to small-scale farmers vulnerable to reduced water availability on rain fed lands and within this group, poor and near- poor, ethnic minority and women farmers. 

Two of the regions most vulnerable to climate risks are the Central Highlands and South-Central Coast.

Agriculture and water resources are the foundation of the livelihoods of about 64% of the people in the Central Highlands, especially ethnic minorities accounting for 36.4 – 39.1% of the region’s population. The Central Highlands are susceptible to changes in water availability in the dry season when there is little rain and low river flow. Only about 27.8% of the region’s agricultural land is irrigated, and farmers are forced to exploit groundwater for irrigation.

The Central Highlands region constitutes Vietnam’s largest perennial crop zone, where smallholders produce coffee, pepper, cashew, rubber, tea, and a variety of fruit, primarily for market. In addition, they produce rice, maize and cassava, chiefly for local consumption, especially by the poorest.

Farmers in the region currently intercrop perennial crops or combinations of perennial and annual crops as a strategy to mitigate the risk of drought and market price fluctuation. However, under increasingly extreme climate change-induced drought, farmers’ coping strategies are progressively less effective. During droughts, groundwater levels can plunge throughout the region from 80-100 m in depth. Many farmers drill three or four wells but are still unable to obtain sufficient water, augmenting their dependence on increasingly variable rainfall. 

Around 48% of the people in the South-Central Coast region of Vietnam rely on agriculture for their livelihoods, with ethnic minorities comprising from 5.7% of the population in Khanh Hoa province to 23.1% in Ninh Thuan. Sufficient, reliable water sources are particularly critical as the South-Central Coast is the driest area of the country with a long dry season, the lowest rainfall, and a relatively small river system. Only around 30% of agricultural land is irrigated, leaving many farmers reliant on rainfall. Under climate change, droughts in the region are becoming more extreme, and it’s anticipated that many of the poor/near-poor are likely to face food insecurity and increasing poverty.

The objective of this project, then, is to empower vulnerable smallholders in five provinces of the Central Highlands and South-Central Coast regions  – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

To achieve its objective, the project will enable smallholder farmers to adapt to climate-driven rainfall variability and drought through implementation of two linked Outputs integrating GCF and co-financing resources from the Asian Development Bank and the Government of Vietnam: 1) improved access to water for vulnerable smallholder farmers for climate-resilient agricultural production in the face of climate-induced rainfall variability and droughts, and 2) strengthened capacities of smallholder farmers to apply climate and market information, technologies, and practices for climate-resilient water and agricultural management.

While this project will use GCF financing to specifically target ethnic minority, women and other poor/near poor farmers, it will use GCF and co-financing resources to build the capacities of all farmers in climate vulnerable areas; as such the project will reach 222,412 direct individual beneficiaries in the five provinces of Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa.

The project was developed as part of an integrated programme funded through multiple sources, as envisaged by the Government of Vietnam (GoV), that was aimed at enhancing water security and building the climate change resilience of the agriculture sector focusing on Vietnam’s Central Highland and South-Central Coastal Regions.

In alignment with this programme, the project will enable the GoV to adopt a paradigm shift in the way smallholder agricultural development is envisioned and supported through an integrated approach to agricultural resilience starting with planning for climate risks based on identification and analysis of agroecosystem vulnerabilities; enhancing water security and guaranteeing access; scaling up adoption and application of climate-resilient agricultural practices and cropping systems; and creating partnerships among value chain stakeholders to ensure access to market and credit.

This approach directly addresses climate risks while also establishing or strengthening institutional capacities for long-term multi-stakeholder support to vulnerable smallholders.

The project was designed to achieve smallholder adaptation to climate change in the most vulnerable districts and communes by complementing and enhancing the activities and results of the Water Efficiency Improvement in Drought Affected Provinces – WEIDAP – project for primary irrigation infrastructure financed through a USD 99.59 million loan from the Asian Development Bank, as well as USD 22.06 million from the Government of Vietnam.

GCF funding will be used a) to achieve last mile connections to this infrastructure by poor/near-poor smallholders, with a particular focus on ethnic minority and women farmers; and b) to attain adoption by all farmers in WEIDAP-served areas of climate-resilient agricultural practices, co-development and use of agro-climate information for climate risk management, and multi-stakeholder coordination for climate- resilient value chain development through climate innovation platforms.

This project will advance the implementation of priority activities in Viet Nam’s Nationally Determined Contribution (NDC). These include: support livelihoods and production processes that are appropriate under climate change conditions and are linked to poverty reduction and social justice; implement community-based adaptation, including using indigenous knowledge, prioritizing the most vulnerable communities; implement integrated water resources management and ensure water security; ensure food security through protecting, sustainably maintaining and managing agricultural land; and adopt technology for sustainable agriculture production and the sustainable use of water resources.

Expected Key Results and Outputs: 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

1.1.1 185 km of new pipe systems taking water from canals or reservoirs, and supplying hydrants located at a reasonable distance from a farmer’s field

1.1.2 19,200 ha served through modernization of main system including canal lining, control structure, balancing storage and installation of flow control and measurement devices with remote monitoring

1.1.3 Provision of new and improved weirs replacing farmer constructed temporary weirs, permanent ponds/storage for irrigating HVCs, and upgrades of upstream storage and supply systems.

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

1.2.1 Design and construct 4,765 connection and distribution systems including installation and maintenance of irrigation equipment to cope with climate variability on 1,430 hectares

1.2.2 Train 4,765 poor and near poor farmers (one connection/distribution system per farmer) on climate-risk informed utilization of irrigation equipment and system maintenance

1.2.3 Establish Water Users Groups for O&M of communal or shared systems, including structures and agreements on potential funding mechanisms

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

1.3.1 Construct or upgrade 1,159 climate-resilient ponds (based on site-specific designs construct 675 new ponds and upgrade 484 existing ponds)

1.3.2 Train over 16,000 poor and near-poor farmer beneficiaries in climate- resilient water resource management to enhance supply

1.3.3 Establish 185 pond- management groups for O&M, including structures and agreements on potential funding mechanisms

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

1.4.1 Train 30 DARD staff and champion farmers in 14 districts (one course in years 2, 4 and 6) to support farmers’ groups in co-design, costing and O&M of climate-resilient, water efficient technologies

1.4.2 Train over 21,200 farmers through 900 Farmer Field Schools on soil and biomass management to enhance moisture-holding capacity, recharge of groundwater, and water productivity to cope with evolving climate risks on water security (in conjunction with Activity 2.1)

1.4.3 Install on-farm water efficiency systems for 8,621 poor/near-poor smallholders linked to performance-based vouchers (linked to Activity 2.1)

 1.4.4 Train smallholder farmers in five provinces on climate-risk informed O&M of water efficiency technologies

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

2.1.1 Sensitize smallholders to establish/re-activate 900 Farmer Field Schools

2.1.2 Train DARD personnel and lead (champion) farmers, as well as other interested parties (NGOs, Farmers and Women’s Unions, etc.) to build a cadre of farmer champions to galvanize adoption and application of CRA packages (15 provincial level workshops for 30 DARD staff in years 2,4 and 6; 28 district and 120 commune level trainings for 30 lead farmers in years 2 and 6)

2.1.3 Train over 21,200 farmers and value chain actors – particularly private sector input providers, buyers, processors, transporters - through 900 FFS on scaling up of climate resilient cropping systems and practices. (Each FFS will conduct 1-day trainings twice per year)

2.1.4 investment support to 8,621 targeted poor/near poor smallholders to acquire inputs and technologies for implementation of the CRA packages through performance-based vouchers.

2.1.5 Participatory auditing of implementation of voucher systems for climate resilient cropping systems and practices (One 1-day meeting for 100 participants in each of the 60 communes in Years 2, 4 and 6)

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

2.2.1 Establish and operationalize multi- stakeholder Climate Innovation Platforms (CIP) in each province and at the level of agro-ecological zones (Annual stakeholder meetings organized once every two years in each of the 5 provinces)

2.2.2 Provide technical assistance and training to enable market linkages with input, information and technology providers and buyers for climate-resilient agricultural production (two trainings, two networking workshops and three trade fairs in each of the 14 districts over four years)

2.2.3 Provide technical assistance and train farmers to enable access to credit through financial intermediaries (One workshop in each of the 60 communes in years 2 and 4)

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

2.3.1 Train 50 hydromet and DARD staff on generating and interpreting down-scaled forecasts for use in agricultural planning (eight training over four years for 50 participants)

2.3.2 Provide technical assistance for the formation ACIS technical groups and training of 420 participants at district level (1-day workshops for 30 participants in each of the 14 districts)

2.3.3 Co-develop, through Participatory, Scenario Planning (PSP) of seasonal and 10-day/15-day agro-climate advisories with smallholder farmers (20 provincial level trainings for 30 staff and 56 district level trainings for 60 participants over four years)

2.3.4 Disseminate advisories to 139,416 households in the 60 communes

Monitoring & Evaluation: 

Project-level monitoring and evaluation will be undertaken in compliance with the UNDP POPP and  UNDP Evaluation Policy.

The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager.

The UNDP Country Office supports the Project Manager as needed. Additional M&E, implementation quality assurance, and troubleshooting support will be provided by the UNDP Regional Technical Advisor. The project target groups and stakeholders including the NDA Focal Point will be involved as much as possible in project-level M&E.

A project implementation report will be prepared for each year of project implementation. The final project PIR, along with the terminal evaluation report and corresponding management response, will serve as the final project report package.

Semi-annual reporting will be undertaken in accordance with UNDP guidelines for quarterly reports that are produced by the project manager.

An independent mid-term review, equivalent to an Interim Review in GCF terminology, will be undertaken and the findings and responses outlined in the management response will be incorporated as recommendations for enhanced implementation during the final half of the project’s duration.

An independent terminal evaluation will take place no later than three months prior to operational closure of the project and will be made available on the UNDP Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure.

Contacts: 
UNDP
Yusuke Taishi
Regional Technical Advisor, Climate Change Adaptation
UNDP Viet Nam
Dao Xuan Lai
Assistant Resident Representative, Head of Environment and Climate Change Department
Climate-Related Hazards Addressed: 
Location: 
Funding Source Short Code: 
GCF
News and Updates: 

  

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

Project Dates: 
2020 to 2026
Timeline: 
Month-Year: 
March 2020
Description: 
Green Climate Fund approval
Month-Year: 
June 2020
Description: 
FAA Effectiveness
Proj_PIMS_id: 
6117

Building Climate Resilience of Vulnerable Agricultural Livelihoods in Southern Zimbabwe

This GCF-financed project supports the Government of Zimbabwe in strengthening the resilience of agricultural livelihoods of vulnerable communities, particularly women, in southern Zimbabwe to increasing climate risks and impacts. The project supports vulnerable people, especially smallholder farmers and women to access sufficient, reliable sources of water to enhance the climate resilience of agricultural production, adopt climate-resilient agricultural practices and cropping systems, and access and utilize climate information to more effectively manage climate risk in rain-fed and irrigated agricultural production. The project will benefit an estimated 2.3 million people across Manicaland, Masvingo and Matabeleland South provinces.

The project enhances the water security for smallholder farmers in light of evolving climate risks by enabling revitalization and climate-proofing of irrigation schemes and improving water-use efficiency and enhancing soil moisture management on rain-fed lands. It strengthens the capacities of vulnerable smallholder farmers through farmer field schools and peer-to-peer support to scale up climate-resilient agriculture, with access to resilient inputs, markets, and actionable climate information. The project empowers vulnerable smallholders through multi-stakeholder innovation platforms for climate-resilient agriculture – including value-chain actors and financial intermediaries – to make a transformative shift away from subsistence livelihoods to climate-resilient, market-oriented agricultural livelihoods. The project will leverage government budgets to direct funds to climate-resileint actions in the three provinces. The project will yield significant environmental, social and economic co-benefits, including climate risk-informed, sustainable land management, strengthened gender norms and women’s empowerment, private sector engagement, and increased income and food security including income and productivity benefits over the project’s lifetime.

The project contributes towards the Government of Zimbabwe’s achievement of priorities outlined in its Nationally Determined Contributions (NDC) and climate change plans and strategies including: strengthening management of water resources and irrigation in the face of climate change; strengthening capacities to generate new forms of empirical knowledge, provision of technologies (including conservation agriculture) and agricultural support services that meet climate challenges, and strengthening the capacity of the national meteorological and hydrological services to provide timely climate data.

English
Region/Country: 
Coordinates: 
POINT (30.33398417638 -20.443485689853)
Primary Beneficiaries: 
2,302,120 people (approximately 543,620 direct and 1,758,500 indirect beneficiaries)
Funding Source: 
Financing Amount: 
US$26.6 million
Co-Financing Total: 
US$20 million (Government of Zimbabwe), US$1.2 million (UNDP)
Project Details: 

Background and context

The key climate change risks in Zimbabwe stem from increasing temperatures, more variable rainfall, and the intensification of extreme weather events. Increasing temperatures, coupled with declining and more erratic rainfall and greater evapotranspiration, result in increasing river run-off, leading to more aridity, the expansion of marginal lands and decreasing soil water retention capacity. Declining and variable rainfall is projected to cause changes to the growing season, with significant implications for yields and national revenues. Increasing frequency and length of mid-season dry spells has resulted in crop failure in rain-fed farming systems owing to severe water stress during the growing season (agricultural drought). The greatest intensity of impacts is experienced in the southern provinces, where the majority of smallholder farmers, especially women, depend on rainfall and bear the brunt of these climate risks threatening their food and income security.

Southern Zimbabwe is home to 30% of the country’s 14.5 million people and 45% of the country’s rural population, including some of the poorest communities in the country, with poverty prevalence across the Southern provinces ranging from 66-74%. About 7.1 million people in Zimbabwe depend on smallholder farming, most of whom are women.

Over the past five years, Zimbabwe has experienced a sharp decline in the rate of economic growth from 11.9% in 2011 to 1.5% in 2015 . This decline is largely due to underperformance of the agriculture sector, which at its peak contributed 19% to GDP. Agricultural performance in Zimbabwe is heavily impacted by the quality and quantity of rainfall with extreme events such as droughts or floods being the most damaging, along with dry dekads – ten-day rain-free periods during the growing season that cause “agricultural drought”.

While climate change affects the entire country, impacts are experienced most intensely in the southern provinces, where the majority of smallholder farmers are extremely vulnerable to increasing climate hazards as a result of poverty and weak access to services and institutional resources. Most of the farmland in southern Zimbabwe – the provinces of Manicaland, Masvingo and Matabeleland South – falls within Agro-Ecological Regions (AERs) IV and V, which have the lowest agricultural potential in terms of rainfall, temperature and length of growing season. The smallholders in southern Zimbabwe are predominantly communal farmers with very limited access to irrigation – only about 10,000 ha out of the 180,000 ha of irrigated land in southern Zimbabwe are found on communal lands. The remaining farmers are dependent on rain-fed agriculture.

These rain-fed agricultural systems are expected to be subject to drier and hotter conditions, making rain-fed maize production – the primary staple - a significant challenge . With increasing climate risks, water is the key limiting factor for agricultural productivity and adaptation to climate change. In addition to decreasing rainfall and increased evaporation, annual rainfall in AER V is increasingly variable, characterized by erratic and unpredictable rains (short, sharp, isolated storms). Crop yields are extremely low, and the risk of crop failure is increasing to one in three years. The effects of climate-induced droughts, exemplified by the 2015/2016 El Niño, continue to demonstrate that Zimbabwe’s agricultural sector remains highly vulnerable and exposed to increasing climate risks. 

According to the 2016 ZimVAC statistics, the highest proportion of food-insecure households at peak hunger period can be found in Matabeleland South (44%), Masvingo (50%) and Midlands (48%) provinces. Zimbabwe spends an average of USD30 million on food relief every year, with expenditures rising to USD 50 million in 2016 when 4.3 million food-insecure people were assisted as a result of El Niño-induced drought. High levels of poverty and food insecurity make the population less able to cope with increasingly harsh and variable climatic conditions. The increasing growth and strength of climate hazards have significant implications for household food security and income in already vulnerable communities in southern Zimbabwe. Key Government Strategies and National Climate Change Response

The Zimbabwe Government has established a five-year economic plan (2013-2018) called the “Zimbabwe Agenda for Sustainable Socio-Economic Transformation (ZimAsset)” . The plan’s vision is to move “towards an empowered society and a growing economy”, execution of which is “to provide an enabling environment for sustainable economic empowerment and social transformation to the people of Zimbabwe” . ZimAsset is an integrated plan with four clusters: a) Food Security and Nutrition; b) Social Services and Poverty Eradication; c) Infrastructure and Utilities; and d) Value Addition and Beneficiation. In 2015, the Government delivered a Ten Point Plan to support operationalization of ZimAsset, of which the following points are most directly relevant to the agricultural sector: “a) Revitalizing agriculture and the agro-processing value chains; b) Advancing Beneficiation and/or Value Addition to the agricultural and mining resource endowment; c) Focusing on Infrastructure development, particularly in the key Energy, Water, Transport and ICTs subsectors; d) Unlocking the potential of Small to Medium Enterprises; e) Encouraging Private Sector Investments.” 

To respond to and manage growing climate risks and hazards, the Government of Zimbabwe (GoZ) has formulated a number of key policies and plans, as well as strengthened the corresponding institutional frameworks. GoZ has developed a National Climate Policy and a costed National Climate Change Response Strategy (NCCRS) and has established a Climate Change Management Department in the Ministry of Environment, Water and Climate to coordinate and guide the national response to climate change. In its recently submitted Nationally Determined Contributions (NDC), Zimbabwe commits to promoting adapted crop and livestock development and climate smart agricultural practices; strengthening management of water resources and irrigation in the face of climate change; and promoting practices that reduce risks of losses in crops, livestock and agricultural incomes among other priorities. Zimbabwe is currently developing a National Adaptation Plan with readiness funding from GCF, supported by UNDP.

Addressing the financial limitations in investing in the incremental costs of building climate change resilience of vulnerable smallholder farming systems in southern Zimbabwe

Smallholder farmers in southern Zimbabwe have largely maintained traditional approaches to managing water, soil and crops for food security and income albeit in an increasingly unpredictable environment. The productivity and stability of these agro-ecosystems have deteriorated over the years due to a number of factors, including overly intensive cultivation and land degradation, compounded by increasing climate change-related extreme weather events, primarily droughts and, secondarily, floods. Farmers have been constrained in adapting to hydro-meteorological hazards by their intensity and frequency, which leaves farmers unable to repair irrigation infrastructure and equipment held in common - in particular as they are caught in a cycle of increasing drought or rainy season dry spells under the changing climate, compounded by inadequate consideration of climate risks in the baseline investments in irrigation infrastructure, climate change-induced water deficits, reduced yields and revenues, and heightened food insecurity. Smallholder farmers themselves in southern Zimbabwe clearly lack sufficient resources to invest in addressing the incremental costs of enhancing agro-ecosystem resilience to climate change. 

Development investments over the past decades, particularly in relation to irrigation infrastructure, have suffered dramatically from the impacts of climate change. Extreme weather events, such as sudden onset of heavy rains, have damaged or destroyed canals, dams and pumps with sedimentation of erosion of banks and stream beds. Current investments and projects are insufficient to counteract or mitigate growing climate risk as they fail to incorporate climate resilience into infrastructure design. The private sector has little incentive to invest given the risks and uncertainties associated with smallholder production, including technical, capacity, financial and other barriers.

With the impacts of climate change projected to increase over the coming years, the Government of Zimbabwe fully recognizes the significance to the country’s food security of ensuring that vulnerable smallholder farmers have the means, information, capacities, incentives and institutional support they require to manage their resources in a climate risk-informed manner. While some government funds have been made available as co-financing, the current public expenditure budget of the Government of Zimbabwe is limited and insufficient to move smallholder farmers to climate resilient and improved livelihoods. The IMF describes Zimbabwe to be in an ‘external debt distress’ state as of 2017 , and in the absence of stronger economic growth or more concessional financing and debt relief, Zimbabwe has little chance of emerging from its debt problems even in the long term. The government is unable to increase investments in climate resilient agriculture, which not only impacts farmers’ income, but also negatively affects the country’s future economic growth prospects.

The smallholder farmers in the project’s target areas themselves have insufficient income and resources to invest in irrigation and inputs for resilient agricultural livelihoods. GCF resources are indispensable to address the incremental costs of climate-proofing community irrigation systems, promoting climate-resilient agricultural practices, diversifying income and managing climate risk by facilitating public-private partnerships for climate resilient value chain development, and ensuring that climate information is produced and disseminated to decision and policy makers at all levels, from farmer to the national level. Leveraging and combining public and private sector financing for community-level investments for adaptation among smallholders

Expected Key Results and Outputs: 

Output 1: Increased access to water for agriculture through climate-resilient irrigation systems and water resource management

Activity 1.1: Climate proofing irrigation infrastructure for enhanced water security in the face of climate change

Activity 1.2: Field-based training and technology investments for farmers on rain-fed farmlands for climate-resilient water management

Output 2: Scaled up climate-resilient agricultural production and diversification through increased access to climate-resilient inputs, practices, and markets

Activity 2.1: Establish transformative multi-stakeholder innovation platforms for diversified climate resilient agriculture and markets

Activity 2.2: Investments in inputs, technologies and field-based training to scale up the implementation of climate-resilient agricultural production in the face of increasing climate hazards (rain-fed and irrigated farms)

Activity 2.3: Enhance institutional coordination and knowledge management capacities for climate-resilient agricultural production in the face of increasing climate hazards

Output 3: Improved access to weather, climate and hydrological information for climate-resilient agriculture

Activity 3.1: Installation and operationalization of weather/climate and hydrological observation networks

Activity 3.2: Develop, disseminate and build institutional capacities (MSD and AGRITEX) for tailored climate and weather information products

Activity 3.3: Capacity building for farmers and local institutional staff on effective use of climate and weather information and products for resilient water management and agricultural planning

Contacts: 
UNDP
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Project Status: 
News and Updates: 

   

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Increased access to water for agriculture through climate-resilient irrigation systems and water resource management

Output 2: Scaled up climate-resilient agricultural production and diversification through increased access to climate-resilient inputs, practices, and markets

Output 3: Improved access to weather, climate and hydrological information for climate-resilient agriculture

Project Dates: 
2020 to 2027
Timeline: 
Month-Year: 
March 2020
Description: 
GCF Board Approval
Month-Year: 
June 2020
Description: 
FAA Effectiveness
Month-Year: 
November 2020
Description: 
Project Launch
Proj_PIMS_id: 
5853

Support for Integrated Water Resources Management to Ensure Water Access and Disaster Reduction for Somalia's Pastoralists

Roughly 75% of Somalia’s 14.7 million people live in rural areas, with approximately 60% practicing pastoralism and 15% practicing agriculture. Less than one third of the population has access to clean water.

Climate change is now bringing more frequent, higher intensity droughts and floods, reducing already scare water supplies. Lack of water poses a serious threat to the health, wellbeing and livelihoods of farming and pastoral communities and limits Somalia’s overall economic and social development. Women in rural areas are particularly vulnerable.

Working with a range of development partners, as well as traditional leaders, women’s groups, local NGOs and community-based organizations, this four-year project (2019-2023) aims to increase Somalia’s capacity to manage water resources sustainably in order to build the climate resilience of rural communities.

The project focuses on:

  • National policy reform and development of integrated water resource management (IWRM)
  • Capacity-building at the national, state, district and local levels
  • Infrastructure for improved climate and water monitoring
  • Capture and sharing of best practices on IWRM.


The project will also provide training for pastoralists and small-scale farmers, men and women, on how to sustainably produce farming and livestock products.

English
Region/Country: 
Coordinates: 
POINT (45.307617150639 2.1056966206131)
Primary Beneficiaries: 
Over 360,000 farmers and pastoralists across Somalia
Financing Amount: 
GEF-LDCF $8,831,000; UNDP TRAC resources $1,500,000
Co-Financing Total: 
Ministry of Energy and Water Resources: US$ 8,000,000, EU: US$ 60,144,000, Global Water Partnership: US$ 100,000, TOTAL financing: US$ 78,575,000
Project Details: 

Water scarcity is a serious threat to Somalia, hindering economic and social development. Throughout the country, surface water and groundwater reserves are decreasing, while the frequency of droughts and floods is on the rise.

In response, this project directly supports integrated water resources development and management for over 360,000 farmers and pastoralists.

The development of a multi-sectorial IWRM Strategy conbined with technical and operational capacity development will support Somalia in planning sustainable water resources development schemes for all states down to the local level, particularly for states that formed as recently as 2015 and 2016.

The project will invest in monitoring infrastructure, including automatic weather stations, manual rain gauges, synoptic stations and radar river-level sensors, which will provide critical data for early warning dissemination in both arid regions and in key river basins to improve water resources management and contingency planning for farmers and pastoralists, including nomadic pastoralists. Currently the government lacks the capacity to put out timely early warnings and accurate hydrological information to support communities in the efficient and economic management of water.

Water mobilization from a diversified source of groundwater and surface water sources as well as construction of water diversion infrastructure will promote rural water supply and increased resilience in flood-prone areas. The resilience of rural populations  will be further enforced by enabling them to exploit their agro-pastoral value chains and increase their asset bases.

The project builds on existing initiatives, including the Integrated Drought Management Program in the Horn of Africa, the Somalia Water and Land Information Management service, the Joint Programme on Local Governance and Decentralized Service Delivery, the New Deal Compact and support provided by the Red Cross and Red Crescent Climate Centre to improve weather and climate forecasting.

Expected Key Results and Outputs: 

Component 1: National water resource management policy establishing clear national and state responsibilities

Outcomes

  1. Policy, legislative and institutional reform for improved water governance, monitoring and management in the context of climate change
  2. Strengthened government capacities at national and district levels to oversee sustainable water resources management

 

Component 2: Transfer of technologies for enhanced climate risk monitoring and reporting on water resources in drought and flood prone areas

Outcomes

  1. Improved water resource data collection and drought / flood indicator monitoring networks in Somalia’s Arid and Semi-Arid Lands (ASALs)
  2. Strengthened technical personnel from the National Hydro-Meteorological Services in IWRM and flood and drought forecasting
  3. Better understanding of the current hydrological and hydrogeological situation

 

Component 3: Improved water management and livelihood diversification for agro-pastoralists

Outcomes

  1. Reduced vulnerability for agro-pastoralists to water resource variability through investment in water resource management infrastructure and training on the livestock value chain
  2. Increased awareness of local communities on rainwater harvesting, flood management and water conservation during rainy seasons
  3. A national groundwater development action plan that will increase access to water for pastoral communities in drought affected areas taking into consideration aquifer characteristics, extent, location, recharge, GW availability and sustainable yields

 

Component 4: Gender mainstreaming, knowledge management and Monitoring and Evaluation

This component will focus on documenting best practices and spreading lessons learned on IWRM, effective hydro-geo-meteo monitoring and early warnings as well as agro-pastoral livelihood value chain skills transfer.

This will be done by first conducting a baseline study, including evaluating existing laws, policies and curriculums to determine how the existing position and status of women and youth can be improved with regards to water resources management.

The project will demonstrate the evolution of all gender-disaggregated baseline indicators and the mainstreaming of gender in all trainings and activities.

Included in this component will be stakeholder workshops in all 15 target villages.

All training materials will be collected and stored by the project’s M&E / KM expert and will be housed on an open-access database for all relevant government representatives, universities and NGOs/CSOs in all 6 states.

Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy.

Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies.

Supported by Component/Outcome Four (Knowledge Management and M&E) the project monitoring and evaluation plan will also facilitate learning and ensure knowledge is shared and widely disseminated to support the scaling up and replication of project results.

Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office.

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation 
Contacts: 
UNDP
Tom Twining-Ward
Regional Technical Advisor, Climate Change Adaptation
UNDP
Abdul Qadir
Climate Change and Resilience Portfolio Manager, UNDP Somalia
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
July 2019
Description: 
GEF CEO endorsement
Proj_PIMS_id: 
5464

Supporting Climate Resilience and Transformational Change in the Agriculture Sector in Bhutan

Given its geographic location and mountainous terrain, Bhutan is particularly vulnerable to changes in climate.
 
With the goal enhancing the resilience of smallholder farms, in particular to shifting rainfall patterns and frequent extreme weather events, this project, led by Bhutan's Gross National Happiness Commission, focuses on three complementary outcomes:
 
Promoting resilient agricultural practices in the face of changing climate patterns
Integrating climate change risks into water and land management practices that affect smallholder farmers
Reducing the risk and impact of climate change induced landslides during extreme events that disrupt market access
 
English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (89.593505836139 27.459539334553)
Primary Beneficiaries: 
27,598 agricultural households (118,000+ people) in eight dzongkhags (districts): Dagana, Punakha, Trongsa, Tsirang, Sarpang, Samtse, Wangdue Phodrang and Zhemgang, equal to approximately 46.5% of the rural population of Bhutan.
Funding Source: 
Financing Amount: 
US$25.347 million Green Climate Fund grant
Co-Financing Total: 
US$19.866 million Gross National Happiness Commission*; US$10.020 million Ministry of Agriculture and Forests*; US$2.540 million Ministry of Works and Human Settlements*; US$242,000 National Center for Hydrology and Meteorology* *Grants and in-kind
Expected Key Results and Outputs: 
Output 1: Promote resilient agricultural practices in the face of changing climate patterns
 
1.1. Developing and integrating climate risk data into crop and livestock planning at the national and sub-national levels
1.2. Tailored climate information and related training to local government and farmers to interpret and apply climate risk data to local and household level agriculture planning
1.3. Scaling up climate-resilient agriculture practices, and training local entities in community seed production and multiplication and cultivation of climate-resilient crop alternatives
 
Output 2:  Integrate climate change risks into water and land management practices that affect smallholders
 
2.1. Enhancing climate-informed wetland and water management to support agriculture planning
2.2. Establishment of climate resilient irrigation schemes and water saving technologies for smallholder farmers in 8 target dzongkhags
2.3. Scaling up of sustainable land management (SLM) technologies to support soil and slope stabilization
2.4. Capacity strengthening to farmers and extension officers on SLM technologies
 
Output 3: Reduce the risk and impact of climate change induced landslides during extreme events that disrupt market access
 
3.1. Slope stabilization along key sections of roads, critical for market access, and related technical capacity and knowledge products to support climate resilient road planning and construction going forward
3.2 Technical capacity building to support climate-risk informed and cost-effective slope infrastructure including stabilization, drainage and road construction & maintenance
 
Monitoring & Evaluation: 
The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions. All project-level monitoring and evaluation is undertaken in compliance with the UNDP POPP, the UNDP Evaluation Policy.
 
An Annual Project Report for each year of project implementation will objectively document progress and will be shared with the Project Board and other stakeholders.
 
An independent Mid-Term Review will be undertaken and the findings and responses outlined in the management response incorporated as recommendations for the final half of the project’s duration. 
 
An independent Terminal Evaluation will take place no later than three months prior to operational closure of the project and will be made available to the public via UNDP’s Evaluation Resource Centre.
 
The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.
 
Contacts: 
UNDP
Mariana Simoes
Regional Technical Specialist, CCA
Climate-Related Hazards Addressed: 
Location: 
News and Updates: 

.

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Output 1: Promote resilient agricultural practices in the face of changing climate patterns
  • Output 2: Integrate climate change risks into water and land management practices that affect smallholders
  • Output 3: Reduce the risk and impact of climate change induced landslides during extreme events that disrupt market access
Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
July 2019
Description: 
Green Climate Fund approval
Month-Year: 
January 2020
Description: 
Project signing (GNHC and UNDP)
Month-Year: 
March 2020
Description: 
Launch of implementation
Proj_PIMS_id: 
5777

GCF National Adaptation Plan Project in Bangladesh

Bangladesh is experiencing the adverse effects of climate change, including sea level rise in coastal areas, increasing severity of tropical cyclones and extreme rainfall events. Recognizing that climate impacts are undercutting hard won human development gains, Bangladesh has already taken strides on adaptation planning over the last decade, by implementing the National Adaptation Plan of Action (NAPA), setting-up climate change trust funds, and pioneering community based adaptation approaches.  However, institutional arrangements and a coordinated strategy for mid- and long-term climate change adaptation investment are not yet in place.  

The objective of this Green Climate Fund (GCF) financed project is to formulate the Bangladesh National Adaptation Plan (NAP) with a focus on long term adaptation investment and enhancing national capacity for integration of climate change adaptation in planning, budgeting and financial tracking processes. The Ministry of Environment and Forests, Ministry of Finance, Ministry of Planning and key personnel working on climate change adaptation relevant programming in water resources, agriculture and food security, coastal zones, and urban habitation (the “priority sectors”) will be the beneficiaries of this project.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (89.766723550477 23.476850914431)
Primary Beneficiaries: 
The Ministry of Environment and Forests, Ministry of Finance, Ministry of Planning and key personnel working on Climate Change Adaptation relevant programming in water resources, agriculture and food security, coastal zones, and urban habitation (the “priority sectors”) will be the beneficiaries of this project.
Funding Source: 
Financing Amount: 
US$2,805,990
Project Details: 

The project is designed to support the Government of Bangladesh to meet the objective of formulating the Bangladesh National Adaptation Plan with a focus on long-term adaptation investment and enhancing national capacity for integration of climate change adaptation in planning, budgeting and financial tracking processes.

Bangladesh’s location, climate, and development trajectory make it a country especially vulnerable to the effects of climate change. Bangladesh lies on the Bay of Bengal in the delta floodplain of the Brahmaputra and Ganges rivers flowing from the Himalayas. Consequently, the terrain is predominately low-lying and flat, and the country has only a few mountainous regions.  The delta environment hosts a coastline that is dynamic and subject to coastal erosion, land subsidence, and sediment deposits, despite being home to the Sundarbans, the largest natural mangrove forest in the world.

Bangladesh is a least-developed country (LDC), and in terms of the Human Development Index ranks 139th out of 188 countries (2016). The country has a population of 162,951,560 (2016), of which around 70% live in rural areas. However, there is a high rate of urbanization, with a 3.2% increase in urban populations each year. The poverty ratio has fallen from 49% in 2000 to 31.5% in 2010, but over 70% of the employed population remains below a US $1.90/day purchasing power threshold. Agriculture accounts for around 14% of GDP, but employs approximately 40% of the workforce. Industry, in particular manufacturing, accounts for 29% of GDP, while services, including transport and construction services, account for 56% of GDP.

Bangladesh is often considered one of the one of the most vulnerable nations to extreme weather events, climate variability, and change (Global Climate Risk Index; Climate Change Vulnerability Index). Bangladesh’s climate is tropical, characterized by a summer monsoon and a winter dry season. However, future scenarios show increases in temperatures and precipitation in Bangladesh. An estimated temperature rise of 1.6°C and an increase of precipitation of 8% are expected by 2050. The country´s location in the Bay of Bengal makes it susceptible to seasonal cyclones, while being a major floodplain increases the risks related to seasonal flooding. For example, floods in 2007 inundated 32,000 sq. km, leading to over 85,000 houses being destroyed and almost 1 million damaged, with approximately 1.2 million acres of crops destroyed or partially damaged, 649 deaths and estimated damages over $1 billion.

Despite development progress and decline in poverty, the increased impacts of storms, sea level rise, and drought due to climate change threaten to reverse the gains in social and economic growth and have implications for the lives and livelihoods of poor women and men across the country.

Bangladesh is already experiencing a host of climate impacts. In particular, sea level rise is already observed along the coast. With future climate change, damaging floods, tropical cyclones, storm surges and droughts are likely to become more frequent and severe. And, the low-lying coastal land is particularly vulnerable to future sea level rise.

Bangladesh has already developed a National Adaptation Plan Roadmap. It highlights a range of priority sectors where the impacts of climate change are anticipated to be very high. These include (a) water resources, (b) agriculture (including sub-sectors such as crops, forestry, fisheries, and livestock), (c) communication and transportation, (d) physical infrastructure (including education infrastructure), (e) food and health security, (f) disaster risk reduction (g) people’s livelihoods, (h) urban habitation and built environment (including water supply, sanitation and hygiene) and (i) education.

Recognizing the threat to national development, Bangladesh has developed policy and institutional frameworks supporting CCA planning and investments. In 2005, Bangladesh was one of the first two LDCs to submit its National Adaptation Programme of Action (NAPA). The NAPA identified and prioritized adaptation projects for immediate and urgent implementation. It was updated in 2009, and additional projects were added. A corresponding Bangladesh Climate Change Strategy and Action Plan (BCCSAP) was approved in 2009 and runs until 2018. The BCCSAP articulates the national vision for pro-poor, climate resilient, and low-carbon development in alignment with both the GOB’s Vision 2021 and Five Year Plan national planning documents. The BCCSAP sets forward 6 pillars for climate change adaptation and mitigation, while identifying 44 priority programmes.

Climate change adaptation (CCA) is included in the Seventh Five Year Plan (2016-2020) and the priorities reflect mostly urgent and immediate needs as gauged by ongoing adaptation planning activities.  Under the related Annual Development Plans (ADP), climate change screening tools have been integrated into development project proposals. In addition, CCA has been integrated to a limited degree in key sectoral policies, such as water and agriculture. The ministry of Planning has also appointed a senior government secretary as the SDG Coordinator, and prepared a Sustainable Development Goals tracking matrix as a tool for various ministries to coordinate, track and guide various ministries in implementation of SDGs.

The Nationally Determined Contribution of Bangladesh (NDC -2015) identifies an adaptation goal to “protect the population, enhance their adaptive capacity and livelihood options, and to protect the overall development of the country in its stride for economic progress and wellbeing for the people”.

Also present in the NDC is a list of on-going adaptation actions, climate funds, and an estimate of adaptation costs. Based on estimates by the World Bank (2010), the costs of adapting to tropical cyclones, storm surges and inland flooding by 2050 alone in Bangladesh could amount to US$8.2 billion, in addition to recurring annual costs of US$160 million.

There are several related initiatives to advance GCF Readiness related work in Bangladesh. The GCF country work program is being developed with the support of GIZ Climate Finance Readiness’ Programme and Green Climate Fund Readiness Support with the NDA Secretariat, ERD and the Finance Division, Ministry of Finance. UNDP is also supporting NDA under readiness programme 2 for the preparation of country programmes. GIZ is planning a NAP/NDC Support programme to commence in 2018 with more focus on operationalization and implementation of NDC. UNDP has supported the Ministry of Environment with the development of the NAP Roadmap with the contribution of the Government of Norway. It is also supporting the Finance Division under the Ministry of Finance with integration of climate change into budgeting as well as the development of a climate change fiscal framework. The Government of Bangladesh is also engaged in applying to the GEF LDCF for complementary funding for NAPs.

In January 2015, the GOB with the support of the government of Norway and UNDP, developed the “Roadmap for Developing a National Adaptation Plan for Bangladesh”. The GOB decided to develop this NAP Roadmap as a first step towards developing a full Bangladesh National Adaptation Plan, to contextualize the key components that require elaboration - thematic areas and sectors have been prioritized and include: Water resources, Agriculture (including sub-sectors), Communications, Physical infrastructure, Food and health security, Disaster risk reduction, Livelihoods and Urban habitation.  The NAP Roadmap has customised the steps of the LDC Expert Group guidelines in the context of the needs of Bangladesh and has also prepared a methodological approach based on Bangladesh realities.

This was a useful and essential exercise with activities and results defined for Bangladesh to kick-start the complex NAP process. The gap that remains, however, is to operationalise the next steps in the Roadmap and develop the National Adaptation Plan. This proposal for readiness support to prepare the Bangladesh NAP responds to this gap in line with the technical guidance set out in the Roadmap by proposing to advance the NAP process in a transparent and participatory manner.

In March 2017 a two-week stocktaking for national adaptation planning (SNAP) process was conducted by GIZ in collaboration with UNDP and MoEF, during which national experts were interviewed and asked to assess current and future national adaptation planning capacities based on several success factors. This is another useful input to the operationalisation of the NAP Road Map as it provided a mapping of different initiatives that are relevant to operationalising the NAP. The results of the SNAP process were presented at the National Stakeholder Workshop and the participants participated in a joint review of results. The workshop resulted in a report titled “Stocktaking for Bangladesh’s National Adaptation Process: Achievements, Gaps, and Way Forward” that details the inputs as well as the SNAP process (March 30, 2017). This report will be a resource for NAP formulation moving forward. Subsequently UNDP and GIZ have met several times during preparation of this GCF NAP proposal and inputs and suggestions from GIZ are included.

Expected Key Results and Outputs: 

Outcome 1: Strengthened institutional coordination and climate change information and knowledge management for medium- to long-term planning.

  • Assess technical and institutional capacity, information, and data gaps at the national, sectoral, and thematic levels for CCA planning
  • Enhance climate change adaptation mandate and institutional coordination mechanisms to support the NAP process
  • Build expanded information and knowledge base with focus on detailed CC risks and vulnerability and interpretation of CCA planning scenarios for the mid- and long-term.

 

Outcome 2: Adaptation options appraised and prioritized and National Adaptation Plan formulated.

  • Review and prioritize mid-and long-term adaptation options for inclusion in the NAP, national development plans, and other CCA policies, actions, and programs
  • Formulate and communicate a NAP based on identified CCA priorities and in close coordination with plans already in place

 

Outcome 3: Climate risk informed decision making tools developed and piloted by planning and budget departments at national and sectoral levels.

  • Integrate CCA into national development and sectoral planning, programming, and budgeting by beginning a pilot effort in at least 3 prioritized sectors
  • Expand training on CCA mainstreaming and development of bankable project skills, specifically for personnel in priority sectors working on CCA programmes

 

Outcome 4: Nationally appropriate adaptation investments tracking mechanism set up and financial plan for mid- and long-term CCA implementation prepared.

  • Establish standards and protocol to track CCA project financing and investments
  • Identify and prioritize actions, policy, and partnership strategies for prolonged investment in CCA; integrate into a NAP programming and financing strategy that focuses on priority sectors and builds on existing financing mechanisms
Monitoring & Evaluation: 

The project results will be monitored and reported annually and evaluated periodically during project implementation to ensure the project effectively achieves its aims. 

Project-level monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy. The UNDP Country Office will work with the relevant project stakeholders to ensure UNDP M&E requirements are met in a timely fashion and to high quality standards. Additional mandatory GCF-specific M&E requirements will be undertaken in accordance with relevant GCF policies. 

The project will be audited according to UNDP Financial Regulations and Rules and applicable audit policies on DIM implemented projects.   Additional audits may be undertaken at the request of the GCF.

The following reports will be made available: an initial project Inception Workshop Report; Annual Project Reports; an Independent Mid-term Review (MTR) and an independent Terminal Evaluation (TE) upon completion of all major project outputs and activities.

The project’s final Annual Project Report along with the terminal evaluation (TE) report and corresponding management response will serve as the final project report package, including a reflection on lessons learned and opportunities for scaling up.  

Contacts: 
UNDP
Rohini Kohli
Lead Technical Specialist, NAP Global Support Programme, UNDP Global Environmental Finance Unit
Project Status: 
News and Updates: 

How long-term planning can work

The Daily Star
Wednesday 19 September 2018

Bangladesh has a strong tradition of medium term planning through the periodic Five Year Plans, of which we are now in the 7th Plan. At the same time, the country has a large number of professional planners both within the Planning Commission as well as embedded within the Planning Department of every ministry who help develop the sectoral plans for each ministry. This is a strong foundation of human skill and capacity based on which the country can now move towards making longer term plans for different sectors as well as for the country as a whole. There are already a number of sectoral and national plans being developed for longer time scales. These include the seventeen Sustainable Development Goals (SDGs) and the Climate Change goals which all have a time horizon to 2030. Very recently, the government has also approved the development of the Delta Plan which will have a time horizon until 2100. Only the Netherlands (with whose assistance Bangladesh is developing it) has done a plan for such a long time horizon so it will be quite a daunting task for us. At this time horizon, it is likely to be more of an aspirational goal rather than a detailed plan. Finally, we are expecting the prime minister to soon unveil her Vision 2041 for Bangladesh which will be more of a vision for the country than a specific plan. Under the above circumstances, the country will need to modify the standard processes for the Five Year Plans by the Planning Commission in order to think about the longer-term vision and to involve not only all the different parts of the government but also other stakeholders from outside the government. In other words, it will not only have to take a whole-of-government approach but also a whole-of-society approach. The government is well aware of this need and has already put in place a special unit in the Prime Minister's Office (PMO) to monitor the implementation of the SDGs under the leadership of very senior people. They have already started ensuring that each ministry develops its own SDG-related targets and ways of monitoring them. Civil society actors and academics have also set up groups around each of the SDGs for implementation and monitoring progress. In the realm of climate change, the government has already developed the Nationally Determined Contributions (NDC) as required under the Paris Agreement on Climate Change and will be preparing the National Adaptation Plan (NAP) soon.

Display Photo: 
About (Summary): 
The objective of this project is to formulate the Bangladesh National Adaptation Plan with a focus on long term adaptation investment and enhancing national capacity for integration of climate change adaptation in planning, budgeting and financial tracking processes.
Expected Key Results and Outputs (Summary): 

Outcome 1: Strengthened institutional coordination and climate change information and knowledge management for medium- to long-term planning

Outcome 2: Adaptation options appraised and prioritized and National Adaptation Plan formulated

Outcome 3: Climate risk informed decision making tools developed and piloted by planning and budget departments at national and sectoral levels

Outcome 4: Nationally appropriate participatory adaptation investments tracking mechanism and financial plan for mid- and long-term CCA implementation set up

Project Dates: 
2018 to 2021
Civil Society Engagement: 

A national stakeholders workshop on NAP readiness was held on March 7, 2017 to provide input to the proposal for this project. This stakeholders workshop was co-facilitated by MoEF, UNDP, and GIZ and included 70 attendees from many GOB ministries (including MoEF, the Planning Commission, Ministry of Water Resources, Ministry of Agriculture, Ministry of Women and Children Affairs, Ministry of Social Welfare), as well as representatives from other UN agencies, donors, civil society organization, and NGOs operating in Bangladesh. In addition, private development companies and university representatives were present and provided inputs.