Agriculture/Food Security
Taxonomy Term List
Ecosystems/Landscape approach to climate proof the Rural Settlement Program of Rwanda
Rwanda is among the most vulnerable countries to the effects of climate change in the world. Higher incidents of irregular rainy seasons, droughts, landslides and floods have exacerbated the impacts of historically degraded ecosystems to significantly increase vulnerability to climate risks for most rural households. COVID-19 has arisen as a challenge that amplifies the vulnerability of the country, which also poses a risk to efforts to addressing climate change impacts. These changes will affect agriculture, water resources, ecosystems, energy systems and human health, causing an estimated annual economic cost of about 1% of GDP by 2030. Left unchecked, these impacts will particularly erode the benefits of the rural settlement programme (Imidugudu), adopted by government to catalyse urbanization and economic development in the rural areas. Such loses can be avoided by integrating climate risks and adaptation measures during the planning, design and implementation of the programme, to avoid maladaptation and ‘lock-in’. Uptake of these measures are hampered by four barriers: i) Technical institutions and communities have limited technical capacity to generate current and diversified knowledge and climate information to integrate climate risks into the planning, design and implementation of the Imidugudu program. ii) The resource poor beneficiaries of the rural settlement programme lack the means to invest in available climate smart technologies and solutions to integrate climate risk into the Imidugudu and diversify and sustain livelihoods in the face of climate change; iii) the country’s policy space inadequately caters for the integration of climate risks into the Imidugudu programmes, exacerbated by weak capacity for cross sectoral coordination at District level; iv) Beneficiaries of the rural settlement programme and their supporting technical institutions have inadequate knowledge management and M&E.
The "Ecosystems/Landscape approach to climate proof the Rural Settlement Program of Rwanda" project puts Rwanda’s Rural Settlement Programme (Imidugudu) on a climate-resilient pathway to secure the programme’s development gains in the face of uncertainties emanating from climate change, and contributes to the country’s recovery from the impacts of COVID-19. This project will demonstrate how a climate-resilient pathway can be achieved at the national level by implementing four outcomes that collectively tackle exposure and sensitivity to climate risks at the landscape. The project will provide technical skills, more accurate and relevant short to long-term climate information, tools, plans, methods and institutional and policy conditions to create and sustain climate resilient livelihoods for select communities, benefiting a total of 2,211,600 people (50% women). It will be implemented by the Rwanda Environment Management Authority in partnerships with the Rwanda Housing Authority, Meteo Rwanda and the Local District Councils (Kirehe and Gakenke).

Outcome 1: Institutional and community capacities for planning for landscape approach enhanced to climate-proof Imidugudu.
This outcome will support climate informed planning as the basis for integrating climate risks into the rural settlement programmes and the associated livelihoods. It will provide communities in the four project areas, their supporting technical institutions and the private sector (builders, suppliers of building materials, contractors within the Imidugudu programme) with skills, awareness and decision-making tools to advance understanding of how vulnerability of livelihoods, local economies and the Imidugudu program are intertwined with the state of the natural systems. The stakeholders will use the information and knowledge to design alternative “climate proofed” Imidugudu plans; develop ecosystems-based adaptation plans as the basis for nature based solutions to flood and erosion control, including river bank and land stabilization in catchment areas; and design climate advisory services as decision-support tool to manage negative impacts of risks to livelihoods. The outcome will therefore lay the basis for the implementation of the other three outcomes (2 to 4), which will utilize the skills and tools throughout the project, thus contributing to, and integrating with all other outcomes. It will also lay the foundation for scaling up of the climate-proofing models throughout the country (by training staff and the relevant private sector players at the national level). Outcome 1 is delivered through five outputs, described below.
Output 1.1: Training programmes and their sustainability mechanisms designed and delivered to provide specialized technical skills and awareness on landscape approaches to climate risk management for technical staff of all relevant Departments and community groups: Enhancing capacities for planning, coordination and implementation in a sustained process at the local level is critical to guarantee effective climate adaptation. Under this output, the project will provide gender and COVID-19 responsive training to government technical staff, communities and the relevant private sector (serving the building sector) in climate risk management within the EbA and climate proofing Imidugudu contexts for implementation, further scaling up and sustainability. To ensure the sustainability of the training and skills development, the programme will be embedded into the Twigire Muhinzi extension services described under Box 3. The following themes will be covered, with each module integrating relevant gender aspects and any new measures necessitated by the COVID-19 pandemic and the response measures:
Downscaling climate information for local level planning – National and district level training to support outputs 1.3, 1.4 and 2.3
Developing ecosystems-based adaptation plans – Community level training to support output 1.4, 2.1 and 2.2.
Climate-risk assessments methods – district and community level training to support outputs 1.3, 1.4 and 1.5.
Climate proofing Imidugudu models – definition of concept and requirements for its roll out – national level training to support output 1.1, 2.3 and outcomes 3 and 4.
Participatory Integrated Climate Smart Agriculture (PICSA) as a tool for climate information and decision-making tools to support planning of Imidugudu and community-based adaptation measures applied in four communities – local level training to support output 1.5 and implementation of outcomes 2 and 4.
Climate smart technologies for rehabilitating degraded/ unproductive land via agro-ecological interventions to reverse the effects of unsustainable agricultural practices – local level training to support output 2.1.
Climate smart technologies to protect and rehabilitate ecologically sensitive segments of the landscape such as hills, river banks and lake shores, wetlands, watersheds, etc. – local level training to support output 2.2.
Practical measures to green the rural settlements in line with an updated Greening and Climate Proofing Toolkit – district and local level training to support outputs 2.3.
Diversifying livestock management systems – district and local level training to support output 2.1.
Financial literacy - existing value chains and their requirements, existing financial institutions and their loan/subsidy packages and tips on how to practically join/engage with them – local level training to support implementation of output 2.5.
Radical and progressive terracing techniques, other soil and water conservation techniques, agroforestry, plant husbandry and watershed services – district and local level training to support outputs 2.1 and 2.2.
Gender mainstreaming in development programmes – importance, methods and benefits – local level training to support the whole project.
Policies and local level implications on livelihood systems, why it is important that everyone pays attention to, and contributes to policy reforms e.g. awareness raising on the on-going land reforms - the new restructuring of land use planning and implementation from national to local levels, revised land policy and land law (2019), which have impacts on the implementation of the Imidugudu programme. Local level training to support the all the outputs.
Training on ecosystems based adaptation will be conducted in very close coordination with two on-going projects - Reducing Vulnerability to Climate Change in North West Rwanda through Community-based Adaptation and Building the capacity of Rwanda’s government to advance the National Adaptation Planning process. It will utilize training materials developed under these two projects as well as under the LDCF 2 - Building resilience of communities living in degraded forests, savannahs and wetlands of Rwanda through an ecosystem management approach. Training on the reforms in land use will be conducted in close collaboration with the Rwanda Land Management and Use Authority (RLMUA).
Training will take the form of training the trainer (ToT) and will be channelled through the Twigire Muhinzi system. For the technical institutions, training will target key staff in the local authority at District, Sector and Cell levels including Agronomist Officers, Environment Officers and interns, Cooperative Officers, Infrastructure Officers, Land Officers, Forestry Officers and RAB CIP Officers, crop intensification programme contractors (contracted service providers who organise seed and fertiliser distribution and provide extension advice). At the sector level, the training will target the Agronomist Officer who cover many of the above functions dealing with aspects of rural infrastructure, lands adjudication/title registration, forestry and environmental management (responding to the respective four designated officers at District level) in addition to the ‘primary’ focus on agriculture, livestock and horticulture. Livestock Veterinary Assistants and Forestry Officers deployed at Sector level will also be included in this training. At the Cell level, the training will target the Social Development Officers (better known as the Integrated Development Programme Officers or ‘IDPs’) as this is the main salaried post concerned with agricultural and development issues. Activities will include: a) Identify all the relevant groups that need to be trained (including architects, engineers, planners, community groups, etc.) and refine the capacity assessment undertaken during the project formulation (Annex 12) with emphasis on training needs assessment and identify further training needs; (b) Review existing training manuals and determine suitability for training under this project and/or modify as necessary, develop training modules with a clear and costed work plan for implementation; (c) Conduct training in a gender responsive and participatory process; (d) Reflect on the development and delivery of the training programmes and document lessons learnt (in conjunction with output 4.2).
Output 1.2: Climate-risk assessments methods provided to support adaptation planning as an on-going practice with a focus on the local level in the project areas: The main climate related disasters affecting the project area are floods, landslides and mudslides, droughts and famine. The country has recently established a clear, well equipped and coordinated institutional framework for disaster management and response (Box 4). The programme has established climate risk assessment methods and set up systems for information collection and dissemination linking national to district and sector levels. Under this output, the project will raise the awareness of the Imidugudu beneficiaries and local populations at the project sites to the existence of tools and systems assessing and addressing floods, landslides and mudslides, droughts and famine. It will train, in a gender and COVID-19 responsive manner, relevant groups on the use of the existing networks and information so they can utilize the same more effectively. Activities under this output include: a) Disseminate information to local communities on the climate risk assessment tools and methods developed by the Joint Program on Support to Ministry of Disaster Management and Refugee; (b) Train relevant groups on the access and use of the existing information and networks (in conjunction with output 1.1); c) Reflect on the process and document lessons learnt (in conjunction with output 4.2).
Output 1.3: Climate-proofed Imidugudu models developed in a science-led, gender and COVID responsive highly participatory process and piloted in four landscapes: This model will be developed with participation of the entire country (national level); however, its implementation will be tested at the local level in the project sites as described under output 2.3. To ensure replication/upscaling, model development will be led by the Rwanda Housing Authority (RHA) with participation from all relevant sectors, including the private sector (builders, contractors, suppliers of building materials within the Imudugudu programme). With the support of a Project Technical Committee, RHA will lead a national discourse on climate proofing the Imidugudu aimed at creating understanding and buy-in of: a) definition of the concept; b) its importance in the efficiency and sustainability of resources invested in the Imidugudu programme; c) the requirements (costs, policies, rules, regulations and institutional arrangements) for its effective and widespread adoption including the trade-offs at different levels. This will lead to a stakeholder-driven and expert-informed model and guide for climate proofing Imidugudu settlements in Rwanda, addressing the entire process from planning the rural settlement programme to its operation. This model and guide will be designed with options that are applicable to different settings of Rwanda. To ensure that the development of the climate proofing model is informed by the best available technical expertise and science, a Project Technical Committee will be formed to lead the consultation, comprising of nominated/delegated persons from relevant institutions (Ministries and Agencies), civil society, academia and community organizations, who are mandated to represent the interests of their respective stakeholder groupings (with attention given to adequate representation by women, young people and other vulnerable groups).
To ensure systematized consultation and input by all relevant groups, this committee will map stakeholders and develop a strategy for consultation and capacity support for stakeholders who might require it to participate fully. It will adopt innovative measures to engage the youth, for example by organizing competitions and debates between various institutions (schools, universities). Input from communities will be secured during the process of formulating adaptation plans (output 1.4). Inputs from the scientific community will be secured via technical conferences while inputs from policy makers will be secured through several iterative workshops and policy dialogues. Activities under the output will include: a) Establish the Climate Proofing Technical Committee with clear Terms of Reference for its operations; (b) Undertake stakeholder mapping and identify relevant stakeholders to be consulted; (c) Design a stakeholder consultation strategy, identifying any specific capacity support required for effective participation of specialized groups such as Meteo-Rwanda, technical experts (climate scientists, infrastructure development experts, rural development experts), academia and students; (d) Undertake the consultative process in line with the stakeholder consultation strategy (at all levels); (e) Collate the inputs from the stakeholder consultations and develop the climate proofing models; assess the feasibility of the various models via cost benefit analysis including considerations of social, economic and environmental feasibility using multi-criteria approaches. Select one or several models and develop guidelines for their application; (f) Develop training materials that are deemed necessary to support the uptake of the model (to be incorporated in the training conducted under output 1.4 and for uptake by other relevant government programmes); (g) Develop and disseminate awareness raising material to popularize the model such as policy briefs (with recommendations for policy and regulatory changes that might be required – in conjunction with Outcome 3); h) Reflect on the process of model development and piloting and document lessons learnt (in conjunction with output 4.2).
Output 1.4: Four Ecosystems-based Adaptation Plans developed in a science-led, gender and COVID-19 responsive and highly participatory process: As explained in the strategy section, households are highly dependent on low technology, low input agriculture and other natural resources for their economic development and livelihoods. Mainstreaming climate risks into the Imidugudu programme requires improving the natural resources and healthy ecosystems. Healthy functional ecosystems are therefore the bedrock of climate resilience of the communities in the rural areas, as they buffer away climate hazards and widen the livelihood options in the face of climate change. Adaptation plans will therefore be developed to provide a systematic approach to address the vulnerabilities at the landscape level and promote healthy natural resources and ecosystems. This will underpin good adaptation policy, planning and delivery by the communities that are directly dependent on natural resources for their livelihoods. Informed by various technical assessments, analyses, data and maps, and expert knowledge to be provided by the Project Technical Committee, the EbA planning process will bring together and enable an open dialogue to take place between the population exposed to climate change, decision makers, development planners and climate change experts to: define the geographic scope of the plan; describe the environmental, social, economic and institution characteristics of the mini watersheds; articulate a vision and strategic management objectives; identify and prioritize strategies and methods for addressing the issues; identify, prioritize and depict spatially suitable areas for cost-effective land rehabilitation, soil and water conservation, protection of wetlands, sustainable agriculture and other land uses; present a detailed implementation plan, including: (i) institutional arrangements for governance, collaboration and monitoring; (ii) a detailed monitoring and evaluation framework; (iii) a financing strategy and sustainability plan.
The project will update (ground-truthing) the vulnerability assessment[1] undertaken during the project formulation and use it as one input into the ecosystems-based adaptation (EbA) planning. EbA will be implemented using a community-based approach to adaptation (CbA) and will incorporate the concepts of Forest Landscape Restoration principles, to identify forested areas for protection and degraded forests for restoration. Adaptation planning will utilize suitable tools such as CRISTAL (https://www.iisd.org/cristaltool/), COBRA or any of the many other tools summarized here https://www.iied.org/tools-for-ecosystem-based-adaptation-new-navigator and here https://www.iied.org/sites/default/files/eba_tools_navigator_tutorial_sept_2019_en.pdf; file:///D:/2020%20Bids%20and%20carry%20over/Rwanda%20LDCF%203/Literature/Community%20Based%20Adaptation%20Practioner's_Guide.pdf.
To ensure effective uptake, the plans will be developed in a gender responsive and participatory approach, to engage a wide range of stakeholders in discussions about climate change in general and climate proofing the Imidugudu in particular. This is in line with the Land Use Planning Guidelines (2017)[2]. Particular consideration will be given to ensure meaningful participation of women, youth and other vulnerable or potentially marginalized groups. Activities under this output include: a) Mobilize communities and conduct training to ensure their effective participation in the design of the adaptation plans (in conjunction with output 1.4); (b) Review available EbA planning tools and select the most appropriate for application under the Rwanda pilot areas’ conditions; (c) Conduct planning meetings - facilitate a discussion on the importance of the landscape for each of the stakeholders and sectors and how the actions of one stakeholder group or sector can influence the vulnerability and adaptation prospects of others, either positively or negatively; (d) Review and stock taking of socio-ecological information and information on the institutional and regulatory context; (e) Analyse climate change scenarios and assess current and future vulnerabilities (includes updating/ground trothing the vulnerability assessment report); (f) Identify, select and appraise adaptation options – including trade-offs; (g) Develop a clear, long-term implementation strategy, a financing and sustainability strategy; (h) Develop an M&E system to support adaptive management, learning and upscaling; (i) Develop and disseminate guidelines to integrate the EbA plan into day to day activities of the local communities and the existing development programmes, policies, frameworks and planning mechanisms at the local level; (j) Design a sustainability strategy to ensure continued implementation of the EbA plans and start its operationalization before the end of the proposed project; k) Reflect on the EbA planning process and document lessons learnt (in conjunction with output 4.2).
Output 1.5: Meteo-Rwanda capacitated to provide high quality climate information to support uptake of gender and COVID-19 responsive adaptation measures in the four project sites and nationally: This output will increase the capacity of Meteo Rwanda to generate required climate information to inform decision-making at central and project levels. Traditional methods of producing weather/climate forecasts using synoptic chart analysis are approaching a limit above which they cannot be improved further for greater benefit to users, who demand more accurate forecasts of the local weather/climate events. Enhancing climate related research, modelling and prediction of weather and climate through Numerical Weather Prediction (NWP) and climate modelling is the only way to ensure decisions are informed by non-proxy data in mitigating climate risks. Numerical Weather Prediction products will inform not only policy makers at central level but most importantly at community level during their day-to-day activities, while climate projection information will guide policy and decision makers and interveners in their long-term plans, hence minimising costs and risk in the long-term.
To support the generation of numerical weather prediction and climate modelling products, the project will set up a centre at Meteo Rwanda, equipped with high capacity computers (2 mini cluster computers) and 4 desktops with super capacity to run mathematical and climate models and other relevant accessories. This centre will provide climate risk analysis and conduct climate sensitivity analyses. This information will be used in the development of the cost effective climate proofing models, defining climate proof settlements infrastructure, climate smart agriculture and resilience and in the assessment of long-term climate risk. Meteo Rwanda will be supported to actively contribute to downscaled weather and climate information which will be disseminated through regular channels nation-wide with a web portal created for online visualisation. The dissemination of the information will be accompanied by an awareness raising strategy to educate the public about the availability of the higher quality, more relevant interpreted climate information and the existence of the portal for the use/application of weather and climate information for day to day decision-making. This communication will be channelled through Communications companies (Television stations, radio stations, cell phone companies (Artec, Liquid Telecom and MTN Rwandacell), and newspapers.
Furthermore, Meteo Rwanda will partner with the Rwanda Agricultural Board and Twigire Muhinzi to further disseminate advisory services at the local level via the Participatory Integrated Climate Services for Agriculture (PICSA)[3]. PICSA will be used to reach out and empower farmers to interpret location specific weather and climate information in the project sites giving them options to cope with prevailing weather patterns amongst other factors so as to consider their implications on crop and livestock production. Lessons will be drawn from the four districts (Burera, Ngororero, Nyanza and Kayonza) who have benefitted from the Rwanda Climate Services for Agriculture (RCSA) project. Activities under the output include: i) set up and equip the numerical weather prediction and climate modelling centre; ii) conduct climate risk and sensitivity analyses and provide input into the development of the cost effective climate proofing model/defining and PICSA advisory services; iii) develop and disseminate awareness raising strategy on increased quantity, quality, relevance and access of climate data for decision-making; iv) partner with RAB and Twigire Muhinzi of Kirehe and Gakenke and roll out PICSA advisory services; v) Reflect on the process and document lessons learnt (in conjunction with output 4.2).
Outcome 2: Gender and COVID -19 responsive adaptation measures implemented in targeted landscapes following the landscape-approach
This outcome will pilot practical gender and COVID-19 responsive climate-proofing of Imidugudus in the four pilot areas benefitting both the old and new IDP settlements. It will work alongside three villages that Government and the districts have already identified for resettlement into new more climate smart villages (Muramba, Gasharu and Muzo), and whose upgrade is already budgeted for by government (output 2.3). LDCF funding will support climate-proofing initiatives through ecosystem based and diversified livelihood activities for the beneficiary communities, building on the Government co-financing of USD 10 million. It will also work with Bukinanyana village, which is already resettled in a more climate smart village as well as the inhabitants of the rest of the 191 villages in the four mini-catchments to support the implementation of the EbA plans. This will including the rehabilitation of the degraded hotspots to restore ecosystems services, upgrading of housing and infrastructure around Imidugudu to more climate smart versions, adoption of climate smart agricultural practices to increase land productivity and food security, promote the uptake of water harvesting and efficient household energy options to reduce pressure on the forests and more effective utilization of existing value chains to increase household incomes and resilience. Collectively, these measures will enable the beneficiaries of the rural settlement programme to create, improve and sustain livelihood options that collectively reduce their exposure and sensitivity to climate risks at the landscape level while simultaneously increasing their adaptive capacities. The results of this pilot will inform the design of the entire settlement programme of Rwanda to include climate change adaptation.
Outcome 2 will utilize the results of outcome 1 (skills and tools); it will provide feedback to the planning process of outcome 1 and the policy reform under outcome 3, informed by on-the ground practical implementation. It will contribute to the formulation of the participatory monitoring and evaluation plan and generate the knowledge to be collated and shared via outcome 4. It therefore forms the core of the project, and will be delivered through six outputs, described below.
Output 2.1: Climate smart agricultural practices adopted to increase and sustain food production under uncertain climate and COVID-19 scenarios in the four pilot areas: Land productivity has declined significantly on isolated farms (outside the land consolidation system under the Crop Intensification Programme – CIP), with over 75% of the households reporting that they do not get surplus produce for sale, in an area where agriculture is the main source of livelihoods. The project will rehabilitate degraded and unproductive lands to increase land productivity and increase food production for consumption and sales, which increases adaptive capacity. The project will therefore support: a) households to consolidate farms and join the CIP; b) construction of radical and progressive terraces in degradation hotspots; c) diversify livestock farming systems; and, d) popularize crop and livestock insurance as measures to support climate responsive practices.
Under land consolidation, the project will assist households to consolidate their lands in order to start farming under the Crop Intensification Programme and take on other climate smart agricultural practices. It will therefore raise the awareness of the communities about the gender and COVID-19 responsive climate smart options available for adoption (for cropping, agroforestry and livestock systems) they can adopt. Individual households will be encouraged and supported to adopt the practices appropriate to their circumstances. Support for this output will be channelled through the Twigire Muhinzi structures whose functions are described in Box 5.
The project will also assist willing households to diversify livestock using the Girinka model. The Girinka provides one cow per household in a merry-go-round system. The project will work through producer cooperatives to facilitate households to engage in these alternative livestock production systems. The project will also train the households on practices to integrate pasture production and food production systems to increase availability of livestock feed.
The project will support households to adopt crop and livestock insurance schemes, offered by the private sector. The GoR has recently (2019) initiated a subsidized insurance scheme for selected crops (maize and rice) and cows under the Girinka, where it provides 60% of the premium. GoR has entered into collaboration agreements with three insurance companies (Radiant, SONARWA and Prime Insurance) to roll out these insurance schemes country-wide. Radiant Insurance Company has been designated (by GoR) to operate the programme in Kirehe and Gakenke. Many of the households in the project area are not yet fully conversant with how these insurance schemes will function. The project will mobilize farmers in the project area to join the insurance scheme, exploring means of raising the premium, e.g. through the SACCOs and VSLAs. Activities under this output will include: a) Confirm degraded agricultural lands and degradation hotspots (in conjunction with the EbA planning); (b) construct radical and progressive terraces on about 300ha, treated with manure and planted with crops such as beans, maize, bananas; (c) Rehabilitate the irrigation system in Bukinanyana by constructing at least one structure to capture and store rain water; (d) Facilitate land consolidation process for the resettled households (identify suitable crops, establish cropping cycles, in line with the adaptation plans and the established extension support cycle, mobilize farmers to participate (making their land available), facilitate the delivery of the extension services availed under the land consolidation programme; (e) Review the climate smart agriculture practices (many available online) and determine suitability for use by the project (taking into considerations gender and COVID-19 requirements); (f) Disseminate the information and make households aware of the various available options and support farmers to implement measures appropriate for them, through the regular extension service (Twigire Muhinzi); g) Update list of alternative livestock and the requirements for successful adoption and disseminate the information; h) Organize interested farmers into clubs and/or cooperatives which will generate initial funds (either through savings or link to micro loans), and support formulation of livestock merry-go-rounds (in the same manner as the one cow programme under Girinka); i) Collaborate with Radiant Insurance Company to disseminate information on crop and livestock insurance schemes and recruit households to register; j) Reflect on the process of facilitating adoption of climate smart agricultural practices to increase and sustain food production under uncertain climate scenarios in the four pilot areas and document lessons learnt (in conjunction with output 4.2).
Output 2.2: Degradation hotspots (forests, hilltops and wetlands systems) identified by the EbA plans are rehabilitated to restore ecosystems services as the cornerstone of resilient livelihoods – covering at least 500 ha distributed across the 23,560ha: The baseline assessment identified degradation hotspots across the landscape of the four pilot areas (Table 2 and map 2 of Annex 1). These hotspots will be confirmed by the ecosystems-based adaptation plans to be formulated under outcome 1. Informed by the Environmental and Social Impacts Management Plan (ESMP), Gender and Stakeholder Engagement Plans, the project will treat these hotspots to boost the sustained provision of ecosystems services under the EbA context. This includes restoring forests to provide nature-based flood and erosion control, land stabilization in catchment areas and rehabilitating river banks to protect the water catchment services, reduce incidents of landslides and protect rivers and wetlands from siltation. The project will: a) stabilize 46km of degraded riverbanks via enforcement of rules and regulations prohibiting encroachment into the river channels combined with planting bamboo and other protective vegetation along the channels. These rivers include Rwagitugusa, Kibaya, Kagogo, Murutagara, Cyacika, Sumo, Mugambazi, Nyabarongo; b) engage communities in community-based protection of the 7,000 ha of forests found in the four project areas; c) implement reforestation programmes for at least 200 ha of degraded forest using the Forest Landscape Restoration (FLR guidelines) guidelines.
To ensure effective reforestation that balances trade-offs (economic, livelihoods needs and ecosystems restoration), reforestation will be guided by the Forest Landscape Restoration (FLR) Concept[4], where the villages will produce FLR plans following the methodology introduced by the World Resources Institute (WRI) and IUCN, as recently modified and applied for the Gatisbo FLR baseline conditions assessment[5]. Under these guidelines, no known invasive species will be introduced. Species whose potential for invasiveness are unknown will be carefully assessed to avoid accidental introduction of invasive species. The project will specifically promote research on indigenous trees and grass species which balance quick growth rates, economic potential and protection of the environment. This is necessitated by the fact that high levels of poverty, high population densities and associated land shortage present a significant challenge to establishing/expanding indigenous forests, since they are seen to compete with food production. Agroforestry is currently the more feasible option for producing wood products and ecosystem goods and services. The major agroforestry practices to be promoted by the project will include boundary planting, contour hedgerows, home gardens, silvopastoralism and woodlots. Activities under this output include: a) Confirm the degradation hotspots and determine the community groups to actively participate in each of the rehabilitation works; (b) Undertake assessment of potential for invasiveness of all species considered for reforestation and promote research on indigenous species for rehabilitation, identify candidates and integrate them into the rehabilitation packages; (c) Mobilize/sensitize local communities in the hotspots, and refine training on specific rehabilitation measures/works (tree husbandry, terrace making and reestablishment of cropping systems on the new terraces, riverbank protection, etc.); (d) Establish tree nurseries (preferably via business arrangements, encouraging farmers who lose use of their lands for about a year (while establishing terraces) to take up such income generating activities; (e) implement land use zones in line with the EbA plans – e.g. survey and mark river channel boundaries to ensure clarity on all parties where utilization (annual crops, livestock rearing, etc.) should not cross; (f) Rehabilitate riverbanks by planting suitable grasses/trees, encouraging farmers who lose use of their lands for about a year (while establishing terraces) to take up such income generating activities; Maintain and protect seedlings (protect from grazing by livestock, monitor to replant if seedlings die off, weeding) for 2 years after planting; (g) Plant selected seedlings to reforest 200 ha; maintain and protect seedlings (protect from grazing by livestock, monitor to replant if seedlings die off, weeding) for 2 years after planting; h) reflect on the process of rehabilitating degradation hotspots (forests, hilltops and wetlands systems) to restore ecosystems services as the cornerstone of resilient livelihoods and document lessons learnt (in conjunction with output 4.2).
Output 2.3: Upgrading of housing and communal facilities around the Imidugudu to more climate smart versions in four villages benefitting about 500 households: Output 2.3 will test the implementation of the Imidugudu climate proofing model developed under output 1.3. The project will support the climate proofing of the IDPs, in a gender and COVID-19 responsive processes. The support will be spearheaded by the Rwanda Housing Authority (RHA) under the District Development Strategies (DDS) of both Kirehe and Gakenke, informed by the findings and recommendations of the ESMP. It will support the RHA and the Districts to refine the selection of the sites for the new villages, ensuring that medium to long-term climate information and the status of the ecosystems inform the choice. It will work on the designs of the new homes, ensuring that climate risks are factored into the building plans, thereby testing, or contributing to the development of building codes for climate proofed Imidugudu to be developed under outcome 1. It will ensure that all the stakeholders engaged in the building process, including the private sector contractors, have been trained on climate proofing (training provided under output 1.4). The project will also upgrade communal facilities by implementing the greening measures outlined in the IDP Greening Toolkit[6] (which will be updated by the project under output 3.1). Improving communal facilities will be contracted to the relevant private sector and will include upgrading roads, installing waste management systems, electricity installation (including solar power), establishment of tree nurseries and reforestation of the new villages, community halls and early education support systems. The project will explore geo-tagging of all climate proofed infrastructure, water bodies and other resources under the programme to enable interested stakeholders (communities and other decision makers) to track progress and better planning of resilient infrastructure. Activities for this output include: a) Provide technical input into the selection of sites, design and building of the new IDPs and climate resilient access roads[7], ensuring that each step incorporate measures to climate proof the process and the settlement programme; (b) Organize beneficiaries to establish nurseries, grow and plant various materials to green the public places in the new villages; (c) upgrade communal facilities to incorporate climate risks (roads, installing waste management systems, electricity installation (including solar power), d) reflect on the process of collaborating with government co-finance to upgrade houses to more climate resilient versions and document lessons learnt (in conjunction with output 4.2). The design of the infrastructure and housing will deliberately integrate resilience and fit for healthy living in response to COVID-19, minimizing exposure to and community spread of diseases such as COVID-19. Consultations with health professionals will be done in the design of the housing and infrastructure.
Output 2.4: Rainwater harvesting and alternative energy options piloted in a gender and COVID-19 responsive process to increase resilience of livelihoods under the Imidugudu programme: Under this output, the project will support the beneficiaries of the resettlement programme (described under output 2.3) to acquire water harvesting structures to increase water available to households for domestic use and/or irrigation to counter the effects of irregular rainfall patterns. Implementation of this output will be closely guided by the ESMP and the Gender Action Plan. The project will support the acquisition of water storage facilities, based on best practices available. These could be tanks (underground and/or above ground as appropriate) for rain harvesting (minimum 3,000 litres). The project will undertake an assessment of water storage options to support adaptive capacity which are incremental in nature and use the findings to guide selection of systems to be disseminated. It will also support the uptake of alternative household energy technologies, to increase clean energy options and reduce pressure on the forests and the ecosystems. It will assist households to construct at least thirteen communal cowsheds (each shared by about 40 households), acquire a cow per household (under the national Girinka Programme) and construct and operationalize biogas units for the homes. Households will be engaged in a participatory process to identify cattle breeds that meet a multi-criteria system (including sustainability).
Many households in the IDP villages have experienced challenges with the biogas; indeed observations during the project planning process (confirmed verbally by District and National Government Officers) show that many biogas units have failed due to a combination of facts: a) the fixed dome bio-digester commonly used tends to be expensive[8], is complex to build and operate, and has a high rate of failure within the Imidugudu setting, especially in very cold places (such as Muzo/Kagano); b) The beneficiaries of the IDP villages are the very poor, many struggle with resources to maintain these systems (inadequate land, pasture and labour to feed the cows that produce the feed for the biogas) and an absence of a culture of maintenance, exacerbated by few available technicians to offer such services. The project will therefore utilize a mixture of household energy solutions which will include the following: a) explore cheaper, more efficient and less complex biogas systems such as the flexi-polyethylene tube digesters[9] which utilize a broader range of materials – including waste from pigs, goats, sheep, rabbits, poultry, kitchen waste, market waste, grass, water hyacinth, farm weed and garden clippings. The project will review the outcome of several piloting initiatives undertaken in the country and if these are reliable and economically viable will actively support their uptake. (b) Biogas systems will be issued only to households who express the willingness and demonstrate abilities to maintain them. (c) Other households will be given the option of improved energy cookstoves. (d) Solar technologies will be promoted for both lighting and cooking. (e) At least 10 technicians will be trained on the biogas installation and maintenance as well as basic plumbing skills (for the maintenance of the water systems). The project will assist the communities to develop long term financing and business models for maintenance and replication of the technologies.
The project will further create awareness and demonstrate available solar technologies and improved cookstoves, encouraging local traders to supply them to increase availability locally. The Village Savings and Loans Clubs will be encouraged to use the joint savings to purchase solar equipment and the improved cookstoves under their normal mutual support systems, wherever appropriate. Activities under this output include: (a) Undertake an assessment of the different energy access options, including various biogas systems in use in the country and beyond and identify the appropriate system(s) for the households in the project areas; (b) Disseminate improved household energy options depending on the choices and abilities of households – includes construction of the selected biogas and BioSanGas toilets, improved cookstoves and solar technologies; (c) Construct thirteen communal cowsheds and link the households to the Girinka programme to acquire one cow per willing household; (d) Acquire 500 water tanks (each a minimum of 3000 litres); (e) Train (or provide refresher courses) for at least 10 technicians (5 of them females) on electrical, plumbing, biogas and road maintenance. These technicians will be engaged in the construction of these facilities to ensure practical on the job training; f) reflect on the process of providing improved water and energy systems and their role on increasing resilience and document lessons learnt (in conjunction with output 4.2).
Output 2.5: Beneficiaries of the Imidugudu supported to utilize existing value chains to increase resilience via higher household incomes: The project will support households to effectively utilize the many existing value chains, in a gender and COVID-19 responsive process, to add value to produce and access markets, to increase household incomes and hence adaptive capacity, guided closely by the ESMP, the Gender Action Plan and the Stakeholder Engagement Plan. The value chains include milk, fruit processing, coffee, poultry, maize, beans and cassava sales. It will identify marketing cooperatives and increase their capacities to facilitate producers to cooperate, bulk and sell together, buy inputs together and add value through transforming together. The Table below shows an initial private sector mapping that will be expanded during project implementation and used to build stronger private sector engagement in project implementation. Annex 12 contains a list of other potential products and opportunities for bulking commodities with currently active value chains. Cooperatives will be provided with technical expertise (via training and coaching) to increase operational capacities and improve financial services to their members (improve financial literacy and savings). The project will refine the value chain and private sector engagement assessments undertaken during the project planning phase to create a list of active bulking and marketing opportunities and hence value chains and potential enterprises development opportunities; clear understanding of the challenges faced by households and potential entrepreneurs in accessing and utilizing current opportunities (in value chains and enterprise development); assess capacity needs and implement capacity building programmes and support the establishment of sustainable and scalable businesses. Activities under this output will include: i) analysis of market opportunities; ii) selection and implementation of income-generating activities to utilize the existing value chains (identified during the PPG and confirmed during inception phase), e.g. milk, coffee, fruits processing, poultry, mushrooms (detailed in Annex 12 – Baseline Assessment Report); iii) appropriate support to local communities on value-addition activities, including agro-processing and marketing skills; iv) financial education; v) formulation of sustainable financing options; vi) promote the development of local private sector agents such as agricultural service providers; vii) Establish an agribusiness forum for exchange on sustainable value chain development and private sector engagement; viii) reflect on the process of facilitating communities to utilize existing value chains and its contribution to building resilient livelihoods and document lessons learnt (in conjunction with output 4.2).
Outcome 3: Policies and cross sectoral coordination
Under this outcome, the project will provide a policy enabling environment and improve cross sectoral coordination to create pathways for replication and scale up of the climate proofing concept. The project will ensure that the concept of climate proofing the Imidugudu and other infrastructure is captured in the national and district planning, budgeting and public investment systems, to provide a basis for budgetary provisions for its roll out. It will update REMA’s environmental planning tools to include principles of climate proofing. It will also increase the skills of institutions and platforms recently created by the GoR for cross sectoral coordination and disaster risk reduction. Building on the increased understanding and appreciation of the health-climate-environmental linkages due to COVID-19, the project will facilitate the involvement of the health sector in the cross-sectoral coordination capacity building process. The outcome will be delivered through two outputs, described below.
Output 3.1: Strategic review of policies, national and district strategies, programmes and planning tools to ensure they capture climate proofing of Imidugudu and other infrastructure programmes in the investment decision-making processes: Annex 12 shows the extent to which policies relevant to the Imidugudu mainstream climate risks. The project will facilitate stakeholders, in a gender and COVID-19 responsive process, to review the following strategic planning frameworks and to generate recommendations which will be provided to influence future planning cycles. These include the National Strategy for Transformation (NTS 1) 2017-2024, Rwanda’s National Investment Policy (NIP, 2017), the National Decentralisation Policy (2012), District Development Strategies (2018-2024), the Rural Settlement Strategic Sector Plan (2018-2024) and the Organic Law on State Finance and Property (No. 12/2013 of 12/09/2013 (Rationale for mainstreaming climate proofing Imidugudu in these instruments is provided in Box 6). The review of the Human Settlement Policy (2015) is currently under way, and likely to be completed by the time project implementation starts. The PIF and PPG processes informed the review of the policy. The project will therefore support the Rwanda Housing Authority to develop a strategy for implementing the revised policy, including aligning its budgets to the new policy provisions, to replicate and upscale the climate proofing concept. The project will also review the following relevant policies and programmes and make recommendations for reforms to ensure that they provide strong basis for integrating climate risk into development processes, hence promoting replication and upscaling of the climate proofing concept: National Urban Housing Policy (2008), National Disaster Management Policy (2012) and National Disaster Risk Management Plan (2013); the Strategic Programme for Climate Resilience (SPCR) (2017); the National Strategy for Transformation (NST; 2017–2024); the National Land Use and Development Master Plan (2011) (under revision), Local Urban Development Plans (LUDPs), and Detailed Physical Plans /Area Action Plans (AAP’s) for local implementation. It will then ensure that relevant environment and building protocols further integrate climate risk considerations. These include the Green Village Toolkit by REMA / PEI and the REMA’s Environmental management Tools and Guidelines[10]. Activities under this output include: a) Review policies relevant to the Imidugudu (listed above), in a participatory and gender responsive process, recommend changes and advocate for their adoption; b) Update REMA’s Environmental management Tools and Guidelines[11]; c) reflect on the process of using strategic policy reviews to ensure budgetary allocation for the upscaling of the climate proofing model in the Imidugudu programme and document lessons learnt (in conjunction with output 4.2).
Output 3.2: Technical and community institutions trained to improve their effectiveness in the cross sectoral coordination units and networks recently created by the Government of Rwanda: The project will strengthen the systems for cross sectoral and District coordination (described in Box 4) created recently by the GoR to make it easy for technical departments to coordinate the multiple decisions needed to climate proof Imidugudu programmes. At the District level, these include the District Disaster Management Committees (DIDIMACs), Sector Disaster Management Committees (SEDIMACs) and the Joint Action Development Forums (JADFs). They also include community level institutions representing the communities – the Monthly Community Work (Umuganda), the parents evening forum (Umugoroba w’Ababyeyi) and general village assemblies (Inama Rusange y’Abaturage). Activities under this output will be implemented in a gender and COVID-19 responsive process and will include: a) Undertake training needs assessments for the disaster risk reduction and coordination committees, the JADF and the community institutions in the Kirehe and Gakenke districts and formulate a training programme, in conjunction with output 1.1; (b) Train the committees, JADF and the community institutions as per the training programme, in conjunction with output 1.1; c) reflect on the process of further strengthening capacities for the institutions mandated to coordinate cross sectoral and District coordination created recently by the GoR and the impacts on their capacities and document lessons learnt (in conjunction with output 4.2).
Outcome 4: Knowledge Management supported by participatory and effective monitoring and evaluation
This outcome will provide monitoring and evaluation systems, codify knowledge and promote its dissemination to further support replication and upscaling. The project will design, in a gender and COVID-19 responsive process, a participatory M&E plan and integrate it into the M&E systems of the Twigire Muhinzi, District and/or relevant Sectors. It will also develop a comprehensive Communications and Knowledge Management Framework to coordinate communications and knowledge management (in a similarly gender and COVID-19 responsive manner). Knowledge products will be produced and disseminated targeting different audiences at all levels - local, national, international, including decision-makers, project partners, aligned programmes, community stakeholders. At least two knowledge sharing events will be held at the district level. This outcome is fundamental to monitoring the results of all the whole project, distilling and disseminating lessons. The outcome will be implemented through two outputs, described below.
Output 4.1: Development of participatory M&E plans and enhancement of communities’ capacities to monitor, learn and sustain the climate proofing initiative: The project will design a participatory M&E plan linked to the adaptation plans (in conjunction with output 1.4) and integrate it into the M&E systems of the Twigire Muhinzi, District and/or relevant Sectors. It will train community groups to provide the skills required for their effective participation in gathering data for monitoring, reporting it and using it to compile and learn lessons – to support adaptive management. The M&E system will take full cognizance of the complexity of ecosystems-based adaptation initiatives, especially the uncertainties of attributing improvements in environmental status to the outcomes in the short, medium and long-terms. At the district level, the implementation of the M&E system will link into existing GIS capacity in the Rwanda Land Management and Use Authority (RLMUA).
A project-specific monitoring and evaluation plan has been developed (described in Section 6 of this Prodoc and Annex 3). Activities under this output include: a) Building on participatory M&E plan produced via the EbA planning process, identify, in a participatory and gender responsive manner, additional indicators for the comprehensive monitoring of the effectiveness of the rural settlement programme on adaptive capacities of its beneficiaries. (b) Design and implement a training programme to equip the beneficiaries of the rural settlement programme in the project area to participate in data collection, storage, analysis and use of the outcomes of the process (in conjunction with output 1.1). (c) Design and implement a training programme for the technical institutions supporting the rural settlement programme on M&E, linking them to the GIS capacity of the Rwanda Land Management and Use Authority (in conjunction with output 1.1). (d) Refine the project Monitoring and Evaluation Framework (annex 3) to incorporate any amendments that may be necessary based on data or issues emerging from the planning process, and any refinement of the gender mainstreaming indicators. (e) Track project performance against the M&E framework quarterly, using UNDP Standard tools. (f) Carry out MTR and the TE and share lessons to improve current and future programming and implementation. (g) Reflect on the process of participatory M&E for communities under the EbA and Imidugudu Programmes and document lessons learnt (in conjunction with output 4.2).
Output 4.2: Best practices, lessons collated and shared, KM products codified and disseminated to support continued adaptation planning and implementation for the imidugudu program: The outcomes of this project are designed to strengthen the foundational capacities required to continue implementing climate-proofing measures in the Imidugudu programme and for on-going replication of similar initiatives country-wide. The project is therefore expected to contribute to the sustainability of all adaptation projects in and outside of the country. This output will promote dialogue, learning and cooperation between the project participants and other stakeholders inside and outside Rwanda, to catalyse upscaling. This will be achieved by engaging in communications and advocacy, knowledge networking and management. A comprehensive Communications and Knowledge Management Framework will be developed in Year 1, which will include strategic objectives, costed activities, roles, responsibilities, timeframes, workflows and institutional linkages to coordinate communications and knowledge management. The main elements of the Framework will include: (i) raising awareness through an effective community-led advocacy campaigns, supported by appropriate awareness-raising materials; (ii) developing and sharing communications pieces and knowledge products targeting different audiences (decision-makers, project partners, practitioners, community stakeholders), and using multiple formats, platforms[12] and media; (iii) engaging in local, national and regional adaptation knowledge-sharing events and communities of practice, ensuring that lessons learnt in the project pilot sites inform similar projects being implemented elsewhere, and that lessons from other projects are used in adaptive management of the proposed project; (iv) collating, organizing and making available all information relevant to the project – through a dedicated webpage linked to the websites of the key institutions engaged in the project – RHA, REMA, MINAGRI, Gakenke and Kirehe Districts Councils and UNDP. All relevant project documentation will be uploaded to the UNDP PIMS+ platform. All communications will adopt, to the greatest extent possible, digital technology including mobile based applications and use of social media to disseminate information to communities.
Activities under this output will include: a) Develop a Communications and Knowledge Management Framework for the project. (b) Guided by the Framework: i) Establish and support a community-led advocacy programme for the project, working through Farmer Promoters and FFS Facilitators. (ii) Prepare and disseminate communications pieces and knowledge products targeting different audiences (decision-makers, project partners, aligned programmes, community stakeholders). The products should include policy briefs, technical reports, best-practice case studies for release via various knowledge platforms, social media (which could include Facebook and Instagram, with postings released via UNDP and Government of Rwanda platforms), YouTube video clips that can be accessed on mobile phones, radio interviews, articles in the printed media. (iii) Facilitate stakeholders to participate in local, national and regional lesson-sharing events convened by related projects and programmes, and compile lessons learnt reports or communications pieces based on this participation. (iv) Convene at least two lesson-sharing workshops during the project’s lifespan (preferably linked to MTR and TE feedback sessions), and compile the proceedings into lesson-sharing reports. (v) Set up a dedicated knowledge management system (web-based) where all information relevant to the project can be accessed, in a well-archived form.
[1] The data is available in a database – to avoid unnecessary data collection
[3] PICSA was developed by a broad partnership including the University of Reading and the CGIAR systems and was successfully piloted in four districts – Burera, Ngororero, Nyanza and Kayonza.
[4] Ministry of Natural Resources – Rwanda (2014). Forest Landscape Restoration Opportunity Assessment for Rwanda. MINIRENA (Rwanda), IUCN, WRI. viii + 51pp.
[5] World Resources Institute, Ornanong Maneerattana, Fred Stolle, Tesfay Woldemariam; 2017: Baseline Conditions of Forests and Landscapes in Gatsibo District. Methodologies for Understanding Restoration Progress through Biophysical, Socioeconomic and Governance Indicators: Gatsibo District, September 2017.
[6] https://rema.gov.rw/fileadmin/templates/Documents/rema_doc/pei/FINAL%20Green%20village%20toolkit%20Printed.pdf
[7] Climate proofing of infrastructure such as roads will include, but not limited to engineering and structural measures (such as Slope stabilization structures such as dry stone wall, gabion wall and jute bag wall; paving of roads with durable materials; improved drainage systems to avoid erosion of materials; planning and design with proper cross section and dimensions) and bioengineering measures ( such as use of vegetation, either alone or in conjunction with civil engineering structures such as small dams, wall and drains to manage water and debris thereby reducing instability and erosion on slopes). Specific measures will differ by site.
[8] Costing around Rwf 800,000 and Rwf 900,000 respectively (US$ 1260 and US$ 1410) for a 6m3 and 8m3 tanks, respectively
[9] The two digester sizes available, 6 and 16 m3, cost about $500 and $800 respectively (includes the stove, gas pipes, installation)
[10] https://rema.gov.rw/rema_doc/Environmental%20Managemnent%20Plractical%20Tools/1-Practical%20Tools%20for%20Sectoral%20Environmental%20Planning%20_Final%20Version_%2017-07-2010.pdf
[11] https://rema.gov.rw/rema_doc/Environmental%20Managemnent%20Plractical%20Tools/1-Practical%20Tools%20for%20Sectoral%20Environmental%20Planning%20_Final%20Version_%2017-07-2010.pdf
[12] Sample platforms on which technical publications could be shared include: Climate Adaptation Knowledge Exchange (CAKE): http://www.cakex.org/ Ecosystems and Livelihoods Adaptation Network (ELAN) http://www.adaptationportal.org Nairobi Work Programme (NWP) http://unfccc.int/nwp
Natureandpoverty.net The Nature Conservancy: http://conserveonline.org/workspaces/climateadaptation weADAPT - http://www.weadapt.org/

Outcome 1: Enhanced institutional capacities, knowledge & climate information to integrate climate risks into the planning and implementation of ecosystems-based adaptation in the Imidugudu programme
Outcome 2: Adaptation measures implemented via landscape approach
Outcome 3: Improved Policy and coordination for effective integration of climate risks into the Imidugudu program
Outcome 4: M&E and Knowledge management
Linkage of the proposed project to National Development Strategies and Priorities: Climate proofing the rural settlement programme and enhancing resilience of the livelihoods of the beneficiaries of the programme will to Government Priorities set out in key national programmes and development strategies including:
- the Green Growth and Climate Resilience Strategy and National Strategy on Climate Change and Low Carbon Development for Rwanda (GGCRS), which provides a pathway to address climate change and low carbon development, with an aim of making a significant impact on adaptation, mitigation and economic development. The strategy was developed in recognition of the fact that if the country is to tackle climate change, it needs to be mainstreamed into Vision 2050 and Sector strategies. The GGCRS aims to guide the process of mainstreaming climate resilience and low carbon development into key sectors of the economy. With a focus on agroforestry, climate knowledge, irrigation and roads infrastructure as its main tenants for adaptation, it provides a strategy focusing on green, low carbon development, but does not explicitly provide mechanisms to deal with vulnerabilities, associated with climate change. The project will contribute to tackling some of the barriers hampering its full implementation, including inadequate awareness, lack of practical tools for mainstreaming in many sectors (e.g. the rural section of the human settlement policy) and capacity inadequacies amongst stakeholders.
- the National Adaptation Plan of Action (NAPA): Objective four of the NAPA aims at providing assistance to districts of vulnerable regions to plan and implement conservation measures and water storage. Objective five aims to increase adaptive capacity of grouped settlement "Imidugudu" located in vulnerable regions by improving potable water, sanitation and alternative energy services, and the promotion of non-agricultural jobs. The project contributes to these objectives directly.
- Vision 2050 focuses on five broad priorities: High Quality and Standards of Life; Developing Modern Infrastructure and Livelihoods; Transformation for Prosperity; Values for Vision 2050; and, International cooperation and positioning. The project will contribute directly to the aims of vision 2050 - improved natural resources management, mainstreaming climate risk and gender, which are considered important foundational issues for the achievement of the Vision. The implementation instrument for the remainder of Vision 2020 (from 2017 to 2020) and the first four years of Vision 2050 (2021 – 2025) will be the National Strategy for Transformation (NST1)[1]. Priority Area number 7 of the NST1 recognizes sustainable management of the environment and natural resources as the pathway healthy lives and a Green Economy, focusing on Forestry, Land, Water, Environment and Climate Change. Under increased access to and use of sustainable and low carbon energy, the number of households depending on biomass as a source of energy for cooking is expected to reduce from 83.3% (2014) to 42% by 2024. This will be achieved by working with the private sector to increase the uptake of improved cooking stoves and to promote the use of alternative fuels such as cooking gas and biogas in both urban and rural areas
- National strategy for climate change and low carbon development (2020 to 2050). The strategy outlines actions that Rwanda can take in the short to medium term to ensure its future stability and prosperity in a changing climate and uncertain energy future. The strategy calls upon national planners to chart a new development pathway for integrated sector planning that balances cross-cutting issues of resource management. The project contributes to all the three core strategies of the National strategy for climate change and low carbon development: a) To guide national policy and planning in an integrated way; b) To mainstream climate change into all sectors of the economy, and (c) To position Rwanda to access international funding to achieve climate resilience and low carbon development.
- Strategic Programme for Climate Resilience (SPCR): The objective the SPCR is to enhance integrated, economy-wide, multi-sectoral climate resilience and to drive climate-responsive investment in Rwanda. Funded by the Climate Investment Funds (CIF), the SPCR aims at transformative impact through: a) Increased resilience of households, communities, businesses, sectors and society to climate variability and climate change; b) Strengthened climate responsive development planning. The proposed LDCF project contributes to these two overall goals, as well as directly to the four strategic programmes of the SPCR, namely: i) Agriculture Driven Prosperity under which it will provide climate-smart strategic support to Rwanda’s agriculture and agroforestry sectors, while implementing participatory adaptation and climate resilient infrastructure in targeted areas. (ii) Water Security for All, under which it will enhance climate resilience of surface water and groundwater systems, promoting sustainable access to water, and reducing vulnerability in the face of increasing uncertainty in runoff. (iii) Climate Resilient Human Settlements under which it will build Rwanda’s population resilience to shocks and stresses, by securing more reliable infrastructure and service delivery, and integrating climate change considerations into urban development. (iv) Stable and Sustainable Landscapes under which it will safeguard Rwanda’s most fragile and disaster-prone landscapes, to reduce communities’ vulnerability to floods and landslides and to enhance preparedness for a wide range of climate change impacts.
[1] Republic of Rwanda, 2017: National Strategy for Transformation 1: THE 7YEAR GOVERNMENT PROGRAM 2017-2024

Formulation and Advancement of the National Adaptation Plan Process in Bangladesh
Bangladesh is experiencing the adverse effects of climate change, including sea level rise in coastal areas, increasing severity of tropical cyclones and extreme rainfall events. Recognizing that climate impacts are undercutting hard won human development gains, Bangladesh has already taken strides on adaptation planning over the last decade, by implementing the National Adaptation Plan of Action (NAPA), setting-up climate change trust funds, and pioneering community based adaptation approaches. However, institutional arrangements and a coordinated strategy for mid- and long-term climate change adaptation investment are not yet in place. The objective of this Green Climate Fund (GCF) financed project is to formulate the Bangladesh National Adaptation Plan (NAP) with a focus on long term adaptation investment and enhancing national capacity for integration of climate change adaptation in planning, budgeting and financial tracking processes.

Bangladesh is considered as one of the most vulnerable countries to extreme events, climate variability and change. To address the adverse effects of climate change, adaptation is included in the key national development plans, the 7th (2016-2020) and 8th (2020-2025) Five Year Plans. The adaptation programme is prioritized in the National Adaptation Programme of Action (NAPA)-2009, the Bangladesh Climate Change Strategy and Action Plan (BCCSAP)-2009 and the 2021 Nationally Determined Contributions (NDCs), Bangladesh Delta Plan 2100, Perspective Plan of Bangladesh 2021-2041, Sustainable Development Goals which are now under implementation. Bangladesh was a pioneer in bringing internal attention to supporting climate change adaptation, setting-up climate change trust funds and community-based adaptation approaches.
The project is designed to support the Government of Bangladesh to meet the objective of formulating the Bangladesh National Adaptation Plan with a focus on long-term adaptation investment and enhancing national capacity for integration of climate change adaptation in planning, budgeting and financial tracking processes.
Project updates
The draft NAP has been prepared and is currently undergoing a review, editing and validation at various levels. Based on the latest climate change projections under three different scenarios and extensive consultations at local and national level, the draft NAP has identified a total of 90 high priority and 23 moderate priority interventions with a total investment cost of US$ 229 billion over a 27-years implementation period till the 13th Five Year Planning cycle (2023- 2050).
The draft NAP has particularly provided a detailed analysis in four areas a) climate risk and vulnerability projection and subsequent adaptation strategy b) mobilization of internal and external sources of finance c) Institutional structure and d) Monitoring and Evaluation mechanism. The process also documented some locally-led adaptation options and nature based solutions and priorities to adapt to climate change.
In addition, over 200 public officials have been trained on integration of climate change adaptation into project development process to support implementation of the NAP in Bangladesh. The training manual manual has been shared with key ministries and all the Upazila. A national capacity building action plan and knowledge management plan on climate change adaptation and nationwide climate change vulnerability and risk and stocktaking of adaptation efforts and lesson learned have been developed. A Climate Change Information and Knowledge Management (CCIKM) portal is being developed which will serve as a national repository on climate change.
Outcome 1: Strengthened institutional coordination and climate change information and knowledge management for medium- to long-term planning
Outcome 2: Adaptation options appraised and prioritized and National Adaptation Plan formulated
Outcome 3: Climate risk informed decision making tools developed and piloted by planning and budget departments at national and sectoral levels
Outcome 4: Nationally appropriate participatory adaptation investments tracking mechanism and financial plan for mid- and long-term CCA implementation set up
Bangladesh has the Zero Draft of its National Adaptation Plan (2022)
Coastal districts need adaptation master plan in Bangladesh (2022)
Speakers for conserving Bandarban hill forests to save Bangladesh from climate disaster (2022)
Conserve Bangladesh hill forest to save it from climate disaster: speakers (2022)
CHT’s adaptation efforts must eye on conservation of biodiversity, water resource (2022)
Chattogram Hill Tracts’ adaptation efforts must focus on biodiversity conservation: experts (2022)
Saving the Chittagong Hill Tracts is a national responsibility (2022)
Natural resource management is a key to effective national adaptation plan (2022)
National Adaptation Plan to make Bangladesh climate resilient (2022)
Fund, coordination, stressed for adaptation plan (2022)
National Adaptation Plan to make Bangladesh climate resilient (2022)

Enhancing Research and Policy Linkages to Advance National Adaptation Planning in Guinea
The project aims to help Guinea increase its capacity to adapt to climate change impacts by strengthening linkages between research-policy, mainstreaming climate change adaptation into sectoral and local planning and budgeting and advancing national funding mechanisms and private sector engagement. The project addresses the main barriers that were identified during an earlier stocktaking exercise. The barriers identified include the lack of links between research and policymaking, weak measurement, evaluation and funding mechanisms, and insufficient private sector engagement in the adaptation efforts.

The main objective of the project “Enhancing research and policy linkages to advance National Adaptation Planning in Guinea” is to increase Guinea’s adaptive capacity to cope with climate change impacts. The project is expected to establish research to support informed decision-making and capture opportunities that arise both from public funding and the private sector.
Guinea is experiencing negative socio-economic impacts of climate change due to its exposure to sea level rise, droughts, and flooding. The Nationally Determined Contribution (NDC) submitted in 2015 outlines climate change adaptation priorities, such as the preservation and restoration of water resources, protection of ecosystems particularly in coastal zones, and ensuring food security of rural communities.
Based on stakeholder consultations and stocktaking conducted in 2016 and 2018, the main barriers to climate change adaptation mainstreaming and financing were identified as (1) the absence of links connecting research to policy to inform decision-making processes; (2) weaknesses in and/or fragmentation of existing coordination, monitoring & evaluation (M&E), and funding mechanisms; (3) the absence of adaptation in the Planning-Programming-Budgeting-Monitoring and Evaluation (PPBSE) procedures; and (4) lack of private sector involvement in the adaptation landscape.
The project aims to remove these barriers by achieving the following objectives under the three main outcomes:
1. Research-policy linkages and knowledgebase are strengthened to inform adaptation planning and decision-making:
- Establish research-policy linkages to support the NAP (National Adaptation Plan) formulation and implementation;
- Develop a climate risks and vulnerability evidence base that informs the identification and prioritization of adaptation options in the sectors of agriculture, livestock, and forestry.
2. Climate change adaptation mainstreaming is facilitated by reinforcing coordination and M&E mechanisms:
- Operationalize a sustained and suitable coordination mechanism to support mid and long-term adaptation;
- Enhance adaptation mainstreaming into sectoral and local planning and budgeting;
- Establish adaptation M&E mechanisms in adherence with the existing national M&E system.
3. A national funding mechanism and private sector engagement are expanded to support adaptation financing:
- Support the Environmental Safeguard Fund (FSE) mechanism to raise awareness on funding sources and expand mandate for the financing of adaptation actions;
- Enhance the mining sector’s engagement on adaptation and climate financing.
Furthermore, a follow-up project will be proposed to fill gaps identified through this phase and develop Guinea’s NAP document. The results of the current project will inform the proposal, consolidating existing climate risks and vulnerability assessments and prioritization of adaptation options in the priority sectors of agriculture, livestock, forestry, coastal and water resources. The planned second phase will further consider promoting sustainable cities, clean cities, and blue economy for which the national strategy is currently being developed.
In addition to the main project implementing partner, the Ministry of Environment, Water and Forests, and other project partners including the Ministry of Economy and Finance (MEF), National Directorate of the Environment (DNE)/current National Directorate of Pollution, Nuisance and Climate Change (DNPNCC), sectoral Strategy and Development Offices (BSD), the various research institutes, the Center for Observation, Monitoring and Environmental Information (COSIE), the National Institute of Statistics (INS), the Fund for the Environment and Natural Capital (FECN), the Bauxite Environment Network (REB), Guinea-Ecology, civil society organizations and municipalities.
Project updates
To date, the Research-Policy Working Group (RPWG) mandate, structure and composition have been elaborated, as well as the Environment and Climate Change Research Plan (PRECC) and the Climate Change Adaptation Policy Indicators Metadata. The project further prepared the report on the collection of data from public services and technical and financial partners for the updating of climate models and projections based on the RCP in Guinea, the analysis of climate projections for Guinea using the RCP reference scenarios and the validation of the projection models, as well as the data collection report on the establishment of a coordination and capacity building system.
Outcome 1: Research-policy linkages and knowledge base are strengthened to inform adaptation planning and decision-making.
Outcome 2: Climate change adaptation mainstreaming is facilitated by reinforcing coordination and monitoring and evaluation mechanisms.
Outcome 3: A national funding mechanism and private sector engagement are expanded to increase climate change adaptation financing.


Integrating Climate Change Risks into National Development Planning Processes in Haiti
The project aims to strengthen institutional and technical capacities in Haiti for iterative development of a National Adaptation Plan (NAP) for an effective integration of climate change adaptation into national and sub-national coordination, planning and budgeting processes. This objective is expected to be achieved through advancing existing frameworks and systems, enhancing capacities of various stakeholders to effectively contribute to the process and establishing a mechanism to sustain the NAP process beyond this project.

Funded by the Green Climate Fund (GCF) Readiness Programme, the "Integrating climate change risks into national development planning processes in Haiti" project is supporting the Government of Haiti to strengthen institutional and technical capacities for iterative development of the National Adaptation Plan (NAP) for an effective integration of climate change adaptation into national planning and budgeting processes.
The project builds on lessons from the National Adaptation Programme of Action (NAPA) implementation, as well as complementary activities currently underway in Haiti to avoid duplication of efforts. In integrating climate change adaptation into development plans, the project seeks to align with inclusive climate change adaptation priorities into the country’s visionary Strategic Development Plan (PSDH), National Land Use Plan (SNAT) and its Disaster Risk Reduction Plan and Strategy.
The only Least Developed Country (LDC) in the Caribbean region, Haiti’s primary economic sectors (i.e., agriculture, forestry and fishing) are heavily affected by climatic events. More than 50 percent of Haiti’s population lives below the poverty line, with 20.1 percent of people living in extreme poverty. According to the World Bank’s Climate Change Overview Country Summary (2022), political violence, economic imbalance, and population pressure has led to extreme environmental degradation in Haiti, with an estimated 98 percent of forests cleared for fuel. These destabilizing forces have left most Haitians extremely vulnerable to natural disasters. Haiti has embarked on many initiatives to strengthen its resilience to climate change. However, fragmented policies and data, weak technical capacity and inadequate climate financing, among others, hamper the country’s efforts to plan effectively and iteratively for medium-to long-term climate risks in its development planning and budgeting.
The project is informed by stakeholder consultations, stocktaking of existing initiatives, policies, and strategies in Haiti that were conducted by the National Adaptation Plan Global Support Programme in 2017, which resulted in an action plan to implement the NAP. The Stocktaking Report highlighted the limitations and gaps including insufficient technical and institutional capacity to effectively coordinate and implement climate change adaptation measures; scattered data and information-sharing on climate change impacts and adaptation interventions; limited capacity to monitor climate change adaptation and inform policies; and inadequate budget allocations. These serve as the basis for the activities proposed in the project which were further confirmed by stakeholders.
The project is expected to deliver the following results under the three key outcomes:
- Capacities of the Technical Working Group, particularly MDE (Ministry of Environment) and MCPE (Ministry of Planning), to steer the climate change coordination and integration process are developed;
- Institutional barriers to the integration of climate change into development planning and policies are reviewed and key stakeholders are sensitized to climate change adaptation and development linkages;
- Mechanisms for regularly updating and reviewing adaptation are strengthened and feed into the iterative adaptation planning process;
- Haiti's National Adaptation Plan is developed;
- A system for economic analysis and appraisal of adaptation options is established and adaptation priority interventions are integrated into the SNAT, PSDH and PNGRD;
- Universities and educational institutions are capacitated to support adaptation initiatives and the NAP process;
- Financing and Investment Strategy for the NAP is developed through a gender responsive consultative process;
- Private sector engagement in climate change adaptation is strengthened.
Project updates
The NAP has been developed and validated by both the MDE (Ministry of Environment) and MCPE (Ministry of Planning); the regulatory framework and the vulnerabilities of priority sectors such as health, agrobiodiversity, and water resources have been assessed; the NAP financing and investment strategy has been developed through broad consultations with diverse stakeholders, including women’s organizations, and the communication strategy for the NAP process has been validated and disseminated across the country. In addition, the project has provided substantial support to various initiatives aimed at revising strategic documents, including the Nationally Determined Contributions (NDC), the development of an operational plan for the National Risk and Disaster Management Plan (PNGRD) and the reinforcement of the EIS-Haiti database for the monitoring of climate indicators, among others.
The project continuously works on strengthening the capacity of the key technical working group from sectorial ministries. As part of the documentation of lessons learned and best practices of adaptation interventions to encourage scaling up of successful approaches, the project has also compiled several good practices and lessons from adaptation measures. Ongoing collaboration with partners and stakeholders allows the project to continue the implementation and validation of the deliverables while developing synergies between climate change adaptation actions in the field.
Outcome 1: The coordination mechanism for multi-sectoral adaptation planning and implementation is strengthened at different levels
Outcome 2: The NAP is compiled with a strong evidence base for adaptation planning and priorities are integrated into the Strategic Development Plan and the Disaster Risk Reduction Plan and Strategy
Outcome 3: A financing framework for climate change adaptation action in the medium-to long-term is established.


Strengthening the Resilience of Climate-Smart Agricultural Systems and Value Chains in the Union of Comoros
Comoros is particularly vulnerable to climate change, like other Small Island Developing States (SIDS). Due to its location and topography Comoros is among the most climate vulnerable countries in the world, and 54.2 percent of the population live in at-risk areas. The climate risk index of 25.33 for the year 2019 places the Comoros 16th (out of 180) of the countries most at risk. This value is mainly attributable to the passage of Cyclone Kenneth in April 2019 while the longer-term climate risk index, for the period 2000-2019, is 90.00 corresponding to the 97th rank. Comoros is extremely vulnerable to the amplification of rainfall variability linked to climate change, especially since the rural population is entirely dependent on rainwater harvesting. Models predict an increase in the annual average temperature, as well as increasing and intensifying risks associated with climate change, such as sea level rise, floods, droughts, and cyclones. Climate impacts are impacting agriculture, vulnerable ecosystems and livelihoods.
The proposed project “Strengthening the Resilience of Climate-Smart Agricultural Systems and Value Chains in the Union of Comoros” will aim to increase the resilience of 98,000 people, over 11% of the Comoros population, by focusing on key agricultural value chains vulnerable to the impact of climate change, including vanilla, ylang-ylang, and clove, the three main Comorian export commodities. The intervention will build capacities and support investments in climate-smart practices, more autonomous supply of inputs, better climate risk management and better access to knowledge and training, providing resilient livelihoods options for smallholders while reducing import dependence and increasing access to better quality, locally produced food. Implemented over a period of five years with an allocation of US$10 million from the Global Environment Facility Least Developed Countries Fund, the intervention will build on and make US$46 million worth of co-financed investments in agriculture and transportation in Comoros more resilient to climate change impacts. The project is aligned with and contributes to the Emerging Comoros Plan 2030, the flagship national strategy guiding the country’s development and green recovery efforts.

Component 1. Systemic, institutional and individual capacities for climate-resilient agriculture includes one outcome: Outcome 1. Enhanced capacity of national institutions and value chain actors involved in agriculture development to guide, plan, supervise and implement climate-resilient practices. The strategy for achieving outcome 1 is based on 3 outputs related to capacity development (i) of the institutional actors responsible for developing climate-adapted solutions and of CRDEs responsible to provide extension services to support their adoption, and (ii) of smallholder farmers, collectors and retailers to help them cope with the risks and uncertainties related to climate change, and (iii) through the development of guidance tools to support the adoption of climate-resilient practices. The development of institutional capacities will facilitate the replication of the lessons of this project to the whole agricultural community and will allow the continuous adaptation of tools and approaches to the evolution of the climate.
1.1 Capacity development plans elaborated and implemented to increase the institutional skills required to plan, develop, disseminate, and support the adoption of climate-resilient agricultural practices among smallholder farmers, and value chain actors. In 2013, the government established a network of sixteen (later expanded to nineteen) Rural Economic Development Centers (CRDEs) in rural areas of the country to supervise rural development programs for the improvement of the economy through the production and environmental protection sectors. CRDEs are local support structures for farmers responsible for providing services adapted to their needs to strengthen the resilience of agricultural systems and value chains. The CRDEs are in particular responsible for training farmers, providing technical extension services, support and advice to producers, supervising professional organizations, ensuring the collection and management of data, providing support to improve rural populations' access to agricultural inputs and supporting the development of basic infrastructure (eg hydraulics, supply, etc.). CRDEs will therefore be key beneficiaries of the project's capacity building interventions and will be at the centre of the project interventions to support small agricultural enterprises and other value chain actors. The rationale for the selection of target intervention areas is presented in section 1b. Project Map and Coordinates.
Strengthening the capacities of CRDEs will require a significant involvement of the public administration to support the recruitment of staff with adequate training meeting the profiles defined for CRDEs and ensure their continuing training and include aspects of adaptation to climate change in the training curriculum for agricultural technicians (University of Comoros and National Horticultural Center): a) Redeployment of institutional staff: Faced with the recruitment constraint within the public service, the project will advocate with the authorities within the ministry and the national and regional directorates and the Governorates of each island for the redeployment of staff from the administrations towards the CRDEs. The Regional Directorate is responsible for proposing the assignment of technicians to the CRDEs and the ministry is responsible for their recruitment. b) The project will support the definition of criteria for the selection of candidates for the assignment of personnel to CRDEs to ensure that they have the capacity to fulfill the responsibilities of the personnel (Director, Accountant Manager, Administrative Assistant and Technicians of the Center) as defined in Article 14 of Decree No. 13-015 relating to the status of Rural Economic Development Centers (CRDE). For each of these positions, the project will provide details on the requirements and skills required and will specify the need to work in rural areas. c) The project will support the establishment of a continuous training system and promote self-training focused on adaptation and resilience to climate change for CRDE staff. The project will work with institutions that provide training (National Horticultural Center and UdC) in order to include these themes in their curricula. Also, online resources are available (fr.csa.guide) to facilitate self-training in climate-smart agriculture on the CGIAR (Consultative Group on International Agricultural Research) and CCAFS (Climate Change, Agriculture and Food Security) websites. Modules have also been developed by FAO and are available in French. d) The project will support the development of a training of trainers’ program (namely in collaboration with FOFIFA and FIFAMANOR of Madagascar), which will target technicians within the staff of CRDEs who have more capacities in the most relevant areas. The trainings will cover different themes relating to climate-smart agriculture, including the selection and production of suitable seeds. e) The project will support the strengthening of the skills of CRDEs in communication and their essential role as extension centers focused on the development, evaluation, demonstration and dissemination of improved and climate-resilient agricultural practices to farmers, and their support throughout their adaptation to new techniques and approaches as well as in the traceability process through digital platforms and technological solutions.
This output is also focusing on strengthening the capacities of the other parties responsible for planning and supporting the implementation of climate-adapted agricultural practices, namely the National Directorate of Agricultural and Livestock Strategies (DNSAE), local authorities, NGOs and the private sector. Based on assessments of capacity development needs, the project will support the strengthening of the technical capacities of state actors (DNSAE and regional directorates for Agriculture), local authorities (municipalities, including the mayor and councillors), NGOs (including DAHARI, ARAF, Initiative Développement, Ngochao, 2 Mains, GAD, Mesha, and the Jeune Chambre Internationale), and the private sector (especially in relation to cash crops including collectors, vanilla preparers, exporters) to identify vulnerabilities to climate change in agricultural and pastoral activities, and develop and implement long-term adaptation strategies, through training, dissemination of knowledge through various media, and the development of action research involving these actors. (b) The project will support the development of the capacity to develop and update agricultural land use plans and agricultural calendars through the establishment (composition, terms of reference and resources) of a multidisciplinary working committee in charge of to develop and update the agricultural calendar on an annual basis and based on meteorological data and the analysis of the vulnerabilities of the various segments of the targeted sectors.
1.2 Training packages developed and delivered by CRDEs to farmers and agriculture value chain actors to enable the implementation of climat risk reduction measures. To achieve this output, the project will target local farmers, men, women, youth, and people with disabilities (PWDs), working individually or within cooperativeswith a special consideration given to facilitating attendance by women and PWDs. Capacity development needs will be assessed during the preparation of the project document (PPG). The trainings will be organized by the CRDEs who will also ensure the demonstration of climate-adapted practices within their plots, and will be provided by relay farmers, to build the capacity of farmers to understand and assess the effects of climate change on the condition of plots, crops and livestock, and to identify appropriate measures to improve it. Where appropriate, training will take advantage of the digital platform of the CRDE network, which aims, among other things, to facilitate access to online trainings on climate-smart agriculture and the digital transition.
Measures to improve climate resilience may include: i) improvement of soil condition to restore or increase productive capacity and counter erosion; ii) selection of new climate-resilient agricultural crops and varieties, and livestock options, suitable to local weather and soil condition of the plots (identified under the output 2.1 and in line with guidance provided in the agricultural land use plans under the output 1.3) and to the needs and interests of farmers; iii) adoption of practices (such as agroforestry, hedging, associated crops, agropastoralism) that strengthen the climate resilience of agriculture and livestock, and identified under the output 3.1.
In accordance with a national strategy to encourage actors to further specialize within value chains, training will also address aspects of processing, marketing and packaging of agricultural products. The climate change impacts on these segments of the value chains will be assessed to identify vulnerabilities and required adaptation mesures to increase their climate resilience, and develop/implement related trainings.
To further reduce the vulnerability of smallholder farmers in the context of climate change, the project will equally support the establishment or strengthening of local farmers cooperatives and improve their capacities in governance, microfinance and micro-entrepreneurship. To contribute to the financial sustainability of the climate-responsive solutions proposed under the project, trainings will include the development of business models that integrate the depreciation cost of inputs (e.g. infrastructure) into the price determination of products.
1.3 Guidance plans and tools to support the adoption of climate-resilient agriculture are designed, assessed, and disseminated on the basis of the analysis of the climatic and socio-economic vulnerability of each of the sectors of the targeted value chains, and include agricultural land use plans, crop calendars, advice sheets on varieties and agricultural practices for adapted varieties including for market gardening, cash crops, food crops, fodder, and for agroforestry including hedging (embocagement). To achieve this output, the project will undertake: (a) Climate and socioeconomic vulnerability analysis for all sections of targeted value chains. In order to identify the main issues affecting the value chains of targeted cash crop and market gardening and to better define the interventions needed to strengthen their resilience, the project will involve the value chains actors to document and assess climate, environmental, and socioeconomic vulnerability in all sections of the value chains. The vulnerability assessment will integrate the results of the assessments conducted by the CGIAR for tomatoes, bananas and manioc crops based on exposure to several factors related to climate change[1]. As part of the vulnerability analysis, the project will develop value chain climate risk profiles. Assessments of the impacts of climate change often focus on production while neglecting the other components of value chains. However, successful adaptation requires thinking about how climate change will affect all aspects of the value chain. It is proposed to carry out this reflection with the stakeholders concerned by following the approach of climate risk profiles[2]. Discussions will take place with value chain actors, i.e. producers, collectors, cooperatives and exporters, including the local populations involved, on their perception and experience of climate change and its impact on cultivation, harvesting, storage, transportation and processing of products. These discussions will also involve support and supervision structures for agricultural production in the field (CRDE) to consolidate understanding of the risks and effects/impacts of climate change on the different segments of the value chains. These consultations will help identify the individual and institutional actions and capacities needed at each level for the design and adoption of effective climate change adaptation measures, such as climate-smart agriculture practices or access to innovative information/communication tools or technologies that facilitate their adaptation. Solutions will be identified for each segment of the value chains – inputs, production, collection, storage, processing and marketing – to increase the adaptive capacity of value chain actors to climate change. This exercise will make it possible, among other things, to identify the most vulnerable actors (men-women-young people-people with disabilities) within each of the value chains. In addition, the review will document the land tenure situation of cultivated plots as well as governance, gender and inclusion issues in order to identify the challenges to tackle so that value chains are resilient, inclusive, sustainable and that the benefits are equitably accessible and distributed among the different actors, as between men and women.
(b) Agricultural land use plans within the areas supported by each of the CRDEs: The project will support planning for optimal land development that takes into account projections of climate change and its impacts, as well as the potentials and vulnerabilities of current and new crops using the FAO Ecocrop tool[3]. This planning will build on existing plans for individual plots (approximately 75% of smallholder farmers have developed climate-adapted land use plans for their individual plots, with the support of CRDEs, that take soil and climate into account) and knowledge, including studies carried out by CGIAR as part of the development of an IFAD project. Such plans will integrate the planning carried out for protected areas under the UNDP-GEF project and the planning carried out for the Mwali Island Biosphere Reserve with support from AFD. (c) Crop calendar: Development of an agricultural calendar adjusted to new weather conditions, supplied and updated on an ongoing basis according to the acquisition of new knowledge. (d) Operating plans: The project will support the parties concerned to develop or update plans for agricultural and agro-pastoral operations at the individual, cooperative and CRDEs levels. (e) Online tool: The project will support the development of an online tool to provide advice to farmers and disseminate knowledge on climate-smart agro-ecological practices on the basis of knowledge and best practices developed in the Comoros by CRDEs, farmers and other stakeholders in the sector[4]. The feasibility of enhancing the efficiency of the real-time dissemination of agrometeorological forecasts by contracting the dissemination of messages to individual operators to telephone companies will be assessed.
Component 2. Diversification of climate-resilient value chains includes one outcome: Outcome 2. Increased resilience of agricultural actors through the identification and promotion of new climate-resilient value chain options with good prospects for profitability, increased access to national and international market information and equitable benefit sharing. To achieve outcome 2, the project will support interventions to identify new value chain options which climate-resilience, profitability on national and/or international markets, and social acceptability will have been carefully assessed and validated with the support of CRDEs and INRAPE strengthened expertise. To achieve result 2, the project will support interventions aimed at identifying new value chain options whose climate resilience, uniqueness of components or properties, profitability in national and/or international markets and social acceptability will have been carefully assessed and validated with the support of the CRDEs and the enhanced expertise of INRAPE. Increased awareness of actors within national institutions, policymakers and private sector investors not only on the challenges posed by climate change to Comorian agriculture, but also on the potential brought by a diversity of new adapted value chains to the country's climate and environmental conditions, and by agricultural practices that will make it possible to increase the resilience of traditional crops, will promote the political support needed to make the changes, particularly at the level of the CRDEs, and mobilize the investments required from the private sector to develop value chains. Equity in benefit sharing between value chain actors and decent incomes are essential elements for the sustainability and replicability of the solutions developed under the project and will be ensured through the above-mentioned investments, political support and negotiation. and the signing of agreements between value chain actors ensuring the equitable sharing of benefits. Access to market information will enable value chain actors to position supply in relation to existing markets and negotiate appropriate prices commensurate with the quality and uniqueness or rarity of the products offered. Benefits to smallholder farmers will be optimized through developing product processing and marketing capacities, and improving CRDEs’ capacities to organize the distribution and the marketing through fairs, as inspired by Diboini CRDE’s successful experience, and promoting the multiple advantages of organic and fair-trade agriculture on the local and national scene and promoting the quality and specificity of Comorian products on the national, regional and international markets. This component will build on the contributions of co-financing projects aiming at eliminating obstacles in the commercial circuits (building on the achievements of co-financing partners for road rehabilitation, including Sima -Moya and other rural roads (BafD, PIDC-BM, AFIDEV-AFD).
2.1 Identification of climate-adapted agricultural varieties and livestock breeds to develop climate resilient and profitable value chains. A major focus of the project is to help famers shift from a few climate-vulnerable crops to a diverse selection of climate-resilient agricultural and livestock options that can support the development of profitable value chains. Diversification is an integral part of the strategy to build climate resilience, reduce risk and increase the chance of ultimate success. A more diverse array of crops/varieties is more likely to contain varieties that provide overall resilience to a farmer’s field (or to the several fields of a farmers’ group), as there is a greater chance of any one or a few of them having traits that enable them to adapt to a changing climate, or that confer resistance to new pests or diseases whose spread is favored by climate change. Diversifying farmers’ sources of income and spreading harvests and revenues throughout the year will also contribute to strengthen farmers resilience to climate change.
This will be achieved by identifying new climate-adapted cash and garden crops and livestock options whose demand is strong on national or international markets, which only require small areas (thus reducing the risk of expansion of cultivated areas at the expense of natural forests), which production cycle is short, and which can be processed locally[5]. (a) As part of the PPG, a series of Comorian products will be examined including varieties endemic to the Comoros or which have become rare on a regional or global scale and products whose specificity is based on traditional production techniques that meet the requirements of agroecological cultivation[6]. For each variety, the review will focus on the identification of its soil and climatic requirements and their correspondence in the Comorian context, the investigation of distinctive assets in existing and potential markets and will also include an assessment of the interest of farmers, men, women and youth. (b) The project will also seek to strengthen the climate resilience of market gardening sectors targeting local markets in order to increase household self-sufficiency and food security, reduce the need to import lower quality products, while creating new jobs, especially for women and young people. The project will work with CRDEs to demonstrate and disseminate adaptation solutions whose effectiveness has been demonstrated within the framework of the CRCCA project and will develop solutions based on soil-less cultivation of short-cycle varieties, which can be grown on small areas in urban or peri-urban areas (where the majority of the Comorian population is concentrated), using hydroponic systems with reduced water and input requirements, and therefore attractive and more accessible for young Comorians.
The project will also contribute to strengthening the climate resilience of poultry and goat farming value chains targeting local markets through the identification and assessment of new climate-resilient breeds. Integrating the rearing of climate-resistant goat and poultry breeds into the family economy will help increase self-sufficiency and food security for families, reduce the need to import lower quality products, while creating new jobs accessible to women and PWDs.
For poultry farming, the project will support the development of the CRDEs’ capacities to develop Kuroiler type breed chicken farming practices adapted to the Comorian climate, to demonstrate them, and to provide training to farmers. The project will build on a study conducted in 2019 by the Tanzanian company AKM Glitters on behalf of the Diboini/Hamalengo CRDE and UNDP-Comoros, to assess the situation of the poultry sub-sector in Comoros and recommend solutions adapted to the Comorian context and climate, with the intention of relaunching the subsector in the aftermath of the devastation caused by the cyclone Kenneth.
Goat and cattle breeding is practiced by many people in rural areas, especially young people and women. Goats generally possess high thermotolerance compared to large ruminants such as cattle that enable them to maintain their production under extreme climate conditions and to play an important role in mitigating and adapting to climate change, namely i) their higher capacity than other farm ruminants to effectively convert feed sources into milk and meat, ii) their lower methane emissions in comparison to other domestic ruminants. For the rearing of goats, the project will promote a sustainable intensification approach through the hedging technique (embocagement) which has long been proven in the Comoros, especially in Ndzuani and the building of goat sheds[7] to protect them from predation. By creating a balanced environment combining trees, culture -including fodder, compost, and livestock in an enclosed space where the composting of animal and plant waste enriches the bocage according to the logic of the circular economy, and by associating water and soil conservation measures (bunds, ponds, living hedges), this approach will mitigate the effects of heat stress and ensure a supply of quality fodder and thus improve the resilience of goat herds to the effects of climate change. This approach allows at the same time to address the problems linked to extensive agriculture and slash-and-burn agriculture still practiced in the Comoros, to mitigate soil erosion and degradation, to reduce the need for chemical fertilizers and to maintain biodiversity.
Through value chain analyses conducted for the climate adapted crops, varieties or breeds, the project will identify the options with favorable prospects for profitability. The value chains analyses will follow guidance provided in UNDP’s “Toolkit for value chain analysis and market development integrating climate resilience and gender responsiveness”[8] and will support their promotion with CRDEs, farmers, cooperatives, and the private sector by publicizing the successes of the new approaches by the beneficiaries (champions) themselves and by facilitating visits to demonstration plots and sites where new techniques have been successful. Communication approaches could use the contrast of “before and after” or “with and without” images. Messages targeting older farmers will be broadcasted through local radios and the project will include training of these older farmers in the use of phones and social media.
2.2 Capacity development plan elaborated and implemented to strengthen INRAPE’s capacities to characterize new climate-adapted Comorian agrobiodiversity products, and control the quality of export products. The project will build on the support provided by the Japanese government (source of co-financing) for the construction of a new multidisciplinary laboratory for INRAPE[9], which responds to the institutional assessments carried out as part of the UNDP project (2013-2016) for the development of a strategy to strengthen a sanitary and phytosanitary system (SPS) capable of supporting the development of the country's agricultural operations. The project will support the development of the capacities of this national laboratory so that the country has the necessary skills and equipment to carry out characterization studies independently and demonstrate the uniqueness of Comorian varieties, to certify and label them, and to preserve access to them for the benefit of the people of the country.
2.3 Web and mobile trading platforms developed to connect agricultural producers and buyers in national and international markets and ensure timely access to market information for climate resilient agricultural products. To enhance access to national markets, the project will build on the physical connectivity provided through WB co-financing for the rehabilitation of small ports to improve transportation between the islands, and on interventions carried out by development partners through projects aimed at improving the business climate. The GEF investment will focus on the development of a web and mobile trading platform to access market information and that connects actors in the agricultural value chains and agricultural service providers, processors, and buyers by taking advantage of the intervention of the International Trade Center (ITC) which set up a platform in Ndzuani to communicate price information of Comorian products to cooperatives (to be identified in the baseline). Support has been limited to Ndzuani so far because ITC targeted well-established cooperatives and avoid opportunistic ones set up to benefit from project support. The project will draw on this experience to replicate the successful interventions as well as the platform set up by UNDP to improve the competitiveness and accessibility of products and services. This platform can be used to provide agricultural advice and information by experts, and to offer services for the development of profitable agriculture. The connection of producers and traders makes it easier to find all the information on innovations and business opportunities in the agricultural and agrifood sector and facilitates the necessary dialogue to develop equitable benefit sharing agreements.
2.4 Awareness campaign conducted to enhance understanding by institutional and private actors of the sector of the climate change risks and adaptive measures. The project will carry out an awareness campaign targeting institutional and private actors involved in the agriculture sector, including smallholder farmers, and the general public, especially young people, on the ongoing and imminent devastating effects of climate change on agriculture and on new opportunities identified through the project interventions. The goals of the campaign will include demonstrating the potential revenue that can be generated to spark interest from young people and the private sector. This campaign will be conducted in collaboration with the chamber of commerce and business incubators. The awareness campaign will be an opportunity to promote the profession of farmer, by highlighting champion farmers and their success stories.
2.5 Negotiation and signature of agreements ensuring fair benefit sharing among actors in climate-resilient value chains. The project will identify and set up necessary processes and mechanisms required to ensure tangible and maximum benefits accrue to farmers through: (a) Dialogue facilitation between the private sector and representatives of local farmers to strengthen and formalize the links between these parties for the development of products that are integrated into value chains; (b) Development of business models (through which prices are determined) integrating the optimization of benefits for local farmers, rules for benefit sharing, and incentives to comply with the rules associated with targeted certifications. These models may provide for a contribution to the financing of CRDEs based on the user-pays principle; (c) Negotiation and signature of agreements with relevant actors in each value chain.
Component 3. Implementation of agroecological practices adapted to climate change in targeted intervention areas includes one outcome: Outcome 3. Increased adoption of climate-resilient practices and crops/varieties by smallholder farmers and value chain actors facilitated by support systems and adequate provision of inputs and resources. This outcome will be mainly the result of investments on the ground, following approaches to mitigate the risks associated with climate change, to develop a local, quality and low-cost supply of agricultural inputs, climate-adapted seeds, tools and small equipment to enable the adoption of climate-smart practices, and to support the implementation of a set of practices and approaches that strengthen the climate resilience of agricultural and livestock production. The strategy to achieve this outcome is based on initiating smallholder farmers to the concept of risk management, identifying approaches and practices whose effectiveness in reducing climate vulnerability has been demonstrated by CRDEs and supporting their adaptation by farmers, facilitating access to microcredit on terms adapted to the conditions of farmers, improving the local supply of agricultural inputs for increased adaptability, and developing incentives linked to effective and proven adoption of sustainable and climate-adapted production. To contribute to the sustainability of this outcome, the project will adopt an approach where any project contribution for protective structure (such as goat sheds, greenhouses and shade shelters) and equipment (such as micro-irrigation systems, small tools) will involve a counterpart (in-kind contribution as work) from the beneficiaries in order to promote ownership and maintenance. In addition, the income from part of the agricultural production linked to the use of the infrastructures will be allocated to the maintenance and renewal of the infrastructures. Maintenance will be carried out by an infrastructure management committee comprising users supervised by CRDE staff, such that the government should not have to invest further beyond the project for their replacement. The project will include training on maintenance and the importance of savings not only as a risk management strategy but also to ensure the maintenance and renewal of equipment and infrastructure that contribute to strengthen climate resilience of agricultural production.
3.1 Agronomic approaches and practices (e.g. water and soil conservation, crop diversification, mixed production systems, fodder cultivation and conservation, protective structures) developed and piloted by CRDEs to reduce climate vulnerability of the agricultural sector. The CRDEs will identify and pilot promising approaches to reduce the climate vulnerability of the agricultural activities of farmers in their territory. Successful practices will be promoted to farmers by relay farmers. Project interventions to better manage the risks associated with climate change will focus on: (a) raising awareness among farmers of the concept of risk management in the face of climate change and the adoption of sustainable strategies and practices that contribute to the health of agroecosystems and related services on which they depend (soil conservation, protection of pollinators, mixed production systems such as agroforestry, hedging[10] and agropastoralism); (b) diversification of agricultural production and sources of income for households and small farmers in their plots (e.g., new climate-resilient crops and poultry breeding); (c) investments in protective structures such as greenhouses, shade shelters and goat sheds, and (d) the adoption of approaches and practices whose effectiveness in reducing the vulnerability of agriculture and livestock to new climatic conditions has been demonstrated by pilot tests carried out by the CRDEs.
Approaches to be tested and piloted by CRDEs include : (i) Wherever appropriate, the project will encourage the development of agroforestry systems where various associations of cash crops, fruit, food crops or livestock will be tested. Agroforestry systems provide multiple economic, environmental, and social benefits in a context of climate change through the protection of crops, livestock, soils and rivers, the diversification and spreading out of agricultural income through short, medium and long-term production of food products, fodder, wood and other non-timber products, in addition to other significant benefits such as the creation of habitats for biodiversity, landscape improvement, as well as carbon sequestration. Agroforestry can play a crucial role in improving resilience to uncertain climates through microclimate buffering and regulation of water flow. Promoting diversity through agroforestry systems will also increase the availability of alternatives for birds and reduce predation on valuable crops (which is aggravated by extended droughts). (ii) Diversification of tree and shrub species and establishment of living hedges to reduce exposure to strong winds whose frequency is increased by climate change. (iii) The construction of goat sheds for farmers communities to protect animals from extreme weather conditions, hedging (embocagement) and agropastoralism to reduce climate vulnerability and reduce pressures on natural ecosystems, growing legumes as fodder in the bocages, growing and storing dry fodder (hay) and producing silage for livestock feed. (iv) Practices for improving the moisture holding capacity of the soil (organic mulch and gravel), the use of compost to increase soil organic matter, and micro-irrigation to lengthen cultivation period and diversify the cultivated varieties. (v) Water and wind erosion mitigation by the adoption of practices that promote soil cohesion, such as the use of cover crops, compost and green manure, the use of soil conservation and restoration techniques such as the construction of stone walls and anti-erosion lines planted with vetiver. Vetiver is a beneficial, inexpensive, and easy-to-maintain means of protection. Thanks to its resilience capacity in a wide range of ecological and climatic conditions[11], vetiver is effective in preventing and combating soil erosion in a climate change context. Yet, its use is not known in the Comoros and it is currently difficult to find. (vi) To help maintain healthy populations of pollinators, the project will conduct an assessment of threats affecting them (e.g. bee parasites, bushfires[12] and pesticides such as neonicotinoids), identify control measures to be implemented, required resources, and actors to be mobilized.
3.2 Financial products developed and made accessible to smallholder farmers to support the adoption of climate-resilient practices. Project interventions will involve (a) raising smallholder farmers’ awareness on savings and credit as a risk management approach, building on interventions planned under the WB PIDC project (identified as co-financing to this project) which aim to encourage savings in the SANDUKs micro-credit institution, and providing financial education; and (b) facilitating access to suitable financing through negotiations with local micro-credit institutions (SANDUKs) for the development of credit products adapted to the reality of farmers, i.e. credit at low rates tied to firm loan conditions to invest in climate-smart productive activities, and repayment schemes adapted to agricultural production cycles, thus contributing to reducing the risks for farmers’ investments. Risk reduction measures (eg capacity building of micro-credit institutions, communication and marketing support) to be put in place will be examined within the framework of the PPG.
3.3 Local supply of agricultural inputs, small-scale equipment and climate-resistant varieties seeds developed. The project will help reduce dependence on external supplies and increase the autonomy and adaptability of farmers to climate change by: (a) strengthening CRDEs capacities to produce quality seeds of climate-adapted crops and varieties meeting the needs of farmers (for self-sustaining agriculture) and the needs of the target markets (for cash crops), and by supporting this production, (b) supporting artisanal microenterprises involved in the recycling of metal waste for the manufacture of tools and adapted micro-irrigation systems (recovery of metal waste and abandoned car wreck) to manufacture agricultural tools meeting the needs of smallholders, (c) improving the capacities of microenterprises currently involved in the artisanal making of low-cost drip irrigation systems to meet the needs of farmers and cooperatives involved in the project; (d) developing capacities to produce organic fertilizer and supporting this production. The capacity development needs and resources available to support trainings will be identified during the project preparation (PPG).
3.4 Agricultural practices to strengthen agriculture and pastoral resilience, including the provision of climate-adapted crop varieties and breeds, implemented. The project will provide support for the implementation of farm and agro-pastoral plans at the individual and cooperative levels (developed under Output 1.3) through the adoption of practices and approaches that strengthen climate resilience (as identified and demonstrated under the output 3.1), for the establishment of nurseries and seed reserves, for soil conservation and restoration activities, including composting and green manure, and for implementing micro-irrigation systems. The project will support the use of protective structures and the adoption of mixed systems combining livestock, agriculture, fodder cultivation and trees, including agroforestry, hedging (embocagement), agro-pastoralism, and soil conservation and restoration, helping to restore soil productive capacity and other ecosystem services (water, fodder, pollinators, and carbon capture) that contribute to climate resilience of agroecosystems. The solutions proposed by the project will be to reduce soil erosion and increase diversity within crop plots and agroforestry systems, which in turn, will reduce the vulnerability of agricultural systems to pests and diseases which occurrence is increased as a result of climate change (as presented in the section on Effects of climate change on the agroecosystem and agricultural practices as experienced by smallholder farmers - Part II: Project Justification, 1a. Project Description) as fields that support a variety of crops are less attractive to predatory insects. The project will contribute to halt agricultural encroachment at the expense of forests (mostly within protected areas) by improving the productivity of agricultural plots, by restoring plots where soil is degraded, by collaborating with the authorities responsible for protected areas[13] to ensure that agricultural activities within village terroirs are conducted in harmony with the conservation objectives of protected areas, and by promoting mixed systems such as agroforestry that promote biodiversity.
Under the PPG, the need to invest in infrastructure to channel water from structures set up by the UNDP-GEF CRCCA and UNDP-GCF projects to the plots of CRDEs and farmers will be assessed.
3.5 Incentives (traceability and certification) in place to foster the adoption of climate resilient and sustainable practices across traditional and new value chains. This will include the following: (a) Certifications. The introduction of incentives to encourage the adoption of high-quality standards including climate-smart practices and varieties, organic farming and fair trade, to access higher added value niche markets, will help encourage farmers to maintain practices that promote resilience to climate change and ensure the financial sustainability of these adaptation measures. The selected certification will define a set of criteria that will be integrated into specifications to be followed by the various actors involved in the various stages of the value chain. These criteria should include adaptation measures to ensure climate resilience. A national committee composed of independent experts will be responsible for verifying the compliance of the various stages related to production (including cultivation, harvesting, storage, processing, transport) with the requirements of the specifications for the product to be eligible for certification. The criteria to be met for certification will be distributed to the producers concerned. The project will support value chain actors to gain access to these certifications and will also support the integration of climate resilience into the certification processes set up as part of the projects supported respectively by the WB and AFD (source of co-financing) for cloves and vanilla in other intervention sites. (b) Transparency and technology. Technology (e.g. blockchain) is available and can be used to ensure transparency through product traceability at all stages of the value chain by tracking the social and environmental impacts of products at every stage of their value chain, from local farmers to consumers, and thus support certification process. The project will assess the relevance, applicability (with users) and profitability of using a platform (via an application) to track and verify that each step in the value chain throughout the production process, meets adaptation criteria that can make these value chains more climate resilient. Using this tool, each step in the process is verified and recorded with time, date and geolocation as a secondary means of verification. (c) Facilitating change. To reduce farmers' reluctance to change and improve the efficiency of the transmission of technical knowledge to illiterate farmers, the project will adopt a strategy to through demonstration at the level of CRDEs, close supervision and long-term follow-up ensured by relay farmers. This transmission will be supported by the production of illustrated technical sheets, and the organization of visits - by and for the farmers - of sites where successful practices have stood the test of time, such as the plots developed through embocagement in the Nioumakélé (Ndzuani). The relay farmers involved in such a scheme will be identified and remunerated by the CRDE and thus become key partners in providing local support to farmers. At the same time, the project will put in place incentives to make the sector more attractive to young people. (d) Improvement of the perception of the farming profession. In order to change the negative perception of the farming profession by young people, the project will support an awareness campaign led by young people involved in value chains which will highlight the potential medium and long-term benefits of this profession. The awareness campaign may be supported by spot messages in the media and on the packaging of commonly used agricultural products.
Component 4: Knowledge Management, Monitoring-Evaluation, and Gender and PWDs’ Inclusiveness. This component will enable mainstreaming transversal issues of knowledge management and gender and PWDs inclusiveness into other project components and outputs focusing on knowledge and on gender. Knowledge management is critical not only for the achievement of the project’s objective, but for the sustainability of achieved results and replicability of climate-resilient solutions. Documenting, analysing and addressing gender and PWD issues as cross-cutting elements will allow to develop inclusive solutions to the climate adaptation challenge in agriculture, and ensure that men, women and PWDs benefit equally from the project support and that the concerns and experiences of women and of PWDs are an integral part of the implementation and monitoring and evaluation of the project. Lessons and successful experiences will be captured through the participatory monitoring and evaluation as part of the project annual planning process, through the participatory development of agroclimatic knowledge involving actively farmers, CRDEs, and researchers in a co-learning process, and recording and disseminating successful experiences among CRDEs, and with other relevant stakeholders in the country and in the region.
Outcome 4 Improved development, management, and dissemination of knowledge related to adaptation of the agricultural sector to climate change to support the replication of climate-resilient solutions among CRDEs, and at national and regional scale. This outcome will be achieved through the following outputs:
4.1 .Lessons learned from the project interventions documented and disseminated. This will be achieved through the annual monitoring and evaluation of project achievements using the indicators of the strategic results framework, and the identification and dissemination of related learnings with project partners, including projects in areas aimed at strengthening the climate resilience of agriculture, in the Comoros and in the countries of the region. Along with capacity building of CRDEs, and interventions on knowledge development and improvement of access to information, the project will support the management of knowledge developed through participatory monitoring and evaluation (involving beneficiaries) of project interventions, including the development of climate-adapted agricultural practices and their adoption by farmers, the improvement of the climate resilience in all segments of the various value chains and the development of new value chans for climate-resilient crops.
4.2 Agro-climatic knowledge for climate adaptation developed through strengthened monitoring and research-action involving farmers. CRDEs must become a place of experimentation, development, demonstration, teaching and promotion of new climate-adapted practices and crops and thus be at the heart of the generation and dissemination of technical knowledge allowing to adapt the agricultural sector. This learning and dissemination mechanism must also be deployed outside the CRDEs and set up within the plots of farmers who are experimenting with new approaches, techniques and varieties in order to involve them in the monitoring and evaluation of the results of these innovations and thus encourage their appropriation of successful approaches. Knowledge development may be based on interventions such as the following: (a) Contribution to the national database on agricultural yields and production developed by the FAO. This will involve training technicians within CRDEs on data collection, the use of GPS and entering observations into the database at the level of each CRDE, and the compilation of simple statistics to generate and disseminate technical knowledge and enable the agricultural sector to adapt to climate change. (b) Action-research programs involving farmers. This will involve establishing the necessary partnerships with INRAPE, the UdC including the University of Patsy (Ndzuani), the National Horticultural Center of Mvouni (Ngazidja), the CRDEs, relay farmers and farmers to carry out participatory action-research programs to generate new technical knowledge to adapt the agricultural sector to climate change. The possibility of associating one or more regional institutions to support research and training will be explored during the PPG (University of Reunion, National Center for Applied Research in Rural Development (FOFIFA[14]) (Madagascar) and CGIAR (Réunion).
4.3 Tools for experience and knowledge-sharing among CRDEs and actors in value chains are developed and operationalized. This will include the following: (a) The project will recruit a communication officer to coordinate the sharing of information through the development of short, practical guides in the form of booklets or illustrated sheets for farmers to record best practices and facilitate their adoption and follow-up in the local communities served by the targeted CRDEs as well as in all the CRDEs. (b) The project will support the experience-sharing mechanism among CRDEs and between CRDEs and farmers through a platform specific to CRDEs (under development with the support of a Comorian office). The project will support the consolidation of the digital platform set up within the CRDE network to, among other things, facilitate the exchange of information and the sharing of experiences between all actors in the value chains and create bridges between different segments, namely between producers and buyers. (c) The project will support the production of an online newsletter to share information relating to the adaptation and climate resilience of the agricultural sector, including activities and events linked or not to the project, including thematic articles, reports and interviews produced by CRDEs teams.
4.4 Gender and PWDs action plans based on comprehensive analyses are implemented, monitored, and evaluated to promote an inclusive approach to the adoption of a climate-resilient agriculture. During the PPG, an exhaustive gender analysis will be carried out to document gender issues in the agricultural sector and identify specific gender barriers. Based on this analysis, a gender action plan will be developed to be implemented, monitored, and evaluated as part of the project. Also, an analysis of the issues related to people living with disabilities (PWDs) in the agricultural sector will be carried out to identify the barriers specific to PWDs and to develop an action plan to increase their inclusion in the efforts to adapt the agriculture sector to climate change. The adoption of an inclusive approach towards gender, PWDs and youth to improve equity in value chains and access to income-generating activities, will involve the following: (a) The project will seek to improve income equity within value chains and improve the involvement of women, especially the elderly, and PWDs, in income-generating agricultural activities by promoting small scale family farming (e.g., family garden near the house, poultry farming). The project will promote the adoption of a more inclusive approach in identifying solutions designed within families. (b) The importance of demonstrating new practices and varieties will be essential to increase the motivation of young family members to support older ones. The development of specialized professions within value chains, such as the production of seeds, artisan scrap metal workers, or manufacturing biodegradable packaging, will diversify the types of jobs accessible to different segments of society. (c) In certain sites, according to their will, the project could support groups and associations to set up cooperatives (dairy, food, market garden cooperatives) or to strengthen their capacities allowing certain sections of the value chain to be integrated within of the cooperative, for example collection or processing, and improve profitability for all members of the cooperative.
[1] Bourgoin C, Parker L, Martínez-Valle A, Mwongera C, Läderach P. 2017. Une évaluation spatialement explicite de la vulnérabilité du secteur agricole au changement climatique dans l'Union des Comores. Work Document No. 205. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Wageningen, Les Pays-Bas. Available from: www.ccafs.cgiar.org
[2] Mwongera C. Nowak A., Notenbaert A.M.O, Grey S., Osiemo J., Kinyua I. Lizarazo M. et E. Girvetz. 2019. Climate-Smart Agricultural Value Chains: Risks and Perspectives. in T.S. Rosenthal et al. (eds.) The Climate-Smart Agriculture Papers.
[3] ECOCROP is a software tool that identifies 2568 plant species for given environments and uses (food, fodder, energy, erosion control, industrial purposes) which also contains a library of crop environmental requirements.
[4] The tool could present the following information: 1. Crop calendar indicating for each month what must be done for each crop (sowing, cultivation, flowering, harvesting), taking into account current meteorological data and, if relevant, the various cultivation areas. 2. Agroecological practices sheets covering, as useful, the following subjects: a) Culture sheets (for all traditional and new crops supported by the project): botanical information, cultural practices, pests and diseases, physiological disorders (symptoms, possible causes, solutions); b) Cultivation without harmful pesticides: control methods, natural or low impact pesticides; c) Plot maintenance; d) Irrigation: practices to minimize water requirements, rainwater harvesting, manual watering systems and micro-irrigation; e) Fertilization: knowledge of the nature of the soil, assessment of needs and different options for amending it; f) Composting: Preparation of various types of compost to meet different needs; g) Seed production. 3. Diseases, pests, weeds and invasive alien species (IAS): Sheets on the main problems affecting crops, including new diseases and pests recently introduced or favored by climate change: a) identification of the problem: description of signs and symptoms, photos of the effects on the different plants affected by the pest or disease; b) advice for prevention and control (favorable conditions, screening, preventive measures, physical and biological control)
[5] For example, compared to clove and ylang-ylang which require large areas (6m x 6m) and which cannot be harvested for several years after planting, ginger can be grown on an area of 0.25m x 0.25m, pepper and coffee can be integrated into agroforestry systems, and all can be processed locally to create local added value.
[6] For example, endemic varieties of bananas, yams, aromatic and medicinal plants, low caffeine coffee, high vanillin vanilla, ginger, nutmeg, aloe vera, large thyme, vetiver, turmeric, Plectranthus both Cuban Oregano type and Indian Borage type
[7] chevrières
[9] National Research Institute for Agriculture, Fisheries and the Environment
[10] embocagement
[11] With its developed and resistant roots, vetiver protects embankments and terraces, fertilizes and improves soil structure, and fights against pollution, erosion and flooding. It tolerates acid or alkaline soils (with pH from 3.0 to 10.5), saline soils or soils with high levels of metals and resists extreme climatic variations such as prolonged drought, floods, submersions as well as extreme temperatures ranging from 14°C to 55°C. After being affected by drought, salinity and other adverse conditions, this plant has the ability to re-grow very quickly when conditions improve.
[12] Bushfires can be started by pastoralists and by farmers who practice slash-and-burn agriculture. Since herders do not cultivate fodder, they depend on natural fodder which is increasingly affected by the lengthening of the drought period. Herders thus resort to bushfires, despite being illegal, to improve the palatability of pasture grasses. Often left unattended and uncontrolled, they spread over large areas and are harmful to the biodiversity of the affected forest areas, including pollinator species.
[13] The protected areas of the Comoros have been delineated by integrating villages and agricultural lands within their boundaries.
[14] FOFIFA is Madagascar's main agricultural research organization and conducts research on coffee varieties in the region including the Comoros

Outcome 1: Enhanced capacity of national institutions and actors involved in agricultural development to guide, plan, supervise and implement climate-resilient practices.
Outcome 2: Increased resilience of agricultural actors through the identification and promotion of new climate-resilient value chain options with good prospects for profitability, increased access to national and international market information and equitable benefit sharing.
Outcome 3: Increased adoption of climate-resilient practices and crops/varieties by smallholder farmers and value chains actors facilitated by support systems and adequate provision of inputs and resources.
Outcome 4: Improved development, management and dissemination of knowledge related to adaptation of the agricultural sector to climate change to support the replication of climate-resilient solutions among CRDEs, nationally and in the region.

Strengthening the resilience of small farmers through Climate Smart Agriculture techniques in the Tahoua Region of Niger
The population of Niger more than tripled in 30 years. 51.6% of this population is under 15 years old. This population is essentially rural (83.8%) and derives most of its income from the exploitation of natural resources. The level of extreme poverty remains very high at 41.4% in 2019, affecting more than 9.5 million people. This poverty particularly affects woman-headed households. 60% of women and 75% of female-headed households are under the poverty line. The country’s economy, food security and the livelihoods of its rural communities are extremely vulnerable to the impacts of climate change, with an increasingly hot and dry climate and major fluctuation in rainfall across years. Increasing temperatures and increasing rainfall variability have severe impacts on agriculture, which is the main source of income and livelihoods for 87% of the national population.
The proposed “Strengthening the resilience of small farmers through Climate Smart Agriculture (PRP-AIC) techniques in the Tahoua Region of Niger” project will support producers to adapt to the adverse effects of climate change on their production. Exposure of fields to flood and silting will be reduced through climate smart agriculture and restoration of production areas as well as surrounding ecosystems. Indeed, restoration practices are currently not systematically adopted by farmers due to the perceived loss of arable lands through these practices. With the visible impacts of climate change, farmers tend to seek expand their agricultural land, at the expense of surrounding ecosystems. This further increases their vulnerability, with the increasing risk of a total crop loss during climate shocks such as flood and drought. Restoration practices will be part of the project’s comprehensive approach, with complementary interventions that provide directly perceivable benefits. The project will provide more immediate solutions for farmers to climate change by introducing climate-smart agriculture practices, thereby increasing yields and reducing vulnerability to climate change. Projects outputs are closely related to land restoration, enabling farmers to organize into functional farmers groups to improve access to local finance, including government funding. A sustainable private financing mechanism will also be set up to finance agriculture practices resilient to climate change, benefiting vulnerable people, with a focus on women and youth.

Component 1: Land restoration for climate resilience of agricultural production systems
Outcome 1.1: Degraded land is restored to protect agricultural production systems against the adverse impacts of climate change
This component will align with the GGWI to strengthen the resilience of vulnerable farmers against the adverse impacts of climate change. While the GGWI has had limited results to date, with only 15% currently underway after more than 10 years of implementation, and most of the action plan for Niger still outstanding,, early experiences, including from other countries (in particular Senegal) will be highly relevant to identify sustainable and adaptive practices. The project will build on a combination of traditional practices and modern/innovative approaches to restore lands and benefit farmers, including lessons learned from ongoing projects such as the project to Strengthen the Resilience of Rural Communities to Food and Nutritional Insecurity in Niger which will support the recovery of degraded land in Tahoua (estimated co-financing of US$10,000,000). Projects supporting pastoralism, including addressing conflicts between farmers and herders, such as the Regional Project to support Pastoralism in the Sahel, will also complement the restoration activities under this component by creating a peaceful discussion platform for exchange, including for the protection of restored ecosystems (estimated co-financing of US$ 5,000,000).
Indeed, fully functioning ecosystems will improve water retention and reduce the impacts of floods and droughts on vulnerable farming land. During the PPG phase, an analysis of past and present land use and the restoration of degraded areas, taking into account the projected changes in climate will be conducted to better define restoration activities. Preliminary consultations during the PIF formulation phase identified past successful experiences implemented through past and ongoing adaptation projects such as the Community-based adaptation project (funded by the LDCF) with the introduction of farmer-managed regeneration, half moons, benches, rocky outcrops[1], planting of trees of adapted species and Assisted Natural Regeneration (ANR) practices. The illustrations below present some NbS successfully introduced in Tahoua, as observed during the field visits conducted in March 2022.
In addition, because of the importance of domestic fuelwood consumption in the project area, causing an overexploitation of wood resources, and in turn, soil and ecosystem degradation, the project will conduct trainings and awareness raising for the adoption of improved stoves and other fuelwood efficient practices within surrounding communities, where reforestation, afforestation and agroforestry will be implemented. This output will be conducted in close coordination with output 3.1.2. to support and provide incentives to local entrepreneurs to offer and disseminate a range of fuelwood efficient practices and equipment (including improved stoves) in surrounding villages. This will reduce the pressure on forest ressources and ensure the sustainability of the project. During the PPG phase, the project will also explore opportunities under the UNISS (UN Integrated Strategy for the Sahel) programme, led by UNDP Energy offer for the Sahel. The project aims to increase access to clean energy for improved basic services and enhanced value chains, in particular in the agricultural sector. A pipeline of flagship joint projects is currently being developed to operationalize the offer and might offer potential for supporting the access to clean energy promoted under the LDCF project.
This component will have important mitigation and biodiversity co-benefits by restoring and preserving ecosystems that provide CO2 sequestration and provide living environments for the fauna and flora to thrive. It will also directly fits within the GGWI and aligns with its geographical and technical scope, including its focus on restoring ecosystems for food security. The project will be implemented through the following outputs:
Output 1.1.1. : Awareness raising and training programmes are conducted to sensitise local authorities and communities and equip them with information, skills and knowledge to support ecosystem restoration practices
Under this output, the project will work with local leaders as key partners during project design and implementation, to ensure their buy-in and their involvement in the sustainability and expansion of successful restoration practices. The engagement of local authorities and decentralized state agents will be ensured by setting up clear monitoring frameworks for the protection of restored ecosystems in the long-term. Local and regional planning and financing will be revised and supported to introduce the protection of ecosystems and the adoption and upscaling of NbS. In addition, the project will establish or strengthen local committees involving beneficiary farmer groups for natural resources management.
Community groups will be involved in the targeted areas to ensure a common understanding and engagement in restoration activities. These measures will be implemented and the upscaling of the restoration activities achieved through the funding mechanisms set up under output 3.1.1, thereby increasing the access to funding for these groups in the long-term and ensuring the sustained protection of restored ecosystems.
Awareness raising and sensitization will be conducted with local communities to discuss the long-term benefits of preserving ecosystems for the agricultural production and food security at the local level. The discussions will cover the impacts of climate change; key ecosystems such as wetlands, savannahs and forests; their linkages with production systems; the climate change adaptive benefits they offer. In addition, the discussions will support the documentation of existing traditional knowledge, sustainable practices and agriculture knowledge, to build on local experience for restoration activities.
Under this output, the project will also create links with the stakeholders involved with the GGWI, in Niger and in other regions. Effective communication will be built along the entire project to share lessons learned and results from the project and build on the results of other activities conducted under the GGWI. Effective communication channels will be established with the focal points in the ministries involved in the implementation of the GGWI (the National Agency of the GGW under the Ministry of Environment and the Fight against Desertification, the Ministry of Agriculture and the Ministry of Community Development).
Output 1.1.2. Degraded ecosystems surrounding the farming areas are restored with the adoption of Nature-based Solutions
Based on the analysis of past and present land-use to be conducted during the PPG phase, restoration and protective practices will be introduced. The consultation conducted at PIF formulation stage identified a range of successful NbS that will be analyzed and considered to be introduced and/or upscaled in the project areas. Local communities will be engaged in the identification of restoration activities, as well as during the implementation of these activities, providing local employment and building on and strengthening local practices. NbS practices identified include Zaï technique, half-moons, ANR, surface water dissipation techniques,mulching techniques, stone cordons, stone walls and stone lockers.
NbS will be introduced to restore degraded areas, increase the vegetation cover, protect forests, savannahs and wetlands from conversion to other types of occupation and reduce silting and water erosion (gullying) along watercourses. These practices will be introduced in areas surrounding agricultural lands, in order to provide large-scale adaptive benefits. Restoring key surrounding ecosystems will provide important ecosystem services to farmers by increasing the water recharge, reducing land slides and water runoff during floods, increasing biodiversity.
Lessons learned will be systematically collected and compiled into actionable knowledge products and shared withe farming communities and other land users in the project intervention areas and other projects in Tahoua and in the GGW area. This knowledge will be particularly relevant for the community groups targeted under output 1.1.1 for the replication and upscaling of practices in the project area and beyond.
The Social and Environmental safeguards work conducted during the PIF and to be developed at PPG stage and during implementation will guide and recommend the selection process of degraded land plots to be restored. This work will ensure Free Prior and Informed Consent (FPIC) is obtained from beneficiaries and impacted communities. The necessary studies and assessments will be conducted to avoid the risk of land grabbing by the project and/or land used for other purpose by some communities to be turned into another land use, thereby adversely impacting their livelihoods, In addition, the project will support community land-use planning, through the consultations and local contracts and/or the formulation of local development plans.
Output 1.1.3. : Energy-saving equipment is promoted to reduce deforestation for firewood consumption
Considering the devastating impacts of increasing pressure on timber for household consumption and the consequences on protective ecosystems, this output will aim at changing the behavior of the rising generation in the use of wood energy. To do this, awareness-raising actions will be carried out throughout the project, targeting young people. A youth education campaign will be conducted to raise awareness of the accelerated depletion of local and national wood energy resources and its consequences on ecosystems and ecosystem services, and to advocate for the adoption of cooking equipment with low wood energy consumption and sustainable management. The project will closely coordinate with the activities conducted under the outcome 3 to incentivize supported MSEs to provide energy-efficient technologies to reduce fuelwood consumption. This will be ensured by conducting demonstration for the use and production of energy efficient equipment and demonstrate the viability of such investments. For instance, cook stoves are expected to reduce by 20% to 30% the wood consumption of beneficiary households. This campaign will be conducted through various channels: (i) trainings of young entrepreneurs, including through the presentation of economic potential of these activities, (ii) sensitization through the media (local radio, television, advertising posters); (iii) sports championships in the beneficiary localities; (iv) various school competitions and activities on the theme of wood energy resource management. The project will also identify the sites where these technologies will be most effective, including the availability of materials for their replication and maintenance. For cook stoves, the use of local materials such as banco (a local clay) is widely available and could ensure the dissemination of best practices.
In addition, during PPG phase, the project will map ongoing projects and interventions supporting the adoption of energy efficient technologies and seek partnerships with these interventions. For example, UNDP is leading an initiative on supporting clean energy access in the Sahel, which might offer potential collaboration in Niger.
Component 2: Promotion of Climate Smart Agriculture
Outcome 2.1. : Climate-smart agriculture techniques are promoted and reduce the vulnerability of smallholder farmers to climate
This component will promote climate-smart agriculture (CSA) techniques and technologies, adapted to the project intervention areas to reduce the vulnerability of smallholder farmers to climate change and enhance food security. Beneficiaries will be provided with practices and techniques for a comprehensive approach to tackle climate change. These practices will sustainably reinforce the resilience of communities against the adverse effects of climate change, improve agricultural production and beneficiary incomes, and contribute to carbon sequestration and thus GHG mitigation. Techniques and practices will include mechanical irrigation, with solar powered water pumps to reduce the impacts of water stress.
The project will build on the results of ongoing adaptation and food security projects implemented in Tahoua. to further improve the capacity to adopt CSA (barrier#2). Under the component 4 on knowledge management, the project will support the sharing of lessons learned and best practices and their introduction in the project design. In particular, the project will cooperate with the PIMELAN, which supports agricultural support services and agricultural policies, in order to disseminate lessons learned at the national level (estimated co-financing of US$15,000,000). The project will also work closely with the recently approved GCF project Hydro-agricultural development with smart agriculture practices resilient to climate change in Niger to avoid duplication and exchange knowledge. Beneficiaries will also be supported to access additional resources to expand their access to irrigation, for instance through the programme for small irrigation and food security (PISA 2) (estimated co-financing of US$5,000,000). The project will also coordinate with the recently approved GCF-funded project, the Hydro-agricultural development with smart agriculture practices resilient to climate change in Niger (AHA-AIC), supported by the BOAD (estimated co-financing of US$5,000,000). Other projects supporting the access to water will also be consulted and engaged.
While these projects provide important lessons learned, it appears from the PIF that they are only supporting the local agriculture sector, without taking into account the entire ecosystem on which they depend. This component will be strongly connected with component 1 and recognize the need for restored ecosystems. Component 2 will aim at increasing agriculture production and thereby food security, taking into account and, when possible, taking advantage of the impacts of climate change. This will only possible in an environment where surrounding ecosystems are offering protection against the increasing risks of floods and droughts, as addressed under component 1.
The component will also strengthen the capacity of local producer to access, understand and use agro-climatic and meteorological information, and contribute to producing basic local data (rainfall, humidity, temperature) to inform farming practices (barrier#4). This local data will be shared at the national level to increase the availability of local data for planning and projections.
Output 2.1.1. Climate-resilient farming techniques, including irrigation are adopted to reduce losses and food insecurity
In the context of climate change, access to water resources is increasingly scarce and less reliable, and current water practices often lack sustainability. To limit water losses and achieve sustainable water savings, the project will promote drip and California irrigation systems. These systems have an irrigation yield of 90% and 85% respectively, and will help save up to 50% of water[2]. Under this output, boreholes with solar pumps (kits composed of solar pumps, solar panels, inverter, regulator, and connection accessories for pumping), storage basins, piezometers, drip and california irrigation network units, reservoirs for storing irrigation water, etc. will be installed. The project will support the procurement and installation of these irrigation systems, which will be the property of community groups. MSEs supported under the component 3 will be incentivized and trained to develop businesses for the maintenance of this equipment, thereby creating sustainable frameworks for the procurement of spare parts and technical knowledge for repairings at the local level. In addition, community groups will be strengthened for the basic maintenance of the equipment. The installation of the equipment will therefore be closely coordinated with the activities conducted under component 3, and contacts will be established between community groups and entrepreneurs.
In addition, the success of crop intensification in climate-smart farming practices is based on the control of varietal performance, rigorous management of irrigation water, soil fertility and ecosystems, efficient management of irrigation areas and mastery of different cultivation techniques. To facilitate the implementation of the actions promoted by the project, training will be organized for producers. Manuals/guides and training for good practices will be adopted in water management, soil restauration, water pumping energy management, crop planning will be developed and made available to producers’ groups. When extension services are not sufficient to ensure the adequate training and dissemination of these manuals, local stakeholders active in the area will be involved, this will include CSOs, NGOs or students and teachers from the Tahoua university.
Producers and community groups will receive training to design and implement a mechanism for servicing and maintaining sustainable infrastructure such as water-saving irrigation, solar water pumping equipment, etc. A technical study will be held at the PPG stage to clarify the sustainability use of underground water in the project zone. This study will also ensure FPIC from beneficiaries and surrounding communities who might be impacted by the pumps and the selection of sites for irrigation.
Output 2.1.2.: Micro-dams, dikes, bioengineering and other land stabilization methods are implemented to protect agricultural production from the increasing intensity and frequency of droughts and floods.
While the activities under component 1 are expected to provide protection against droughts and floods, considering the increasing intensity of both climate events, lowland works will provide an additional and more immediate protection to agricultural lands. In addition, restoration activities will only be fully functioning a few years after their start and communities need to be offered a more immediate solution to floods and droughts for the restoration activities to be successful and to avoid further encroachment on surrounding ecosystems.
Under this output, micro dams will be built to provide a reliable access to water for crops during drought pockets in the rainy season. In areas where flooding is increasingly recurrent, sites will be protected by dykes lined with channels and drainage equipment. This will include the preparation of sites, drilling and protecting sites from water erosion by building anti-erosion structures, flood protection infrastructures, implementation of processing koris and tree planting around project sites.
Similarly to the output 2.1.1, the maintenance and sustainability of these infrastructure will be ensured through the set-up of MSEs providing such services, with an access to the market for the procurement of spare parts or construction material and equipment. Community groups will also be entrusted the ownership of the infrastructure for their maintenance, and will be trained to provide small repairs. They will also be put in contact with the set-up MSEs for larger maintenance work.
Output 2.1.3.: Agroclimatic and meteorological information and early warnings are available and understood by farmers for climate-resilient decision-making
Access to meteorological and climatic information in real time allows better programming of agricultural activities and enhances agricultural productivity and production. It considerably reduces the risk of loss of agricultural investments due to lack of delay and / or irregular rains. Indeed, important losses are recorded in Tahoua due to the lack of adaptive practices to the changing weather events, that could be partly avoided by the timely availability of weather information. This output therefore plans to strengthen producers' access to suitable agro-meteorological information.
To eliminate information asymmetry, mobile phone services are becoming an important mean for providing farmers’ groups with weather forecasts and market data. In each locality, three to five farmers’ groups members will be identified by the beneficiary groups to receive timely weather information. They will be provided with mobile phones to disseminate the information received to the rest of the members of the group. Their capacities will be strengthened to ensure the flow of information in both directions. The dissemination of weather information through mobile phones will be reinforced by radio broadcasts in local languages. This activity will be implemented in collaboration with meteorological services, the National Center for Solar Energy (CNES), AGRHYMET and the Development Department. The project will also set up an early warning system to alert community members in case of disasters (floods, severe droughts, locust invasions, etc.), using a computer system,.
Farmers’ groups will be trained to: (i) acquire and install a direct-reading rain gauge kit, thermometer, and anemometric recorder in each beneficiary village, (ii) collect local weather information, and process and disseminate it using ICTs in a language understandable to producers, (iii) establish, in each village, a committee composed of at least 5 people (from different groups of producers) to ensure the relay of weather information to the rest of the producers, (iv) develop and validate an implementation plan for the operation of the committees, (v) establish an early warning system through a contract with the institution in charge of agroclimatic information production for treatment and analysis of data collected on site and the creation of SCAP-RU (Community System for Early Warnings and Emergency Response) and OSVs (Vulnerability Monitoring Observatories). Considering the lack of access to climate information and EWS is a key barrier deterring access to finance for beneficiaries, these interventions will also contribute towards de-risking lending to these communities from financial institutions, linking to the activities under Outcome 3.
The equipment introduced will be the property of the communities and the decentralized services of the meteorological department will be responsible for maintaining them. Equipment introduced as part of the project will be small equipment such as rain gauge kits, thermometers and anemometric recorders and are easy to maintain. In past projects, considering the seasonal need for these information, the equipment was cleaned and stored at the end of the farming season and re-introduced at the start of the following season. This ensured the good management of the equipment in the long term.
During the PPG phase, UNDP and the formulation team might also explore opportunities for the involvement of Niger into the Systemic Observations Financing Facility (SOFF) which is still under design. This would engage the Government of Niger to maintain their meteorological equipment in the long term, receiving financial support for this maintenance upon the verification of the effective maintenance (through the effective transmission of climate information to the Global Basic Observation Network (GBON) under WMO.
Component 3: Facilitating the development of the private sector in local communities
Outcome 3.1. Women- and youth-led local Micro and Small Entreprises (MSEs) and entrepreneurs provide adaptive solutions to climate change with local banks and microfinance institutions sustainable facilities
Since the 1980s, several initiatives have been developed by the State and its partners to finance the agroforestry sector through banks, financial institutions and decentralised financial systems (SFDs). However, the financial resources mobilised are not accessible to producers and other value chain stakeholders and often do not meet their investment needs (barrier #3). Also, the access modalities and conditions developed by the projects and programmes are not always harmonised, creating confusion among the beneficiary actors. In order to establish a harmonised and formal framework for financing Food and Nutrition Security and Sustainable Agricultural Development, the State, with the support of Technical and Financial Partners, has set up a secure fund for agricultural investments, which centralizes resources to finance vulnerable farming communities and individual farmers. This is the Food and Nutrition Security Fund (FISAN), which has three facilities: facility 1: support to agricultural financing, facility 2: financing of agricultural structuring investments and facility 3: financing of agricultural advice, research and capacity building.
The FISAN strategy is expected to combine classical financing systems with innovative facilities. The traditional approach refers to mechanisms for mobilising and administering public resources for the rural sector on the one hand, and private sector funding, notably through financial institutions, on the other. The innovative approach will be to set up the Fund through a public-private partnership. This fund is seen as a strategic instrument for sustainable financing of public investments for agricultural growth and food security. It provides banking facilities for private investments including: (i) subsidies to reduce the costs of agricultural inputs and materials so that they are more accessible to producers; (ii) incentive facilities for commercial banks to intervene in the financing of private investments: guarantee funds, calamity funds and interest rate subsidies; and (iii) lines of credit for direct bank financing and refinancing of SFDs. The FISAN works with banks, SFDs and other institutions in providing guarantees to deliver the activities under its first facility. Among them, the Agricultural Bank of Niger (BAGRI) signed a performance agreement with the FISAN to allocate up to US$8,000,000 (XAF 5.5 billion) for the agriculture sector in 2022. The bank, established in 2011, in spite of its mandate, has so far not been able to disburse a significant amount of credit to the agriculture sector (only 12,75% was allocated to the agriculture sector) and the rates offered are not affordable to smallholder farmers. The BAGRI is being supported in its engagement by the GCF-IFAD project “Inclusive Green Financing for Climate Resilient and Low Emission Smallholder Agriculture” [3], in particular in its aim to “establish a Financing Facility within BAGRI with a line of credit to support concessional loan to (…) women and youth organizations (…)”. The LDCF project will therefore collaborate with the General Direction of the FISAN, the BAGRI and the GCF-IFAD project to bridge the financing gap for farmers groups and other Economic Interest Group (EIG) by accessing credits under the BAGRI at concessional rates.
The PIMELAN also supports the financing of the FISAN to benefit smallholder farmers through MFIs present in Diffa, Tahoua and Tillabéry. The project has set up two facilities that will provide (i) US$ 6million of grant funding for agri-food funding for most vulnerable farmer groups, women and youth and other SMEs and (ii) US$22 million of loans for producer groups and SME. As such, the PIMELAN is expected to provide significant opportunities for MSEs and vulnerable groups to access credits through MFIs such as Yarda- Tarka – Maggia, Capital Finance, ACEP or Daouré, operating in the region of Tahoua.
Under this component, the project will also collaborate with other ongoing projects that support the development of the private sector, including the project to Strengthen the Resilience of Rural Communities to Food and Nutritional Insecurity in Niger, supported by IFAD.
Through this component, and the establishment of partnerships with the FISAN, the BAGRI, MFIs, IFAD, the World Bank and other stakeholders (including UNCDF, pending further consultations), the project will address the barriers related to the limited access to funding from both public sources and private sources (barriers #1 and #3). Indeed, the project will collaborate with the FISAN, BAGRI and MFIs to support traditional and innovative approaches as defined in the FISAN strategy. The project will support banks and microfinance institutions, beyond the BAGRI, to develop customized financial products targeted towards smallholder farmers engaged in CSA, as well as alternative credit-scoring and collateral mechanisms that can ease lending to this cohort. Other activities that will contribute towards de-risking lending include the integration of individual farming units into community-based MSEs across the CSA and forestry value chains, training on both CSA and financial management, and the dissemination of climate information and EWS. The expected combined impact of these interventions will de-risk and unlock both existing financing available for the agriculture sector through BAGRI and catalyze new agriculture sector funding from other commercial banks.
An Agricultural Loan Facility will also be supported by the recently approved GCF project Hydro-agricultural development with smart agriculture practices resilient to climate change in Niger and lessons learned will be regularly shared with the project to adjust the approach and support farmers to access loans under this facility.
The MSEs supported through this component will be involved in the knowledge and lessons learned sharing activities conducted under the component 4. These activities will be based on the knowledge and lessons learned collected from the components 1 and 2. Indeed, supported MSEs will be exclusively involved in CSA and ecosystem restoration for climate change adaptation and will be embedded in the sustainability and upscaling strategy of the components 1 and 2. In particular, MSEs will be incentivized and supported to offer maintenance services for the irrigation and lowland development works introduced under the component 2. In addition, during the PPG stage, opportunities will be seeked to develop a business model for the development of MSEs for the provision of climate data, including by engaging with the PS in the targeted areas, who might benefit from improved climate information.
Output 3.1.1. Agricultural groups and community cooperative funds are strengthened to increase their financial sustainability for the adoption of CSA
One of the main challenges facing local communities with regards to adopting climate resilient agriculture practices relates to the lack of adequate funding. Individual farmers are usually subsistence farmers, or receive very low incomes from their agricultural practices and are therefore not able to save enough revenues and time to invest in new practices. However, Niger has strong community groups, including farmer’s groups, which the project can build on to mobilize larger funding. These groups also offer a platform for knowledge and adaptive practices to be disseminated to new members in the long term. This outcome will strengthen these groups through two interventions:
The reinforcement of farmers’ associations business management capacity: Knowledge of entrepreneurial tools is necessary to trigger the effective functioning of agricultural cooperative societies. The project will provide, in the first 3 years, support for the development of business plans and the linking of farmers groups with their target customers. Working and awareness sessions will be organized with farmers groups, including the development and dissemination of material on business planning and entrepreneurship. The farmers groups will be supported in the development of business plans adapted to each project site, building on the lessons learned from the component 3 on CSA. In addition, a selection of business plans supporting ecosystem restoration/protection and CSA will receive micro-grants for their implementation and will be technicall supported by the project during the project lifetime, including through the sharing of lessons learned from component 1 and 2.
The incubation of existing farmers vulnerable groups’ to become CSA enterprises: Technical support will be provided to improve the management of community funds and to create an enabling environment for vulnerable agricultural groups to access finance for their members. The long-term objective is to promote the incubation of vulnerable agricultural groups in micro and small businesses for larger access to financial resources adapted to poor and vulnerable populations engaged in CSA. These groups will also benefit from the sharing of lessons learned from the activities conducted under the component 2 as well as the benefit from the reduced exposure to climate impacts from component 1. It is expected that 60% of the total beneficiaries will be women and 50% youth groups.
Output 3.1.2. : In collaboration with the FISAN, the BAGRI and MFIs, MSEs are supported to access loans for climate resilient agriculture financing
Under the FISAN strategy, and in close coordination with key stakeholders involved in supporting access to finance for vulnerable communities (ie. the PIMELAN, the IFAD-GCF project, the BAGRI, UNCDF, the BOAD-GCF project), MSEs will be technically supported for their de-risking to access credits at concessional rates. This output will target exclusively MSEs involved in CSA (including the maintenance of equipment and infrastructures introduced under the component 2), and agricultural value chains using clean energy (including cookstoves), with a strong focus on women and youth. These vulnerable groups will be supported to open a bank account with financial institutions and access credit to finance their CSA activities – including by supporting them to develop bankable proposals and request for credit. MSEs will also be trained in basic business management and accountability principles in order to increase the trust of MFIs. This de-risking will serve MSEs and IEGs to access funding from local MFIs and the BAGRI in the form of an agricultural loan. Close coordination with the PIMELAN, IFAD-GCF and BOAD-GCF projects will be conducted to ensure the access to innovative financing for targeted MSEs and IEGs in Tahoua. The beneficiaries will additionally receive training during the project lifetime as needed – including group trainings or investment-specific advice or guidance, to ensure they remain bankable for MFIs and have a long-term access to credit for their agricultural activities.
The LDCF project will also continuously work with local communities and financing institutions to identify opportunities and access innovative financial mechanisms in the project sites. It is expected that the loans accessed will finance (i) climate-resilient techniques for irrigation, (ii) solar-powered Californian or drip irrigation system for water control, (iii) water and energy management systems and practices, (iv) inputs for CSA (seeds, equipment, etc.), (v) the maintenance of the equipment and infrastructure introduced under the component 2; and (vii) the development of energy-efficient practices to reduce fuelwood consumption and support the activities under component 1 (in particular output 1.1.3).
Discussions are currently ongoing with the FISAN, the PIMELAN, the GCF-IFAD project, the BAGRI, and UNCDF to explore opportunities for partnerships and will be continued during the PPG phase, including with the recently approved BOAD-GCF project. The LDCF project will have a focus on technically de-risking the financing of women and youth for CSA (through trainings and the introduction and adoption of resilient practices), which will create a more conducive environment for the investments provided by other stakeholders, while partners will be involved in financially de-risking beneficiaries through different financing mechanisms such as subsidizing refinancing mechanisms, providing interest rate subsidies or guarantees.
Component 4: Knowledge Management and Lessons Learned
Outcome 4.1: Lessons learned on climate resilient agriculture and land restoration practices inform future projects in-country and elsewhere
Lessons learned from the project will be compiled and shared. This will be relevant for producer groups and farmers. This will be disseminated to municipalities, local agriculture administrations, the Government, civil society, regional institutions and donors working in the sector of climate change adaptation. In particular, innovative CSA and land restoration practices will be assessed and results and lessons learned collected in a format that will help advance the GGWI and other national and regional initiatives as relevant. Indeed, considering its geographical and technical alignment with the GGWI, the project will specifically ensure its results are shared and, in turn, lessons learned from the GGWI in Niger and other countries will be used and built on.
Under this outcome, the project team will also build partnerships with CCA projects, in particular the GCF project, but also projects focusing on governance and security to ensure security risks are integrated into the project adaptive management and mitigation strategy, and a more wholistic approach is adopted.
Output 4.1.1. Project results are monitored and evaluated
The project will develop a close and permanent monitoring program of the physical investments made on the sites. The program will include a monitoring of networks, structures and other interventions. This continuous monitoring will be ensured by an M&E specialist, with support from the decentralized services of the Ministry of Agriculture, with support from local focal points if needed. These services will benefit from technical and material capacity building activities to carry out this monitoring program.
In addition, a Project Monitoring and Evaluation System will be designed and implemented in accordance with the requirements of LDCF (GEF) and UNDP to monitor: (i) the rate of execution of project activities, (ii) the evolution of the financial data of the project, (ii) regular and systematic recording and reporting of progress made against the planned project objectives through the establishment of a database, and (iii) evaluation of the impact of project activities on the target group and the environment; (iv) gender-disaggregated data collection and reporting system for each project component, (v) develop participatory tools to measure project performance, (vi) conduct beneficiary surveys to measure the effects/impacts (beginning, mid-term and completion), (vii) recruit a consultant in gender mainstreaming for supporting the executive entity, (viii) conduct an annual analysis/evaluation of the technical, economic and financial performance of the project, (ix) Undertake mid-term evaluation, (x) undertake final evaluation.
During the PPG phase, and assessment on the potential to use digital tools for a more effective and transparent M&E will be conducted.
Output 4.1.2. Lessons learned from the project are compiled, capitalized, and disseminated
The project monitoring and evaluation system will make a significant contribution to the management of technology performance and traceability of operations that have made it possible to achieve results and to make decisions useful for action. In this perspective, the results (outputs, outcomes and impacts) will be capitalized and archived electronically and physically to strengthen the documentation of lessons learned.
To guarantee the project contribution to local and national adaptation to climate change and the GGWI and improve ongoing practices, the different reports and studies supported by the project will be compiled to formulate a complete lessons learned document. This will contain, among others : (i) the efficiency and weakness of technologies and techniques, process, financial management and use at regional, national and local level; (ii) the best adaptation practices recommanded for local, national and regional adaptation project ; (iii) the adopted solutions to address the weaknesses identified during the project formulation and implementation. To allow a better assimilation and implementation of the lessons learned by farmers, farmers’ groups and cooperatives, the manuals will be translated into graphic images and into the official local language of Niger.
Field missions across different sites of the GGW (in Niger and abroad) will be organized to specifically participate to the advancement of the GGWI. This knowledge will also be shared during the participation to workshops and other events on the GGWI. In addition, the Project management unit will organise exchanges with beneficiaries to appreciate the lessons learned on a practical level by producers, support exchanges with the technical services involved in the project, this will be done in 2 steps:
Development of technical and manual sheets: This will involve the production and dissemination of documents and documentaries on lessons learned and best practices tested under the project in terms of on actions to strengthen resilience to the adverse effects of climate change, increase productivity and production and mitigation of GHG emissions in the agriculture sector. To this end, the project will develop several technical sheets on the technologies and practices implemented by the project. These sheets will be designed at the end of the third year of the project and disseminated in the fourth year of the project. At least, the project will develop: (i) a fact sheet on the drip irrigation system, (ii) a fact sheet on the Californian system, (iii) a fact sheet on the system of water pumping with off grid solar energy and the maintenance of solar equipment, (iv) a fact sheet on the sustainable management of hydro-agricultural development soils and the use of agricultural inputs, (v) a fact sheet on the optimal profitability of irrigation project activities with modern techniques, (vi) fact sheets on the degraded land and ecosystems surrounding farming areas restoration with Nature-based Solutions, (vii) fact sheets on efficient cooking stoves.
Knowledge sharing and dissemination of good practices for a climate resilient agricultural sector in Niger: This activity aims to share knowledge and disseminate good practices for a climate resilient agricultural for farmers groups and cooperatives (men, women, youth), local decentralized Authorities, local agriculture and environment offices, Private Banks and Microfinance Institutions executives,Niger's international technical and financial partners ; Great Green Wall initiatives in the State members, Economic Comunitiy of West Africa States (ECOWAS) and West African Economic and Monetary Union (WAEMU) Regional and national research centers on Climate smart agriculture, Commissioner to the 3N (les Nigériens Nourissent les Nigériens) Initiative ; Ministries in charge of agriculture, plan, and finance; Directorate in charge of Microfinance Institutions, National Debt, agriculture investment, Rural Engineering ; National Office of Environmental Assessments, Project management Unit and Executing agency.
[2] Sustainable Development Goal (SDG) 6 Level of water stress freshwater withdrawals as a proportion of available freshwater resources. Target 6.4 By 2030, substantially increase water use efficiency in all sectors and ensure sustainable withdrawal and supply of freshwater to address water scarcity and significantly reduce the number of people suffering from lack of water. Indicator 6.4.2 - Level of water stress: freshwater withdrawal as a proportion of available freshwater resources.
[3] For more details, please refer to the project strategy https://www.greenclimate.fund/sites/default/files/document/funding-sap01... , p22

Output 1: Degraded land is restored to protect agricultural production systems against the adverse impacts of climate change.
Output 2: Climate-smart agriculture techniques are promoted and reduce the vulnerability of smallholder farmers to climate.
Output 3: Women- and youth-led local Micro and Small Entreprises (MSEs) and entrepreneurs provide adaptive solutions to climate change with local banks and microfinance institutions sustainable facilities.
Output 4: Lessons learned on climate resilient agriculture and land restoration practices inform future projects in-country and elsewhere.
Accelerating Climate Change Adaptation Investment Planning to Enhance Resilience in Indonesia
Change Adaptation in Indonesia (RAN-API). The project operates at the national and sub-national levels, with local activities concentrated around the risk-assessment and landscape-based adaptation for the archipelagic island site of Wakatobi. At the national level, the project will support update and strengthening of the RAN-API and enhance the vulnerability monitoring system (SIDIK) incorporating a gender-responsive approach. The project will focus on addressing challenges such as a weak coordination and cross-sectoral information sharing, underrepresentation of vulnerable groups, and lack of adaptation criteria application in budget tagging.

The project “Accelerating Climate Change Adaptation Investment Planning to Enhance Resilience in Indonesia” aims to address the barriers to adaptation planning and ensure that the National Action Plan for Climate Change Adaptation (RAN-API) is well coordinated, implemented and monitored. The project has both a national and sub-national dimension: at the national level, it supports the next update of the RAN-API and enhance relevant assessment and budgeting systems. At the sub-national level, the project enhances landscape-based adaptation planning approaches in the archipelagic island site of Wakatobi that can potentially be scaled up in the future. The Wakatobi District was chosen as an appropriate piloting site due to its manageable size, coastal location and archipelagic landscape. As a marine national park, it also presents the opportunity of exploring and developing ecotourism as a potential adaptation option.
In Indonesia, the impact of climate change is already felt across many economic sectors. The most dominant disasters in Indonesia are floods, windstorms, landslides, and droughts, and these events are expected to be further exacerbated by the impacts of climate change. The NDC (submitted in 2016, updated in 2021) has identified both mitigation and adaptation priorities to address these threats. Climate change adaptation (CCA) has been already integrated into the country’s development planning through the National Action Plan for Climate Change Adaptation (RAN-API 2013 – 2025) and the fourth Medium Term Development Plan of Indonesia (RPJMN 2020-2024). While Indonesia’s adaptation planning process is considerably developed, several barriers to enhanced adaptation planning and implementation of adaptation options remain. These include a lack of effective coordination, the absence of an updated adaptation plan, inadequate focus on identifying adaptation options in vulnerable areas, unavailability of detailed information and vulnerability assessments for adaptation planning at national and sub-national levels, and challenges in tracking adaptation-related investments at national and sub-national levels. In addition, the lack of capacity for adaptation planning and budgeting is a cross-cutting issue for national ministries and sub-national governance structures.
The project aims at delivering the following results under the three main outcomes:
- RAN-API coordination and implementation strengthened;
- Legal standing for RAN-API to ensure planning and budgeting related to climate change adaptation in place;
- The RAN-API updated, including the formulation of a comprehensive financing strategy;
- Climate change budgeting system for adaptation enhanced.
- SIDIK enhanced, gender-responsive climate change risk assessment process developed;
- Existing science base for RAN-API reviewed and improved;
- Stakeholder capacity built for climate risk and impact assessment, and identifying suitable adaptation measures.
- Government staff in Wakatobi trained on gender-responsive climate risk assessments;
- Climate risk assessment for Wakatobi islands conducted using landscape-based adaptation;
- Government staff in Wakatobi trained on gender-responsive adaptation planning and budget tagging;
- A gender-responsive adaptation planning and budget tagging system developed and implemented in Wakatobi.
Outcome 1: RAN-API updated and climate change adaptation integrated in budgeting systems;
Outcome 2: Vulnerability and risk assessment process (SIDIK) enhanced at national level for sectors identified in the NDC adaptation component; and
Outcome 3: Integrated risk assessment and landscape-based adaptation planning and budgeting established in Wakatobi.


Enhancing Montenegro’s capacity to integrate climate change risks into planning
The project aims to improve Montenegro’s institutional capacity for long term adaptation planning through strengthening its institutional coordination framework, expanding the technical capacities of those responsible and involved in adaptation planning, enhancing the evidence base required for effective decision making, and developing a resource mobilization strategy. The project focuses on the national level and operates across four priority sectors, selected to align with existing government policies: water resources, public health, agriculture, tourism.

The overarching objective of the project “Enhancing Montenegro’s capacity to integrate climate change risks into planning” is to improve the country’s institutional capacity for long term adaptation planning. To achieve this, the project focuses on (1) improving the institutional coordination framework and increasing institutional capabilities, (2) increasing climate information and identifying potential adaptation measures, and (3) identifying financial requirements and resources to fund adaptation investments.
The projected impacts of climate change in Montenegro include increased frequencies and intensities of floods and droughts, water scarcity, and intensification of erosion, sedimentation, snowmelt, sea level rise, as well as damage to water quality and ecosystems. To address the climate change risks, the Government of Montenegro has taken several foundational steps to develop a long-term adaptation planning process that is anchored in the National Climate Change Strategy by 2030 and Montenegro’s National Communication. While these steps provide a starting point, several gaps were identified: (1) An underperforming coordination framework, (2) a lack of institutional capacity, (3) insufficient information, and (4) a lack of finance to fund adaptation investments, and (5) a private sector that has a low capacity to understand and respond to climate vulnerabilities and risks.
This project will help Montenegro lay the groundwork for systemic and iterative adaptation planning through the identification of climate risks and adaptation options. A well-established planning process will lead to improved resilience in four key sectors. This strategic approach will help Montenegro to improve access to international funding sources and the private sector as it relates to the provision of financial resources. The project will also strengthen the awareness and capacities for adaptation planning of multiple stakeholder groups to create a better environment for learning and iterative adaptation planning and action. The project is the first stage (Phase I) of what is intended be a two-staged approach for utilizing the support of the Green Climate Fund for adaptation planning. The second stage will build on Phase I, amongst others, to integrate other sectors into the adaptation planning process, further integrate the private sector and more fully develop financing strategies and tracking of adaptation finance.
Updates section
National Council for Sustainable Development (NCSD) relaunched.
The NCSD, an advisory body that brings together stakeholders relevant to the adaptation process, was relaunched in December 2021 with the support of the NAP project.
In a broader sense, the main task of the Council is to direct and monitor the implementation of policies that determine the country’s development direction and ensure the sustainability of these policies. The Council is a platform for sharing knowledge, expertise, information and practical experience. In addition to the representatives of relevant institutions, business community and NGOs, the representatives of youth and the media are also members of the NCSD.
The recommendations which resulted from the analysis and evaluation of the Council’s work emphasize the role of consensus in the decision-making process, constructive partnership based on trust and information exchange, inclusive management and creation of a sense of responsibility for the activities and decisions taken, offering space for concrete actions, developing evaluation mechanisms and creating learning opportunities. The Working Group on Climate Change, which will operate within the Council, will focus in particular on providing support to the process of adaptation to climate change.
Capacity assessment conducted
An assessment of the capacity of institutions in terms of adaptation to climate change and green development has been performed.
The evaluation process included more than 300 actors, institutions at the national and local level, public and private companies, operating in various fields. The aim of the assessment was to determine the extent to which the public sector can plan and implement the process of adaptation to climate change, as well as the analysis of needs for capacity building and training of staff to plan and implement this process.
Within this research, the institutions were evaluated in relation to seven elements defined by the Capacity Assessment Tool, specifically designed for the implementation of this activity in Montenegro. The results of the initial analysis indicated a general weak systemic coordination and cooperation in the area of adaptation to climate change. Capacity assessments generally ranged from low to baseline, while strong capacities to respond to climate challenges were not identified for any of the assessed institutions.
Having in mind the mentioned results, the preparation of the NAP became important as an opportunity to establish a framework for a systematic and coordinated response of all relevant institutions.
Outcome 1: Adaptation planning governance, institutional coordination, and technical capacity strengthened;
Outcome 2: An enhanced evidence base for designing gender-sensitive adaptation solutions;
Outcome 3: An adaptation finance mobilization strategy developed.


Supporting the foundations for sustainable adaptation planning and financing in Morocco
The project aims to assist Morocco in designing a framework for systematic integration of adaptation needs into development planning. The foundations for sustainable finance and institutional framework for adaptation planning will be established both at the national level and in selected regions. The sub-national activities include development of regional adaptation plans for five regions: Souss Massa, Marrakech Safi, Béni Mellal-Khenifra, Draa Tafilalet and Oriental regions.

Morocco, given its geographical location, climate, and coastline, is highly vulnerable to climate change. The projected impacts by 2050 will significantly affect key productive sectors and infrastructures of the Moroccan economy. Morocco started its national adaptation planning process in 2015 and developed a detailed NAP roadmap. Achieved in 2021, the NAP was formulated to provide an overall medium- and long-term adaptation strategy. The NAP outlines key actions and corresponding strategic objectives and is finalized after several consultations with key stakeholders and formally endorsed by the Government.
The Moroccan Climate Change Policy and the NDC (updated in 2021) outline sectoral adaptation goals and targets and highlight critical cross cutting pillars. Despite the various projects and initiatives on climate change adaptation and climate risk management executed in Morocco, climate change risks and adaptation needs are still not systematically considered in development planning and/or investment decisions, particularly at the regional level.
The project “Supporting the foundations for sustainable adaptation planning and financing in Morocco” builds upon the progress to date and helps operationalize the NAP with a strong focus on the subnational level and translating the strategic objectives into concrete actions. It also links to various initiatives on adaptation and climate risk management implemented in Morocco. In addition to the main project implementing partner the Ministry of Energy Transition and Sustainable Development, the project works with partners in government, non-governmental organizations, and the private sector.
The project aims to design a framework for systematic integration of adaptation needs into the country’s development planning building upon the existing foundation for climate change adaptation. The expected results are grouped around the three main outcomes and include:
- setting up of coordination and governance structure for adaptation at the national and regional levels;
- strengthening national and regional M&E system;
- improving communication and awareness on adaptation planning;
- mainstreaming gender sensitivity into government’s planning processes;
- assessing climate risks and vulnerabilities for key sectors in three regions;
- identifying adaptation options, assessed and prioritized in the three selected regions;
- elaborating five regional adaptation plans;
- sustainable financing of regional adaptation plans;
- strengthened private sector engagement and investment potential.
While Morocco has developed and executed various projects and initiatives on climate change adaptation and climate risk management, these were executed through isolated projects and in a piecemeal and disconnected fashion, each tackling a specific issue (water, agriculture, disaster risk, monitoring framework, data, capacity building etc.).
Today, climate change risks and adaptation needs are still not systematically considered when planning development and making investment decisions, particularly at the regional level. Morocco NAP-GCF project aims to design a framework for systematic integration of adaptation needs into the country’s development planning building upon the existing foundation for climate change adaptation.
Such a framework would enable the implementation of high-impact adaptation measures building on strengthened institutional arrangements for adaptation planning, including strategic coherent planning instruments aligned with national priorities and sustainable sources of adaptation finance.
Project updates
The project inception workshop was held in March 2022 with the participation of all project stakeholders and the annual work plan has been approved including among others the development of guidelines for climate information collection and for climate change risk and vulnerability assessments at the regional level for key sectors (water, agriculture and infrastructure).
Outcome 1: The institutional framework for adaptation planning is strengthened and awareness is enhanced at national and regional levels.
Outcome 2: Regional adaptation plans (Territorial Plans against Global Warming) formulated for five vulnerable regions in Morocco and integration into regional development and land use plans facilitated.
Outcome 3: The foundations for sustainable finance for adaptation are strengthened.


Advancing medium and long-term adaptation planning and budgeting in Niger
The project activities aim to strengthen adaptation-related prioritization and planning, financing and capacity development, supporting Niger in integrating climate change into medium- and long-term development planning and budgeting through the NAP process. Reducing Niger’s vulnerability to climate change requires greater investments and greater integration of climate change adaptation and disaster risk reduction into ongoing development programmes. The project works in synergy with other initiatives. It supported the National Disaster Risk Prevention and Management Facility to integrate climate change into its strategy, and the development of the NDC through gender studies and climate scenarios. The project also enables the implementation of Niger's national climate change strategy. The project addresses the main challenges in integrating climate change adaptation into planning and budgeting in Niger, as identified in its NAP Stocktaking Report.

The exposure to climate risks, associated with its position as a Sahelian landlocked country, makes Niger one of the most vulnerable countries in the world. The 42.8 percent of the GDP, and 80 percent of the workforce are employed in the agriculture, forestry and livestock sectors. Climate change is expected to worsen climate risks over the next decades, with an increase in the frequency of droughts, resulting in a decrease in agricultural production, an increase in grazing pressure on pastoral ecosystems, and consequently soil erosion on a mass scale, threatening food security; and floods resulting from the heavy rainfall. The country was ranked 188 out of 188 in the UNDP’s Human Development Index in 2015, with 89.8 percent of the population living in multidimensional poverty.
The foundations for the NAP process have been built through the preparation of the National Adaptation Programme of Action (NAPA) in 2006 with support from UNDP and the Global Environment Facility (GEF). The NAPA identified urgent and most immediate needs in seven vulnerable sectors and fourteen priority adaptation interventions. The National Climate Change Policy (PNCC) adopted in 2013 provides the overall strategic framework to tackle climate change. To move beyond urgent and immediate needs, and towards a medium-term approach, Niger intends to integrate climate change into medium- and long-term development planning and budgeting through the NAP process, under its obligation to the UNFCCC and as stated in its PNCC. This process will contribute to ensuring that the country’s long-term development strategy - starting with its Sustainable Development and Inclusive Growth Strategy (SDDCI) and its National Economic and Social Development plans - be based on an understanding of climate-related risks and opportunities for inclusive growth and sustainable development.
Niger has been advancing its NAP process by conducting a preliminary stock take of relevant initiatives on climate adaptation and mainstreaming to identify gaps and needs. A NAP roadmap was subsequently drafted, which outlined the main steps and timeline of advancing the NAP process in Niger.
This project will be steered at country level by the Executive Secretariat of the National Council of Environment for Sustainable Development (SE/CNEDD), which is the coordinating body for all Rio Conventions and climate change-related initiatives and the National Designated Authority to the GCF. It will closely engage the Ministry of Planning and the Ministry of Finance, as well as key sectoral ministries, national training and research institutions and civil society, including the private sector. It will closely coordinate with other related initiatives such as the GEF-LDCF adaptation planning in the water sector project, the EU-funded PARC-DAD and the World Bank Pilot Programme for Climate Resilience. The project is aligned with the “Nigeriens Nourish the Nigeriens” Initiative (Initiative 3N), the Sustainable Development and Inclusive Growth Strategy (SDDCI), the National Economic and Social Development Plan (PDES), and the National Climate Learning Strategy.
Project updates
The draft NAP was developed through consultations (ministries and technical institutions, representatives of communities, the private sector, religious and traditional leaders, women's and youth organizations, civil society and media), combined with an analyses of climate data and vulnerability to climate change and assessments and capacity building of stakeholders. 25 adaptation options were identified and prioritized for the five sectors (livestock, health, transport, forestry and wetlands) and the draft NAP document was enriched and validated through regional workshops; the final validation through a national workshop is scheduled for 2022.
In collaboration with other entities, including the Executive Secretariat of the National Environment Council for Sustainable Development (CNEDD), a monitoring and evaluation system is being set up to track the progress of climate change adaptation initiatives.
In addition, a communication and knowledge management strategy has been developed to disseminate the results of the NAP process.
Output 1: National mandate, strategy and steering mechanism are in place and gaps are assessed and addressed
Output 2: Preparatory work for the NAP undertaken to develop a knowledge-base and compile a NAP
Output 3: NAP implementation facilitated
Output 4: Mechanisms for Reporting, Monitoring and Review of NAPs and adaptation progress in place
Output 5: Funding strategy for the NAP and CCA is available
