Disaster Risk Reduction

Taxonomy Term List

Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards

Frequent and more intense floods, mudflows, landslides, avalanches and other climate change-related disasters in Uzbekistan are putting lives and livelihoods at risk and slowing progress to reach targets outlined in the Paris Agreement and Sustainable Development Goals.

To address these challenges, the Green Climate Fund-financed “Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards” project will respond to a critical need in Uzbekistan to modernize its early warning system into an impact-based Multi-Hazard Early Warning System (MHEWS ). The MHEWS will improve early warnings on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions, an essential element of the country’s climate risk management framework.

Several climate change-induced hazards (such as floods) have caused significant economic damages and led to the loss of lives. For example, it is estimated that 7.6 million people are vulnerable to flooding in Uzbekistan. The economic impact of flooding due to climate change is estimated to be about US$236 million. These hazards related to heavy rainfall and temperature extremes are either already increasing in frequency and/or intensity or are expected to do so under climate change, particularly over the eastern mountainous regions of Uzbekistan. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards. The improved early warning systems will inform future planning and reduce risks for vulnerable communities, support resilient livelihoods, good health and well-being, and improve food and water security for the people of Uzbekistan.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, and improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (63.720703099213 41.483205853498)
Primary Beneficiaries: 
311 million direct beneficiaries, 2 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$9.9 million
Co-Financing Total: 
US$30.6 million (Uzhydromet and MES)
Project Details: 

The Government of Uzbekistan through its Ministry of Emergency Situations (MES) implements a state program to modernize the early warning system for natural disasters[1]. This GCF project will provide the critical technical and financial resources, access to innovative technologies and expertise for the implementation and scale-up of this national initiative. The GCF-financed project will promote the transformation of climate hazard forecasting and warning from a reactive (ex-post) hazard-based system to one that is proactive (ex-ante), user-oriented and impact-based.

The project puts a strong focus on strengthening the “last mile” delivery of disaster-related communication and interaction with end users, including vulnerable communities. The improved capacity of Regional crisis management centers (RCMCs) and local communities to use and interpret climate risk information into practical early responses will directly benefit at least 11 million people (34% of total population) currently at risk from climate hazards and enhance the community resilience as a whole.

Uzhydromet’s capacity as a WMO Regional Specialized Meteorological Centre (RSMC) will be strengthened, building on the CAHM[2] (World Bank/WMO) project. The proposed GCF investment will develop automated procedures and modelling capacity that can serve as an example for other developing Central Asian countries, as well as being the driver of significant institutional change, catalysing increased efficiency in climate hazard warning generation and dissemination and developing new operational procedures between MES and Uzhydromet.

Climate change has been leading to more frequent and more intense hydrometeorological disasters in Uzbekistan and to a greater exposure to these disasters across the country. Uzbekistan sets climate change adaptation as a priority in its first Nationally Determined Contribution (NDC)[3] under the Paris Agreement. In particular, the NDC clearly highlights the need to establish a Multi-Hazard Early Warning System (MHEWS).

This project will respond to a critical need of Uzbekistan to modernize its early warning system into an impact-based MHEWS (initially focused on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions), an essential element of the country’s climate risk management framework. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

The GCF grant is required to upgrade the existing hazard forecasting and warning system in Uzbekistan so it can effectively deal with the additional pressure brought about through increases in climate variability and change. This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.




[1] Cabinet Resolution No. 242 of the Republic of Uzbekistan "On further improvement of state system for warning and emergency applications of the Republic of Uzbekistan” from 24 August 2011

[2] Central Asian Hydro-Meteorological project

 

Expected Key Results and Outputs: 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities

The proposed intervention will create a more efficient monitoring network for weather, climate, hydrology and cryosphere, through both upgrading existing (automating) and installing new monitoring equipment (automatic weather stations (AWS), automatic hydrological stations, upper air sounding stations, and strategically placed low cost radars. This equipment and other existing data streams will be integrated into high availability/redundant single databases. Hazard-specific forecasting procedures will be developed and operationalized for climate-induced hazards. Training of Uzhydromet staff to undertake forecasting, operation and maintenance and data QA/QC/archiving procedures will also accompany these activities. Activities follow the GFCS and in this output are designed to address aspects related to: i) observations and monitoring; and ii) research, modelling and prediction. Uzhydromet will be the immediate beneficiary under all activities of Output 1, while their end beneficiaries include all the users of the upgraded hydro-meteorological observation network, modelling and forecasting capacities.

Activity 1.1 Upgrading and modernization of the meteorological and hydrological Observation System. This will include upgrading/automation of 25 meteorological observation stations and equipment (software, workstations etc), modernizing the ground-based infrastructure (telemetry processing, hydrogen generators etc) for 2 upper-air stations (Uzhydromet/GoU will support the establishment of 2 more), installing 2 online X-band doppler radar systems to cover current gaps in mountainous areas, upgrading and technical equipment of 90 hydrological stations , and establishing benchmarks and up to date equipment for instrument calibration (vacuum chambers, mobile laboratory etc). AWS and hydrological stations will be installed/upgraded at existing facilities and premises of key locations in the mountains above hazardous valleys and in the areas of high precipitation/landslides/mudflow risks, not already covered by investments through the CACILM and CAMP4ASB projects, as shown in Figure 46 (page 66) of the FS. Uzhydromet is strongly engaged with the WMO and maintains its standards and compatibility with existing systems. In particular it requires that goods and service comply with WMO 2003 Guidelines on Climate Observation Networks and Systems (TD No. 1185) and WMO Guide to Meteorological Instruments and Methods of Observation (the CIMO Guide No. 8, 2014 edition / 2017 update). These requirements will be taken into account during project implementation, and demonstrated compatibility with existing systems is part of any procurement (ITB/RFQ) tender documents under UNDP processes. All equipment will report data to central servers at Uzhydromet and will conform to WMO standards, including reporting to the Global Climate Observing System (GCOS), Global Basic Observing Network (GBON) and Global Telecommunication System (GTS). The project will also assist the government to identify long-term requirements and to enable budgeting and planning for the maintenance of all observing systems.

Activity 1.2 Upgrading Uzhydromet’s capacity to store, process and develop hazard products, as well as to communicate hydrometeorological data to regional divisions. This is a climate services information system (as described in GFCS) and involves the establishment of an operations centre, ICT servers and networking equipment to integrate data streams (hydrometeorological and satellite-based observations) and automate processes and analyses (including hazard forecasts). Software and processing routines will enable data and maps to be exported in common formats for sharing with partners and importing into the MES risk management system (see activity 2.1 below). A local cloud-based solution will be implemented to store and manage data that will benefit from offsite backups and easier access for the MES risk management system. Specifically this activity will: i) Integrate hydrometeorological data (from both automatic and manually operated stations) into a single database as a basis for developing products based on all available observed data. Automatically transmitted data from different providers/manufacturers will be integrated and undergo quality control/assurance within a single database in real time and will be available for interrogation via geo-visualization software. This activity will also: i) Expand the hydrological drought early warning system for Amu Darya (developed by the UNDP/AF project) to the Syr Darya and Zeravshon rivers. All historical streamflow and flood data for the two rivers will be collected and forecast models, with data ingestion and data processing routines, will be derived;  ii) Develop automatic procedures for calculating avalanche risk in real time. Software and code will be developed to automatically update avalanche hazard maps based on snow accumulation from satellites (and AWS) and established procedures for estimating avalanche extent; iii) Develop code and procedures for automatically calculating mudflow risk maps based on precipitation observations and forecasts for 2-3 days lead time; iv) Develop a landslide risk model for Eastern Uzbekistan based on geophysical and geotechnical characteristics, including subsurface water and extreme rainfall. The skill of all developed forecast systems will be assessed using retroactive forecasts and used to assess their utility for forecast based actions in activity 2.1 and 2.2.

Activity 1.3 Re-training and advanced training of Uzhydromet staff on monitoring and forecasting technologies and procedures (training of MES staff is covered in output 2 below). International experts will train weather forecasters to work with new products of the KOSMO model (with a resolution of 13 km and 2 km). Refresher courses and advanced training will be provided for new software and equipment, including the introduction of new methods for the analysis and prediction of hydrometeorologically important variables and climate hazards. The project will facilitate organization of on-the-job trainings, engagement with universities, courses and seminars with the involvement of foreign specialists. Training of IT specialists of Uzhydromet will be conducted for work with the computer center and operation of the KOSMO model, the UNIMAS, MITRA information reception and transmission system, workstation software (for weather forecasters, agrometeorologists, GIS-METEO, etc.) and EU Copernicus programme on satellite data, all of which will be used for impact-based forecasting where needed. Trainings on AWS installation, general user training and technical support will be provided. These increased capacities will also assist Uzhydromet in fulfilling its regional role as a WMO RMSC, in accordance with the GFCS capacity development, and help improve their capacity for regional cooperation.


Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness

The proposed intervention will integrate and develop ICT systems to use the hydro-meteorological hazards predicted in output 1, and combine these with vulnerability data to identify risks and provide information for planning and mitigating their impacts. It will improve the efficiency of the current early warning system by automating the sharing and production of risk-related data, as well as the communication of warnings. The project will also develop methodologies for and support hazard and risk mapping and risk zoning for key climate-induced hazards (floods, landslides, mudflows, droughts and  avalanche). Specifically it will introduce an advanced, impact-based information management system for combining data on socio-economics (population, livelihoods, poverty indicators), infrastructure (roads, utilities, buildings, bridges etc) and the natural environment (landcover, vegetation, soils etc) in order to operationally assess the risks associated with each hazard forecast. This information will be transmitted and shared with RCMCs in key hazard-prone districts in Uzbekistan so that regional teams have the most up to date information available for planning their operations. Building on the existing mobile-based public dissemination platforms, the project will develop geographically specific risk based warnings tailored to the areas affected by each hazard (e.g. mudflows, avalanches, landslides and flooding). Based on the user interaction guideline of GFCS, inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will inform the design and dissemination of warnings and alerts to communities at risk.  MES and its RCMCs will be the immediate beneficiaries under all activities of Output 2, while their end beneficiaries include all the users of the Multi-Hazard Early Warning System.

Activity 2.1 Developing and installing a modernised and efficient system for assessing climate risks based on dynamic information on both hazards and vulnerabilities, including socio-economic risk models for decision making and prioritization of resilience building long-term/future investments. This would enable establishing an impact-based MHEWS, where hazard forecasting is linked to the risk and exposure information (socio-economic risk model).  This involves installing both hardware and software to enable an advanced, impact-based information management system to be built, which will combine data on current vulnerabilities (e.g. indicators of poverty, education, health, housing etc), public and private assets (including infrastructure, roads, railways, housing, mines, airports, hospitals, schools etc), the environment (crops, lakes, rivers, tourism areas etc) and hazard impacts (input from Output 1) to operationally assess the risks associated with each hazard forecast. Based on evaluated risks and the skill of each impact-based forecast, a set of feasible ex-ante actions will be identified for different lead times. This activity will also develop software and standard operating procedures to automatically ingest hydrological and meteorological observations, weather and seasonal forecasts, and derived drought/avalanche/mudflow/landslide forecasts from Uzhydromet (through activity 1.2) into the system to be combined with available vulnerability data. Traning to MES staff will be delivered on risk assessment, operations and maintenance of the systems. The system will also import long-term climate change scenarios to be used for forward planning and evaluation of future risks.

Activity 2.2 Developing and introducing technical guidance, institutional and coordination frameworks to increase the efficiency of: i) data collection and archiving (activities 1.1 and 1.2); ii) hazard mapping and modelling (activity 1.2); iii) risk assessment (activity 2.1); iv) impact-based warning and forecast-based actions (activity 3.2); and v) dissemination of information to RCMCs (activity 2.3). These protocols are also required to ensure that new climate information sources (e.g. AWS, AWLS, radar and satellite observations – activity 1.1) are translated into products that are useful for decision making and investment by MES and Uzhydromet (based on feedback obtained through activities 3.1 and 3.3). Thus, under this activity the project will explore and facilitate promotion of forecast-based-financing (FBF) by developing draft SOPs and prototype FBF protocols/decision-making systems.  This activity will include development of SOPs (both for ingesting and sharing data, as well as for forecast based actions to be undertaken when specific risk-related triggers/thresholds are reached), a national to regional EWS protocol, and communication protocols to accompany introduction of the new technologies. Guidance and procedures will be developed to support the application of socio-economic risk models and enhanced risk zoning in development planning and decision-making (activity 2.1). Corresponding training to MES staff will be delivered.

Activity 2.3 Designing and implementing a system for information dissemination to RCMCs and area specific mobile alerts including an information visualization system for RCMCs with software. This involves setting up information visualisation and analysis systems (video walls, telecommunication systems, servers and ICT storage) at 7 RCMS, to enable them to visualise the maps and impact forecast information provided through the risk analysis and warning system (activity 2.1) and combine it with local (regionally available) information on current vulnerabilities and field-based information. This will enable them to better target advice and direct regional response teams. This activity will further develop (improving the existing MES dissemination system) area-specific mobile and SMS based warnings for mudflows, avalanches, landslides and flooding. This will reduce the chance of false alarms sent to those not at risk, as well as improve the content based on information from the improved MES risk and impact-based forecast system (activity 2.1 and 2.2). Inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will be used to design the dissemination system, following the co-design and co-production user interaction guideline of GFCS.

Output 3: Strengthened climate services and disaster communication to end users

The proposed intervention will strengthen the effectiveness of delivering climate information services and disaster warnings to users in Uzbekistan at two levels. On the overall national level, the project will initiate the establishment of the National Framework of Climate Services as a mechanism to systematically bring together producers and users of hydrometeorological and climate information and to ensure that information and services reach their end recipients both in the various sectors of the government and the society and at the different geographic levels down to local communities. Disaster-related information and services being the specific focus of the project, it will work with the various public and private stakeholders to reorient the existing financial / economic model behind the provision of such services to make it more cost-efficient and sustainable in the long-term, i.a. using private investment and partnership opportunities on the domestic and the international markets. Finally, on the warning dissemination and communication aspect, updated communication technolgoies will be utilised to support real-time risk evaluation by Regional disaster managemen agencies (RCMCs) and first responders and ensure ‘last-mile’ delivery of early warning risk information to the communities at risk and population at large. In collaboration with  Red Crescent Society and other community-level NGOs, RCMC will organize trainings and annual community forums to help communities at risk better interpret, understand and react to those warnings, as well as facilitate forecast-based actions and responses. Uzhydromet (and, in the long run, other parts of the Government of Uzbekistan, as well as other providers and users of climate services) will be the beneficiaries under Activity 3.1, as the NFCS provides a platform where the various service providers and end-users are engaged in the co-designing, testing and co-production to improve the content and delivery of products and services. Uzhydromet and MES (and Uzbekistan’s Government in the long run) will be the beneficiaries of Activity 3.2, as the development and promotion of a sustainable business model for disaster-related information and services in Uzbekistan will provide additional operational funding to the two institutions which currently to a large extent rely on government budgets. MES and its RCMCs as well as the communities in the 15 targeted districts as well as Uzbekistan’s population at large will be the beneficiaries under Activity 3.3.

Activity 3.1  Establishing National Framework for Climate Services for Uzbekistan

The Global Framework for Climate Services (GFCS), promoted and facilitated by the World Meteorological Organization in cooperation with GFCS partner organisations, is a framework that envisions better risk management and more efficient adaptation to climate variability and change through improvements in the quality, delivery and use of climate-related information in planning, policy and practice. GFCS, i.a. endorsed by the GCF Climate Services Strategy, focuses on developing and delivering information services in agriculture and food security, disaster risk reduction, energy, health and water, and organises its work around observations and monitoring; climate services information systems; research, modelling and pre- diction; user interface platforms; and capacity development. A strong focus of GFCS is on a multi-stakeholder approach to the definition and the actual delivery of services, thus bringing users and co-producers of climate and hydrometeorological information together and to the centre of the design and production process as opposed to more traditional supply-driven approaches. The establishment of the NFCS would typically involve:

i) an assessment of gaps, needs and user perspectives (i.a. through interviews) with respect to the current and desirable climate services;

ii) based on this assessment, the drafting of NFCS Uzbekistan concept and action plan;

iii) extensive consultations regarding the concept with the various sectors, users and co-producers of climate services; and

iv) reaching a broad agreement and Governmental endorsement for NFCS implementation.

Following an accepted WMO blueprint for the conceptualising and establishment of a NFCS, the project will undertake a baseline assessment of climate services in Uzbekistan, followed by multi-stakeholder consultations and the participatory development of the country's NFCS concept and Action Plan to be endorsed both by stakeholders and at the high executive level, ready for implementation once supplementary NFCS-earmarked funds become available as a follow-up to the project.

As part of this activity, a platform will be set up to engage end users in the design and testing of new disaster-related climate information services and products. Similarly, a National Climate Outlook Forum will be established and supported as one mechanism to help shape and deliver climate services with longer time horizon, i.a. with a particular focus on disasters such as hydrological droughts. A connection will then established between the Forum and WMO’s Regional Climate Fora operating in Europe (NEACOF) as well as Asia (FOCRAII).  Both the NFCS user dialogue platform and the National Climate Outlook Forum will (as well as the NFCS process at large) will be managed by Uzhydromet.

Activity 3.2  Designing sustainable business model for disaster-related information and services

While it may not be realistic to expect any significant level of private financing during project implementation given the existing public service management model and the time required for transition, there is long-term potential for private sector investment in climate information services and for expanded service provision to private sector based on enhanced hydrometeorological and climate information in Uzbekistan, including those related to natural disasters and early warning. Linked to the NFCS process above, the project will conduct a comprehensive analysis and discussion of long-term sustainable financing options for disaster-related services in Uzbekistan beyond current state-funding model, in particular drawing on blended finance through dedicated national funds and public-private partnership opportunities.  This will include seeking financing, from both public and private sources, for forecast based (ex-ante) actions identified in activities 2.1 and 2.2. Based on the analysis and consultations, a sustainable value chain-based business model for disaster-related information will be developed and agreed with the key stakeholders, and the necessary legal and organisation changes will be outlined and planned on the national (adjustment of legislation) and the inter-institutional levels (Uzhydromet, Ministry of Emergency Situations, users of the services, private investors).

Activity 3.3 Strengthening disaster warning dissemination and communication with end users

The project will significantly strengthen interaction with the end users with the aim to communicate and facilitate proactive responses to disaster information and warnings in Uzbekistan. Within the 15 RCMCs, outdoor communication boards[1] will be set up in identified communities at highest risk to alert and inform the population in real time about threats or emergencies, following which, through cooperation between MES RCMCs and the Red Crescent Society, communities will be trained to interpret and use information on climate hazards and early warnings. Printed visual information (leaflets) will be provided to RCMCs and Uzbekistan’s communities on climate hazards and associated early warnings. With expected increase of user interaction level, regional staff of MES RCMCs will be further trained in the effective use of this information to suppport community interactions (crowd sourcing and survey data) and formulate forecast-based actions following the guidelines developed in Activity 2.2. Similarly, easy-to-understand and visual information will be channelled to mass media through existing agreements between them and MES / Uzhydromet, as well as to national NGOs. Finally, this activity will also complement the prior Activity 2.3 in the development of region-specific (as opposed to the currently used national-wide) broadcasting of early warnings, with the use of other modern communication channels such as social media and electronic messenger subscription groups. In addition, the project will establish a platform for organizing annual community forums on community-based EWS engaging target communities and representatives of vulnerable groups to exchange information, lessons learned, successes and opportunities. Through such platforms regular competitions will be organized engaging both youth and the most active community representative to advocate for structural and non-structure mesures and ensure their inclusiveness.  


[1] These are physical boards used to relay warnings and messages, to be installed/set up by MES in targeted districts (including in hazard-prone areas with limited mobile receptions or not immediately reachable by a Regional Crisis Management Center). Boards will be installed in popular public places used by communities or on regular commuter transport routes.


 



 

Contacts: 
UNDP
Nataly Olofinskaya
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities
Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness
Output 3: Strengthened climate services and disaster communication to end users

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 13 - Climate Action

Monrovia Metropolitan Climate Resilience Project

Liberia’s capital city Monrovia is extremely vulnerable to sea-level rise and the increased frequency of high-intensity storms. These climate change-related impacts are contributing to coastal erosion and shoreline retreat, putting lives and livelihoods at risk, and affecting efforts by the Government of Liberia to reach the targets outlined in the Paris Agreement and Sustainable Development Goals.

Compounding these issues, sea-level rise and urban encroachment into the Mesurado Wetland in the center of Monrovia threatens the sustainability the ecosystem services and fisheries in the region.

To address these challenges, the Green Climate Fund-financed “Monrovia Metropolitan Climate Resilience Project” will enhance coastal protection, foster improved coastal management and present local communities with diversified climate-resilient livelihoods. In this way, the project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will directly benefit a total of approximately 250,000 people through coastal defense, enhanced livelihoods, and improved protection of mangrove ecosystems. In addition, the project will indirectly benefit approximately 1 million people through the adoption of a transformative, climate risk-informed Integrated Coastal Zone Management approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-10.749755961229 6.3051065918459)
Primary Beneficiaries: 
250,000 direct beneficiaries, 1 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$17.2 million (Green Climate Fund)
Co-Financing Total: 
US$8.4 million (Government of Liberia)
Project Details: 

Liberia’s capital city, Monrovia[1], is extremely vulnerable to the climate change impacts of sea-level rise (SLR) and the increasing frequency of high-intensity storms, both of which contribute to coastal erosion and shoreline retreat. SLR is a significant contributor to accelerated coastal erosion, and along with the increasing intensity of offshore storms and waves, exacerbates coastal erosion, the impacts of which result in significant damage to buildings and infrastructure in Monrovia’s coastal zone. Additionally, SLR is threatening the sustainability of ecosystem services provided by mangroves in the Mesurado Wetland[2] at the centre of the Monrovia Metropolitan Area (MMA), which is further exacerbated by urban encroachment into, and over-exploitation of the mangroves. These changes negatively impact the habitat for economically important fish species and the loss of these nursery areas will have a considerable impact on the fishery-based livelihoods of approximately 55,000 Monrovians, 46% of whom are women.

The most vulnerable part of the MMA coast is West Point, an impoverished and densely-populated informal settlement situated on a narrow spit between the coast and the Mesurado Wetland, with dwellings built up to the shoreline. In the last decade[3], coastal erosion has caused the shoreline to regress by 30 m, leading to the loss of 670 dwellings and threatening public spaces and boat launching sites that are critical to fishery-based livelihoods. Without intervention — and with the added impact of climate change — coastal erosion is expected to cause further shoreline regression of 190 m by 2100. This is equivalent to an additional 110% more than the coastal retreat expected under a non-climate change or baseline scenario[4].

To adapt to the severe impacts of climate change on Monrovia’s coast, it is necessary to change the current approach to addressing the impacts of climate change from a focus on short-term solutions to long-term integrated and participatory planning that involves the public sector, private sector and communities at all levels of governance. The project is requesting GCF support to address barriers to effective climate change adaptation in the coastal zone of Monrovia, and Liberia more generally, through interventions in three inter-related focus areas: i) coastal protection; ii) coastal management; and iii) diversified climate-resilient livelihoods. In this way, the proposed project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will address one of the most urgent adaptation needs in Monrovia by constructing a rock revetment to protect West Point against coastal erosion and storms. The revetment was selected as the preferred solution, because while a ‘soft solution’ in the form of beach nourishment with an associated groyne was considered technically feasible, the sustainability of this option would be limited, because the regular maintenance required was not feasible in the local context[5]. From an infrastructural perspective, the project will protect and build the climate resilience of approximately 10,800 people in West Point and avoid damages of up to USD 47 million to the individual and communal property of West Point residents as well as securing launch sites for fishing boats which will have a positive impact on the fisheries sector. The construction of this coastal protection infrastructure will form part of a strategic, cohesive coastal adaptation strategy using an Integrated Coastal Zone Management (ICZM) approach.

The paradigm shift necessary for adopting an evidence-based and participatory ICZM approach across Liberia will be facilitated by the proposed project through initiatives to strengthen the technical and institutional capacity of the government and communities to adapt to the rapidly changing coastal landscape and to undertake long-term, climate-responsive planning on the coast. Based on quantitative, defensible scientific data in coastal management and planning, the proposed project will develop a national-scale high-resolution multi-criteria vulnerability map and design a national ICZM Plan (ICZMP) for Liberia in consultation with all relevant stakeholders, including the private sector. By fostering partnerships among government institutions and between the Government of Liberia (GoL), private sector actors, research institutions and communities, the project will improve coordination on coastal management and create an enabling environment for ongoing coastal adaptation beyond the project area and after the project implementation period.

The project will increase local adaptive capacity by strengthening gender- and climate-sensitive livelihoods and protecting mangroves in the Mesurado Wetland within Monrovia. Specifically, adaptative capacity in Monrovia will be increased by: i) safeguarding ecosystem services provided by mangroves and increasing the resilience of these ecosystems to climate change, through community co-management agreements between government and communities; ii) improving community knowledge on climate change impacts and adaptation practices; and iii) strengthening climate-sensitive livelihoods and supporting the uptake of climate-resilient livelihoods. This is an important element of the integrated approach because while the development of ICZMP will improve coastal management at an institutional level, limited institutional capacity in Liberia means that capacitating communities to engage positive adaptation strategies is critical to ensure an increase in their long-term climate resilience. The latter two activities will be based at the innovation and education centre — to be established in West Point. In addition to being the focal point for climate-resilient livelihood development, the innovation and education centre will act as a hub for awareness-raising and other community-led actions being implemented under the project[6]. An exit strategy and O&M plan (Annex 21) will ensure that the proposed project activities will be sustained in the long-term[7].

These investments by the GCF and the Government of Liberia (GoL) will catalyse a paradigm shift in the management of Monrovia’s coastal zone towards an integrated, transformative and proactive approach that addresses current and anticipated climate change risks and which mixes both infrastructure (where necessary) and coastal ecosystems in adaptation efforts. This will directly benefit a total of ~250,000 people in the communities of West Point through coastal defence and enhanced livelihoods; and through enhanced livelihoods and improved protection of mangrove ecosystems in the communities of Topoe Village; Plonkor and Fiamah; and Nipay Town and Jacob’s Town. In addition, the project will indirectly benefit approximately one million[8] people through the adoption of a transformative, climate risk-informed ICZM approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.




[1] In this proposal, ‘Monrovia’ and the ‘Monrovian Metropolitan Area’ (MMA) are used interchangeably to refer to the jurisdictional or administrative entity of the MMA.

[2] the estuary of the Mesurado River

[3] 2008 to 2018

[4] See Annex 2.B (Vulnerability Sub-assessment) for Economic and Financial Analysis of Monrovia Metropolitan Area, and specifically West Point.

[5] Stabilising or ‘fixing’ the shoreline by means of a rock revetment is the preferred solution to coastal erosion at West Point by both the Government of Libera and affected communities. This approach also represents the most socially sensitive design because it requires low-to-no maintenance while still accommodating boat launching and landing. A rubble mound revetment with rock armour, which is able to withstand extreme wave conditions and storm events, is proposed. The Engineering Sub-assessment Report (Annex 2.C) showed that the northern portion of the proposed revetment is a less dynamic wave environment, and the conceptual design for this portion of the intervention site consequently proposes lighter rock armour. The ‘toe’ of the structure will consist of a resistant geotextile and will be anchored in the existing beach sediment to a level of 5m below mean sea-level to account for future deepening of the area directly in front of the revetment. A six-metre wide promenade, for access to the shoreline and recreation activities, is proposed between the revetment and existing dwellings at West Point. Two boat launching and landing sites are proposed as part of the preferred option at the southern end and centre of the revetment, respectively. These launch and landing sites will be provided in addition to the open beach area to the north of the proposed revetment, where fishing boats are already launching and landing. Further details on the stakeholder engagement process that led to this decision is available in Annex 2.A Feasibility Study, Section 10.2 Analysis of coastal defence options.

[6] Recognising the risks of the COVID-19 pandemic, all project activities will operate strictly within government mandated regulations and best practices. All government directives, such as lockdowns and mandatory quarantine will be adhered to, as will any restrictions on travel, organisation of events or sizes of meetings and workshops.

[7] Further information on the exit strategy and sustainability of the proposed project can be found in Section B.6.

[8] Direct benefits will accrue at the site-specific scale, whereas indirect benefits will accrue at the municipal scale — i.e. the population of MMA, which is estimated at one million people.

 

Expected Key Results and Outputs: 

Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.

Activity 1.1: Prepare construction plan and finalise technical design specifications for coastal defence structure at West Point.

Activity 1.2: Construct coastal defence structure to protect West Point against climate change-induced coastal erosion.
 

Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.

Activity 2.1: Develop an Integrated Coastal Zone Management Plan for Liberia.

Activity 2.2: Capacitate the Cross-Sectoral Working Group to mainstream ICZM into relevant government sectors through a Training-of-Trainers approach.

Activity 2.3: Strengthen the asset base and technical capacity of the ICZMU for the collection of spatial and biophysical coastal information to support the implementation of the ICZMP.

Activity 2.4: Strengthen the existing Environmental Knowledge Management System (EKMS) to act as a platform for awareness-raising and sharing of climate risk-informed ICZM approach.

Activity 2.5: Conduct an awareness-raising campaign for communities in focus areas on climate change impacts and adaptation practices.


Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

Activity 3.1: Establish a community education and innovation centre to function as a community knowledge generation and learning hub, a repository on climate change adaptation practices and host community activities under Output 3.

Activity 3.2: Establish community-led co-management agreement to ease anthropogenic pressure on mangroves in the MMA.

Activity 3.3: Conduct annual assessments to evaluate the project-induced changes in mangrove degradation, community perceptions and awareness of climate change impacts, adaptation options and mangrove ecosystems throughout the project implementation period.

Activity 3.4: Establish small-scale manufacturing facilities and develop training material to capacitate community members to manufacture and sell cookstoves to support alternative climate-resilient livelihoods.

Activity 3.5: Purchase and install low-maintenance eco-friendly cold storage facilities near fish processing sites to reduce pressure on mangroves and increase market efficiency

Contacts: 
UNDP
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 
Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.
Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.
Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action

Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’

The Green Climate Fund-financed “Coastal Resilience to Climate Change in Cuba through Ecosystem Based Adaptation – ‘MI COSTA’” project responds to the coastal adaptation needs of Cuba due to climate-change related slow onset events such as sea level rise and flooding arising from extreme weather events. Impacts from these climate drivers are a matter of national security for the people of this small-island state and pose an existential threat to coastal settlements and communities. Projections show that if no intervention is made by 2100, up to 21 coastal communities will disappear with a further 98 being severely affected by climate related threats (flooding, coastal erosion and saline intrusion).

Cuba’s Southern Coast has been selected due its high vulnerability to climate change particularly in the form of coastal flooding and saline intrusion. 1,300 km of coastline, 24 communities, and 1.3 million people will directly benefit from the project. In protecting life on land and below the water, 11,427 ha of mangroves, 3,088 ha of swamp forest and 928 ha of grass swamp will be restored, which in turn will improve the health of 9,287 ha of seagrass beds and 134 km or coral reef crests.

The project will enhance adaptive capacity by holistically rehabilitating coastal land-seascapes, their interlinked ecosystems and hydrology. This will be achieved by rehabilitating ecosystem functions and connections within mangroves and swamp forests and reducing anthropic pressures to marine coastal ecosystems, thus enhancing the services supplied by integrated coastal ecosystems (particularly protection from saline flooding and erosion, and channelling freshwater to coastal areas and aquifers). It will also strengthen the adaptive capabilities of coastal governments and communities´ by building their capacity to utilize and understand the benefits of ecosystem-based adaptation, enhancing information flow between stakeholders and strengthening the regulatory framework for territorial management in coastal areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-78.594726920422 20.988793500139)
Funding Source: 
Financing Amount: 
US$23,927,294
Co-Financing Total: 
US$20,371,935 (US$16,242,488 MINAG, US$2,696,376 CITMA, US$1,435,071 INRH)
Project Details: 

Climate change impacts and threats

The Cuban archipelago’s location in the Caribbean, places it in the path of frequent tropical storms, and the long, narrow configuration of the country is such that no part of the country is very far from the sea (over 57% of the population lives in coastal municipalities).*

Coastal municipalities and their respective settlements are also extremely vulnerable to climate change (CC) due to increased storms and rising sea levels, resulting in increased coastal flooding caused by extreme meteorological phenomena such as tropical cyclones, extratropical lows, and strong winds from surges. From 2001 to 2017, the country has been affected by 12 hurricanes 10 which have been intense (category 4 or 5), the highest rate in a single decade since 1791. In the past 10 years the percentage of intense hurricanes affecting the country has risen from a historical average of 26% to 78% with accompanying acute losses. These intense hurricanes impacting Cuba since 2001 coincide with very high sea surface temperatures (SSTs) in the tropical Atlantic recorded since 1998.

The coasts of Cuba in the past three decades have also seen an increase in the occurrence of moderate and strong floods as a result of tropical cyclones and of extratropical systems; with extratropical cyclones being associated with the highest rates of flooding in the country.  Furthermore, warm Pacific El Niño events lead to an increase in extra-tropical storms which increase the risks of flooding along the coastline.

CC induced Sea Level Rise (SLR) will aggravate coastal flooding affecting in particular low-lying coastal areas. It is expected that through SLR, mean sea level will increase by 0.29 m by the year 2050 and between 0.22m and 0.95m by the year 2100 impacting 119 coastal settlements in Cuba. Combining increased storm surge and projected SLR, flooding of up to 19,935 km² (CC + Category 5 hurricane) and 2,445 km² (CC + normal conditions) can be expected by the year 2050.

These estimates could be higher when compounded by the impact of surface water warming on the speed of storms, and new research that links it to increased wave heights in the Caribbean. Under this scenario, storms could be more frequent and move at a slower pace thus increasing the impact on island states such as Cuba.

CMIP5 projections indicate that by 2050, mean annual temperature in Cuba will rise by a median estimate of 1.6°C; total annual extremely hot days (temperature >35°C) will rise by a median estimate of 20 days (RCP 4.5) and 20.8 days (RCP 8.5). Associated increases in potential evapotranspiration will further lead to more frequent severe droughts, as already observable in eastern Cuba.

Cuban coastal seascapes and landscapes are a succession of ecosystems that have coevolved under current climatic conditions, including current distributions of extreme events. The progression of coral reefs, seagrass meadows, beaches, coastal mangroves and forest or grassland swamps represents an equilibrium that confers resilience to each ecosystem separately but also to the coast as a whole. The current resilience of Cuban coastal ecosystems to extreme events and SLR, is being undermined by both climate change effects (increased extreme events) and other anthropogenic pressures, tempering their capacity to provide their protective services. Mangroves have further suffered high levels of degradation affecting their ability to colonize new areas, reduce wave impacts, accrete sediments and stabilize shorelines. Additionally, coral reefs have shown signs of bleaching and degradation that have been attributed to mangrove and sea grass degradation (including the alteration of hydrological natural flows, presence of invasive species, water contamination, and habitat destruction), climate-related increases in surface water temperature and to increased impacts of hurricanes.

SLR will further increase current vulnerabilities and stresses on ecosystems due to increases in water depth and wave energy which will increase coastal erosion, coastal flooding and saline intrusion risks.

Coastal erosion

Current coastal erosion rates are attributed to a combination of natural dynamics (waves, currents, extreme events, hurricanes, etc.) and human interventions (natural resources extraction, wetlands filling, coastal infrastructure construction excluding natural dynamics, habitat loss, water diversion, etc). An increase in the magnitude of extreme events and increasing SLR will accelerate erosion related to natural processes, which currently averages 1.2 m/year (calculated between 1956-2002). This erosion rate poses a danger to communities, infrastructure and natural habitats that are not tolerant to saline intrusion and provide services to landward communities.

Flooding

Coastal flooding as a combination of high rainfall, high sea levels and storm surges has been identified as one of the primary climate change related threats to Cuba. Trends in the frequency of coastal floods during the period 1901-2011 have been observed in Cuba with the past three decades seeing an increase in the occurrence of moderate and strong floods, regardless of the meteorological events that generate them. Specific impacts and the extent of resulting damages depend on local bathymetry and topography, seabed roughness and coastal vegetation coverage and conditions, with the coastal regions of La Coloma- Surgidero de Batabano and Jucaro-Manzanillo being particularly vulnerable.

Hurricanes have also extensively damaged infrastructure. Hurricane Matthew, which crossed the eastern end of Cuba in October 2016, caused USD 97.2 million of damages (approximately 2.66% of GDP), making it the third most devastating hurricane to hit the island in the last decade, only behind Ike (2008) and Sandy (2012), with equivalent costs of USD 293 million (12.05% of GDP) and USD 278 million (9.53 % of GDP) respectively.

Saline intrusion

Saline intrusion into aquifers is the most common and extensive cause of freshwater degradation in Cuba’s coastal zones. Most of these aquifers, located near and beneath the northern and southern coasts, are open to the sea, making them very susceptible and exposed to saline intrusion as a result of SLR, and potentially leading to water that is too saline for human consumption and increasing the salinization of agricultural fields.  It is estimated that approximately 544,300 ha in the area of proposed interventions are already affected by saline intrusion.

Drought

Drought has been identified among the most important climate risks for all Caribbean islands, including Cuba. There has been an increase in drought events in the period 1961-1990 when compared to 1931-1960.  Severe droughts have been increasing in eastern Cuba and are projected to increase in the future. Future projections indicate a general reduction in rainfall by 2070 (particularly along the Eastern Coastline), along with an average reduction in relative humidity between 2% and 6% between 2030 and 2070, respectively. Reduced rainfall occurring mostly during the summer rainy season, with relatively smaller increases in winter and dry season rainfall. This situation adds an increase pressure on the aquifers, which cannot be filled by just one tropical storm, or during the rainy season.

Vulnerability Southern Coast of Cuba, project target site 

Cuba’s coastal ecosystems have been extensively studied through extensive research led by The Ministry of Science, Technology and Environment (CITMA), the Environmental Agency (AMA) and the Scientific Institute for the Sea (ICIMAR). ICIMAR’s research on coastal dynamics and vulnerability is the foundation for Cuba’s National Environmental Strategy (NES) and its State Plan for Facing Climate Change (“Tarea Vida”, 2017) which outlined coastal areas in eminent danger as national priority.

A research-based CC vulnerability ranking (high, medium, and low) was designed considering a combination of factors: geological, geomorphological and ecosystem degradation highlighting that vulnerability to sea-level rise and associated events is higher in the country’s low-lying coasts. Settlements in these areas are more vulnerable to SLR and more likely to be affected by extreme weather events (hurricanes, tropical storms) because of their low elevation, largely flat topography, extensive coastal plains and the highly permeable karstic geology that underlies it; hence more exposed and susceptible to flooding and saline intrusion. These areas have been targeted as the project’s area of intervention, prioritized within “Tarea Vida,” with attention being paid to two coastal "stretches" totaling approximately 1,300 km of coastline and 24 municipalities covering 27,320 km2.

Main localities for direct intervention of EBA include settlements with high vulnerability to coastal flooding, facing saline intrusion and with a contribution to economic life including those with major fishing ports for shrimp and lobster. Settlements with coastal wetlands that represent a protective barrier for important agricultural production areas to reduce the effects of saline intrusion on the underground aquifers and agricultural soils where also considered.

Southern Coastal Ecosystems

Coastal ecosystems in the targeted coastal stretches are characterized mainly by low, swampy and mangrove-lined shores surrounded by an extensive, shallow submarine platform, bordered by numerous keys and coral reefs. In these areas mangroves and marshes could potentially act as protective barriers against storm surges, winds and waves and therefore reduce coastal erosion, flooding and salt intrusion associated risks. These ecosystems can keep pace with rising seas depending on sediment budgets, frequency of disturbances, colonization space, and ecosystem health.

There are numerous reported functional relationships between coastal and marine ecosystems, including sediment binding and nutrient absorption, which combined with water retention, create equilibrium dynamics and coastal stability. Freshwater infiltration is favored by swamp forests reducing saline intrusion risk and organic matter exchange facilitates favorable conditions for healthy seagrass beds and coral reefs. Restoration of these fluxes and connections is required to increase these ecosystems resilience to a changing climate and strengthening their protective role.

Coastal ecosystems and their complex interconnections provide a variety of services to communities, including coastal protection and disaster risk reduction. These services can be enhanced with healthy ecosystems, functional connections and when adequately integrated into land/marine planning policies.

Project focus

The project will focus on actions along Cuba’s Southern Coast that has been selected due its high vulnerability to climate change (open aquifers, low lying coastal plain, degraded ecosystems and concentration of settlements), particularly to storms, drought and sea level rise, which result in coastal flooding and saline intrusion.

Targeted shores cover approximately 89,520 hectares of mangroves (representing 16.81% of the country's mangroves) followed by 60,101 hectares of swamp grasslands and 28,146 hectares of swamp forests. These in turn will contribute to improving 9,287 ha of seagrass and 134 km of coral reefs and their respective protective services.

There is evidence of reef crests degradation which in turn could cause significant wave damage in both mangroves and sea grasses reducing further their ability to offer protection against the effects of CC on the coast of Cuba.

Restoration of degraded red mangrove (Rhizophora mangle) strips along the coastal edges, in stretches 1 and 2, is crucial. During wind, storms and hurricane seasons, the sea has penetrated more than 150 meters inland in these areas, exposing areas dominated by black or white mangroves, which are less tolerant to hyper-saline conditions, potentially becoming more degraded. During stakeholder consultations, communities highlighted the consequent loss of infrastructure and reduced livelihood opportunities (both fisheries and agriculture).

Coastal Stretch 1: La Coloma – Surgidero de Batabanó (271 km – 13,220 km2)

This stretch is made up of  3 provinces (Pinar del Rio, Artemisa and MAyabeque) and 13 municipalities (San Juan y Martinez, San Luis, Pinar del Rio, Consolacion del Sur, Los Palacios, San Cristobal, Candelaria, Artemisa, Alquizar, Guira de Melena, Batabano, Melena del Sur and Guines). The main localities along this stretch are: (1) La Coloma in Pinar del Rio Province; (2) Beach Cajío in Artemisa province; and, (3) Surgidero Batabanó in Mayabeque Province.  

The vulnerability assessment concluded that, by 2100, 5 communities in this stretch could disappeared due to SLR. Extreme events, waves’ strength and salinity have also been identified in this area; hence appropriate adaptation measures need to be in place to reduce the impact.

These risks are being exacerbated by the impacts of ecosystem degradation related to changes in land use, pollution past logging, grey infrastructure and inappropriate measures of coastal protection in the past, urbanization, and the reduction of water and sediments flows.

The impact of saline intrusion into the karstic aquifer is particularly troubling along this coastal stretch with important implications at a national level, as the main aquifer, in the southern basin which supplies water to the targeted coastal communities and agriculture, is also an important source of fresh water to the capital, Havana. To address the issue of saline intrusion in this area, the GoC has experimented with grey infrastructure (The Southern Dike), a 51.7 km levee built in 1991 aiming to accumulate runoff fresh water to halt the infiltration of saline water in the interior of the southern aquifer. The USD 51.3 million investment, with maintenance costs of USD 1.5 million every 3 years and a once-off USD 15 million (20 years after it was built), had a positive effect in partially containing the progress of the saline wedge. However, the impact of the dike resulted in the degradation of mangroves in its northern shore reducing the mangroves function to protect the coastline.

Coastal Stretch 2: Jucaro- Manzanillo (1029 km – 14,660 km2)

This stretch is comprised by 4 provinces (Ciego de Avila, Camaguey, Las Tunas and Granma) and 11 muncipalities (Venezuela, Baragua, Florida, Vertientes, Santa Cruz del Sur, Amancio Rodriguez, Colombia, Jobabo, Rio Cauto, Yara and Manzanillo).The main localities to intervene along this stretch include (1) Júcaro in Ciego de Avila Province; (2) Santa Cruz del Sur in Camagüey Province; (3) Manzanillo in Gramma Province (4) Playa Florida.

The communities in this coastal area are located within extensive coastal wetlands dominated by mangroves, swamp grasslands and swamp forest.

Water reservoirs for irrigation have reduced the water flow towards natural ecosystems, it has also been directed towards agricultural lands altering the natural flow indispensable for ecosystems.

Mangroves have been highly impacted by degradation and fragmentation, which has undermined their role in protecting the beach and human populations from extreme hydro-meteorological events, saline intrusion and coastal erosion. Only 6% of mangroves are in good condition, while 91% are in a fair state, and 3% are highly degraded. Wetlands in the prairie marshes have begun to dry due to a combination of climate drivers and land use management with a direct impact in reducing their water retention and infiltration capacity.

Coral crests of the area’s broad insular platform, have been classified as very deteriorated or extremely deteriorated and it is predicted that if no intervention on the sources of degradation from the island, is made, they will disappear by 2100. Reef elimination will increase communities’ flood risk to potentially settlements disappearing.

Saline intrusion is becoming increasingly significant in this area due to a combination of CC-related SLR and the overexploitation of aquifers.

Climate change vulnerability is exacerbated by construction practices (such as people building small shops and walkways) along the shoreline where fully exposed infrastructure can be found within flood zones, between the coast and the coastal marsh. This situation is aggravated by the limited knowledge of local actors and a false sense of security that was perceived during community consultations.

Baseline investment projects

Traditionally, Cuba´s tropical storms response and management strategies have focused on emergency preparation and attendance rather than on planning for disaster risk reduction. The GoC has successfully introduced early warning mechanisms and clear emergency protocols to reduce the impact of storms in the loss of lives. The development of Centres for Risk Reduction Management (CGRR) has also been successful in mobilizing local actors when storms are predicted to hit ensuring that emergency resources are available to address storms’ immediate impacts. While these are important steps in the face of an immediate emergency, they are insufficient to manage multiple ongoing threats (some of slow consequence of climate change).

In 2017, GoC approved its State Plan to Face Climate Change (“Tarea Vida”) in which identified and prioritized the impacts of saline intrusion, flooding and extreme events to the country coastal zones, focusing strategic actions for the protection of vulnerable populations and of key resources including protective ecosystems such as mangroves and coral reefs. The GoC has begun to look into various strategies to mainstream local adaptation initiatives using existing successful national mechanisms for capacity building and knowledge transfer and international cooperation best practices.

Initial investments made by the GoC have identified the country´s climate vulnerability, including drought and SLR vulnerability and hazard risk assessment maps. The development of the “Macro-project on Coastal Hazards and Vulnerability (2050-2100)”, focused on these areas´ adaptation challenges including oceanographic, geophysical, ecological and infrastructure features, together with potential risks such as floods, saline intrusion and ocean acidification. Cross-sectoral information integration was a key tool to identify climate risks and potential resources (existing instruments, institutions, knowledge, etc) to manage it. While this is an important foundation it has yet to be translated into concrete actions often as a result of lack of technical equipment.

International cooperation has financed projects that have further allowed the GoC to innovate on various institutional mechanisms such as the Capacity Building Centres (CBSCs) and Integrated Coastline Management Zones through active capacity building incorporating municipal and sectoral needs. Table 1 summarizes the most relevant baseline projects and highlights key results, lessons learned, and gaps identified. The proposed project aims to address such gaps, and incremental GCF financing is required to efficiently achieve efficient climate resilience in the target coastal sites.

* Footnotes and citations are made available in the project documents.

Expected Key Results and Outputs: 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

1.1 Assess and restore coastal wetland functions in target sites by reestablishing hydrological processes  

1.2 Mangrove and swamp forest rehabilitation through natural and assisted regeneration for enhanced coastal protection

1.3 Record and asses coastal and marine ecosystems‘ natural regeneration and protective functions based on conditions provided through restored coastal wetlands

1.4 Enhance water conduction systems along targeted watersheds to restore freshwater drainage in coastal ecosystems and aquifers to reduce and monitor saline intrusion in target sites

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

2.1 Develop a climate adaptation technical capacity building program for coastal communities and local stakeholders to enable adaptation actions and capacities

2.2 Integrate project derived information,  from EWS  and national datasets into a Knowledge Management Platform, to provide climate information products to monitor, evaluate and inform coastal communities on local capacity to manage climate change impacts.

2.3 Mainstream EBA approaches into regulatory and planning frameworks at the territorial and national levels for long term sustainability of EBA conditions and investments for coastal protection

Output 3: Project Management

3..1 Project Management

Contacts: 
UNDP
Montserrat Xilotl
Regional Technical Advisor
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Rehabilitated coastal ecosystems for enhanced coping capacity to manage climate impacts.

Output 2: Increased technical and institutional capacity to climate change adaptation in coastal communities, governments and economic sectors.

Output 3: Project management.

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
March 2021
Description: 
Project Approval
SDGs: 
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Integrated climate-resilient transboundary flood risk management in the Drin River basin in the Western Balkans (Albania, the Former Yugoslav Republic of Macedonia, Montenegro)

The Drin River Basin (DRB) is a transboundary river basin, which is home to 1.6 million people and extends across, Kosovo*, the Former Yugoslav Republic Macedonia, Montenegro and Greece. Climate change and climate variability have been increasing the frequency, intensity and impact of flooding in the basin. Historical flood data from the Western Balkans suggests a more frequent occurrence of flood events, attributed to an uneven distribution of precipitation and torrential rain, particularly over the last decade. More and larger areas - and more people - are being affected by flooding with a strong impact on national economies. Future climate scenarios project a further increase in the likelihood of floods as well as in their destructive nature. Increased frequency and intensity of floods and droughts, increased water scarcity, intensified erosion and sedimentation, increased intensity of snow melt, sea level rise, and damage to water quality and ecosystems are forecasted. Moreover, climate change impacts on water resources will have cascading effects on human health and many parts of the economy and society, as various sectors directly depend on water such as agriculture, energy and hydropower, navigation, health, tourism – as does the environment.

The objective of the "Integrated climate-resilient transboundary flood risk management in the Drin River basin in the Western Balkans (Albania, the Former Yugoslav Republic of Macedonia, Montenegro)" project is to assist the riparian countries in the implementation of an integrated climate-resilient river basin flood risk management approach in order to improve their existing capacity to manage flood risk at regional, national and local levels and to enhance resilience of vulnerable communities in the DRB to climate-induced floods. The countries will benefit from a basin-wide transboundary flood risk management (FRM) framework based on: improved climate risk knowledge and information; improved transboundary cooperation arrangements and policy framework for FRM and; concrete FRM interventions.

* References to Kosovo shall be understood to be in the context of Security Council Resolution 1244 (1999)

English
Level of Intervention: 
Coordinates: 
POINT (20.442993079765 40.096002692086)
Primary Beneficiaries: 
1.6 million people
Funding Source: 
Financing Amount: 
US$9,927,750
Project Details: 

Climate change impacts

Climate change is already having an impact and is likely to intensify in the future. According to the national communications to UNFCCC from Albania, Montenegro and the Former Yugoslav Republic of Macedonia, as well as to the report ‘The state of water in Kosovo’, climate change will have serious negative impacts in the Drin river basin including increased frequency and intensity of floods and droughts, increased water scarcity, intensified erosion and sedimentation, increased intensity of snow melt, sea level rise, and damage to water quality and ecosystems. Moreover, climate change impacts on water resources will have cascading effects on human health and many parts of the economy and society, as various sectors directly depend on water such as agriculture, energy and hydropower, navigation, health, tourism –as does the environment.

The DRB countries are increasingly exposed to the impact of climate change. They are experiencing increased periods of extreme heat in the summer months and increased rainfall during the cooler seasons. According to long-term projections, the average annual temperature will increase by 2° C to 3° C by 2050 and precipitation will decrease in the summer, resulting in longer dry periods followed by more sudden heavy rainfalls. This combination increases the likelihood of floods as well as their destructive nature.

Historical flood data from the Western Balkans suggests a more frequent occurrence of flood events, characterized by more extreme and more rapid increase in water levels, attributed to an uneven distribution of precipitation and torrential rain, particularly over the last decade. More and larger areas and, therefore, a greater population numbers are being affected by flooding with a strong impact on national economies.

In Albania, climate change projections indicate the intensification of heavy precipitation and an increase in the frequency of heavy rains with longer duration, causing flooding and economic damages. There is already evidence of increasing frequency of high intensity rainfall, which is increasing pluvial or flash flooding which inundates the floodplain in a matter of hours. In winter, longer duration rainfall causes flooding which lasts for several weeks during the winter period while long-duration spring rainfall combines with snowmelt to cause flooding. Flood risk is a combination of river flooding and coastal flooding due to sea water inundation (storm surges), both of which are increasing with climate change.

According to available climate change projections for Montenegro, there will be a sharp increase in variability of river flow, characterized by increased frequency and intensity of flooding and hydrological drought. In addition, coastal flooding and storm surges will also significantly increase. During this period the area of low air pressure develops in the coastal region of Montenegro and has a wide impact causing maximum precipitation in the southern areas. In the karst areas, during spring, there are periodic floods due to longer periods of precipitation, melting snow and high groundwater levels. Such floods have impacted the Cetinje plain several times and have caused severe damage to the buildings there.

The First and Second National Communications on Climate Change for FYR Macedonia outlined a number of scenarios related to water resources. The findings included a projection of a 15% reduction in rainfall by 2050, with a drastic decrease in runoff in all river basins. Although the long-term projection is for increased temperatures and a decrease in sums of precipitation, the past period studied shows significant climate variability with increased precipitation. The proportion of winter precipitation received as rain instead of snow is increasing. Such shifts in the form and timing of precipitation and runoff are of concern to flood risk.

Project details

The AF-financed project will build resilience of communities and livelihoods in the Drin Basin to climate-induced floods by catalyzing a shift to a holistic basin-wide climate-responsive flood risk management and adaptation approaches based on enhanced climate information, risk knowledge, and community structural and non-structural adaptationmeasures.

The proposed integrated approach to climate resilient flood risk management will encompass: a increased technical, human and financial capacities of relevant institutions within each Riparian country, with responsibility for flood risk monitoring, forecasting and management to enable implementation of climate resilient Integrated Flood Risk Management (IFRM). This would include strengthening of the a. hydrometric monitoring network, risk mapping, flood hazard and risk modelling capacity; b.an enhanced policy and risk financing framework for flood risk management based on enhanced understanding of climate risks; c.climate-proof and cost-effective investment into flood protection through enhanced capacities to design and implement structural and non-structural flood risk management measures, and to provide effective flood risk reduction measures to the population; d. enhanced awareness, response and adaptation capacity of the population; engaging private sector into climate information management and risk reduction investment.

The objective of the project is to assist the riparian countries in the implementation of an integrated climate-resilient river basin flood risk management approach in order to improve their existing capacity to manage flood risk at regional, national and local levels and to enhance resilience of vulnerable communities in the DRB to climate-induced floods. The countries will benefit from a basin-wide transboundary flood risk management (FRM) framework based on: improved climate risk knowledge and information; improved transboundary cooperation arrangements and policy framework for FRM and; concrete FRM interventions. 100.As a result, the Adaptation Fund project will improve the resilience of 1.6 million people living in the DRB (direct and indirect beneficiaries). 101.The project will contribute to the strengthening of the current flood forecasting and early warning system by increasing the density of the hydrometric network, and by digitizing historical data for stations not currently in the existing forecasting model. The project will develop and implement transboundary integrated FRM strategies providing the national authorities with robust and innovative solutions for FRM, DRR and climate adaptation, including ecosystem-based gender sensitive participatory approaches. In addition, the project will develop the underlying capacity of national and regional institutions to ensure sustainability and to scale up the results. It will support stakeholders by providing guidance, sharing climate information, knowledge and best practices. The project will also invest in the priority structural and community-based non-structural measures. Importantly, the project is aligned with and will support the implementation of the EU Floods Directive (EUFD) in DRB countries.102.The AF project will build upon experience of Regional UNDP/GEF Drin project (see baseline initiatives section above) and otherprojects25,26in the region and will include the following innovations:1) introduction of international best practice in flood hazard and risk assessment, modelling and mapping in line with EUFD; 2) innovative mix of structural and non-structural interventions based on climate risk-informed design; 3) agro-forestry measures and community-based flood resilience schemes. The socio-economic benefits include reduced damages and losses and improved food production (through protection of agricultural land). This will have direct and indirect livelihood protection and potential income generation benefits. Climate risk informed planning of the hydropower sector is important to enhance hydropower operations to include transboundary climate-induced flood risk management, thus ensuring the continued sustainable development of the hydropower sector which will help continue the shift to clean energy in the region. Climate risk information will also safeguard critical infrastructure assets such as transportation (roads and bridges) which are critical to the economic development and functioning of communities. Environmental benefits include improved ecosystem functions through better spatial planning and non-structural measures such as agro-forestry, which will provide water retention functions, regulation of hydrological flows (buffer runoff, soil infiltration, groundwater recharge, maintenance of base flows), natural hazard mitigation (e.g. flood prevention, peak flow reduction, soil erosion and landslide control), increased riverbed stabilization resulting in decreased erosion, habitat preservation, and reforestation. This project will directly benefit the most vulnerable parts of the population and will have significant gender co-benefits which will be ensured through close collaboration with a gender expert dedicated to ensuring that gender considerations are a key part of any consultation or activity planning process. Flooding and disasters in general, impact women disproportionately and the project will ensure that these differential impacts are taken account in all project interventions.

Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Hazard and Risk Knowledge Management Tools

Component 2: Transboundary institutional, legislative and policy framework for FRM (Flood Risk Management)

Component 3: Community-based climate change adaptation and FRM interventions

Project Dates: 
2019 to 2024
Timeline: 
Month-Year: 
May 2019
Description: 
Project Launch
Proj_PIMS_id: 
6215
SDGs: 
SDG 13 - Climate Action

Enhancing Whole of Islands Approach to Strengthen Community Resilience to Climate and Disaster Risks in Kiribati

The Republic of Kiribati is a small island state with 33 low-lying and narrow atolls dispersed over 3.5 million km² in the Central Pacific Ocean and a population of approximately 110,000 people. 

Climate change and climate-induced disasters are projected to exacerbate the vulnerability of Kiribati’s people by causing more frequent inundations leading to damage of coastal infrastructure and exacerbating already problematic access to clean water and food.

Despite an existing strong policy framework and previous efforts, several barriers exist that prevent Kiribati from achieving its adaptation goals. 

Implemented with the Office of the President (Te Beretitenti), this project aims to benefit 17,500 people (49% women) on the five pilot islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati.

It is expected to contribute to several Sustainable Development Goals: SDG5 Gender Equality, SDG6 Clean Water and Sanitation, SDG12 Responsible Consumption and Production and SDG13 Climate Action.

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-157.34619142837 1.8735216654151)
Primary Beneficiaries: 
17,500 people (49% women) on the islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati
Financing Amount: 
GEF Least Developed Countries Fund project grant US$8,925,000
Co-Financing Total: 
Co-financing of US$769,667 from UNDP | $47,723,920 from the Government of Kiribati
Project Details: 

Background: Projected impacts of climate change on coastal infrastructure, water and food security in Kiribati

Climate change and climate-induced disasters are projected to cause more frequent inundations leading to damage of coastal infrastructure/ community assets and exacerbating the already problematic access to clean water and food.

Geographically, Kiribati’s narrow land masses and low-lying geography (in average 1-3 meters above mean sea level other than Banaba Island) results in almost the entire population being prone to flooding from storm surges and sea-level rise.

The low-lying atoll islands are already experiencing inundation leading to a loss of land, buildings and infrastructure. Mean sea level is projected to continue to rise (very high confidence) by approximately 5-15 cm by 2030 and 20-60 cm by 2090 under the higher emissions scenario.

Sea-level rise combined with natural year-to-year changes will increase the impact of storm surges and coastal flooding. This will lead to increased risks of damage to coastal homes, community infrastructure (community halls, schools, churches) and critical infrastructure, such as health clinics and roads. Further, increasing damage and interruption to roads, causeways and bridges, might lead to isolation of communities.

Sea-level rise also results in greater wave overtopping risk, and when marine flooding occurs, saltwater infiltrates down into the freshwater aquifer causing contamination. This risk will increase with sea-level rise and increased flooding and impact both water security and food security from agricultural production.

With limited groundwater reservoirs, access to clean water and sanitation is already a serious problem in Kiribati, impacting health and food security. Agricultural crop production can be expected to be increasingly affected by saltwater inundation, more extreme weather patterns, pests and diseases. This negative impact on food security is further exacerbated by the projected impact on coastal subsistence fisheries, affecting the main stable food source and livelihood. 

Barriers and challenges

While Kiribati has a strong policy framework around climate adaptation – with adaptation and disaster risk management recognized as national priorities within the Kiribati Development Plan and Kiribati’s 20-year Vision (KV20), and a national Climate Change Policy and Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 –  several barriers exist that prevent Kiribati from achieving its objectives, including:

  • Limited integration of CCA&DRM in national and sub-national development plans and frameworks;
  • Insufficient institutional coordination at national, sectoral and sub-national levels;
  • Limited technical and institutional capacities at national and sub-national levels;
  • Weak data management, monitoring and knowledge management (due in part to challenges in gathering and analysing data from dispersed and remote island communities without effective communication and information management systems); and
  • Limited community knowledge and adaptive solutions for CCA&DRM at outer island level.

 

Project interventions

This project will address the exacerbation of climate change on coastal infrastructure, water security and food security by increasing community resilience to the impacts of climate change, climate variability and disasters and building capacities at island and national levels, with benefits extended to household level and in community institutions/facilities such as schools, health clinics, community halls, agricultural nurseries, and Islands Councils.

It is expected to deliver adaptation benefits to the entire population on the five islands of Makin, North Tarawa, Kuria, Onotoa and Kiritimati, estimated at approximately 17,500 people (49% women).

The Project will address key challenges and vulnerabilities to climate change through four interrelated components:

  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: WoI-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies

 

It is expected to support progress towards the following Sustainable Development Goals:

  • SDG 13: Take urgent action to combat climate change and its impacts;
  • SDG 5: Achieve gender equality and empower women, by ensuring women’s equitable participation in Project planning and implementation and by actively monitoring gender equity and social inclusion outcomes.
  • SDG 6: Ensure availability and sustainable management of water and sanitation for all;
  • SDG 12: Achieve food security and improved nutrition and promote sustainable agriculture

 

Key implementing partners

  • Office of Te Beretitenti (OB – Office of the President) - CC&DM division
  • Kiribati National Expert Group on Climate Change and Disaster Risk Management 
  • Ministry of Internal Affairs 
  • Ministry of Finance and Economic Development 
  • Ministry of Environment, Lands and Agriculture Development 
  • Ministry for Infrastructure and Sustainable Energy 
  • Ministry for Women, Youth and Social Affairs 
  • Ministry of Fisheries and Marine Resources Development
  • Ministry of Commerce, Industry and Cooperatives
  • Ministry of Line and Phoenix Islands Development
  • Ministry of Justice 
  • Ministry of Information, Transport, Tourism and Communication Development (MITTCD)
  • Parliament Select Committee on Climate Change
  • Island Councils
  • Extension officers
  • Village Elders and Leaders  
  • Women and Youth
  • Community-based groups
  • KiLGA (Kiribati Local Government Association)
  • NGO’s
Expected Key Results and Outputs: 

Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge

Outcome 1 Capacities of national government institutions and personnel is strengthened on mainstreaming climate and disaster risks, supporting the operationalization of the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP)

Output 1.1.1 National and sectoral level policy, planning and legal frameworks revised or developed, integrating climate change and disaster risks

Output 1.1.2 National, sectoral and island level monitoring and evaluation (M&E) processes, related data-gathering and communication systems enhanced and adjusted to support KJIP implementation

Output 1.1.3 Coordination mechanism for the Kiribati Joint Implementation Plan for Climate Change and Disaster Risk Management 2014-2023 (KJIP) enhanced

Output 1.1.4 Tools and mechanisms to develop, stock, and share data, knowledge, and information on climate change and disaster risks enhanced at the national level

Component 2: Island level climate change resilient planning and institutional capacity development

Outcome 2 Capacity of island administrations enhanced to plan for and monitor climate change adaptation processes in a Whole of Islands (WoI) approach

Output 2.1.1 Island and community level vulnerability and adaptation (V&A) assessments revised and/or developed for 5 targeted islands

Output 2.1.2 Island Council Strategic Plans developed/reviewed and complemented with Whole of Islands (WoI)-implementation and investments plans in 5 targeted islands

Output 2.1.3 Tools and mechanisms to develop, stock and share data, knowledge, and information on climate change and disaster risk enhanced at island level to strengthen information, communication and early warning mechanisms

Output 2.1.4 I-Kiribati population on 5 targeted islands receives awareness and technical training on climate change adaptation and disaster risk management

Component 3: Whole of Island implementation of water, food security and infrastructure adaptation measures

Outcome 3 Community capacities enhanced to adapt to climate induced risks to food and water security and community assets

Output 3.1.1 Climate-resilient agriculture and livestock practices (including supply, production and processing/storage aspects) are introduced in 5 outer islands

Output 3.1.2 Water security improved in 5 targeted project islands

Output 3.1.3 Shoreline protection and climate proofing of infrastructure measures implemented at 5 additional islands and communities

Component 4: Knowledge management and communication strategies

Outcome 4 Whole of Islands (WoI)-approach promoted through effective knowledge management and communication strategies

4.1.1 Whole of Islands (WoI)-communication, engagement and coordination strengthened at national, island and community levels

4.1.2 Whole of Islands (WoI)-lessons learned captured and shared with national and regional stakeholders

Monitoring & Evaluation: 

The project results, corresponding indicators and mid-term and end-of-project targets in the project results framework will be monitored annually and evaluated periodically during project implementation.

Monitoring and evaluation will be undertaken in compliance with UNDP requirements as outlined in UNDP’s Programme and Operations Policies and Procedures (POPP) and UNDP Evaluation Policy, with the UNDP Country Office responsible for ensuring full compliance with all UNDP project monitoring, quality assurance, risk management, and evaluation requirements.

Additional mandatory GEF-specific M&E requirements will be undertaken in accordance with the GEF Monitoring Policy and the GEF Evaluation Policy and other relevant GEF policies.

The project will complete an inception workshop report (within 60 days of project CEO endorsement); annual project implementation reports; and ongoing monitoring of core indicators.

An independent mid-term review will be conducted and made publicly available in English and will be posted on UNDP’s Evaulation Resource Centre ERC.

An independent terminal evaluation will take place upon completion of all major project outputs and activities, to be made publicly available in English.

The project will use the Global Environment Facility’s LDCF/SCCF Adaptation Monitoring and Assessment Tool to monitor global environmental benefits. The results will be submitted to the GEF along with the completed mid-term review and terminal evaluation.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Results and learnings from the project will be disseminated within and beyond the project through existing information sharing networks and forums.

M&E Oversight and Monitoring Responsibilities

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks.

The Project Board will take corrective action as needed to ensure the project achieves the desired results. The Project Board will hold project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences.

The Implementing Partner is responsible for providing all required information and data necessary for timely, comprehensive and evidence-based project reporting, including results and financial data, as necessary. The Implementing Partner will strive to ensure project-level M&E is undertaken by national institutes and is aligned with national systems so that the data used and generated by the project supports national systems.

The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions.

Contacts: 
UNDP
Azza Aishath
Regional Technical Specialist - Climate Change Adaptation
Location: 
Programme Meetings and Workshops: 

Local Project Appraisal Committee (LPAC) Meeting TBC

Inception workshop TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Component 1: National and sectoral policies strengthened through enhanced institutions and knowledge
  • Component 2: Island level climate change resilient planning and institutional capacity development in 5 pilot islands
  • Component 3: Whole-of-Islands (WoI)-implementation of water, food security and infrastructure adaptation measures
  • Component 4: Enhanced knowledge management and communication strategies
Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
GEF CEO endorsement /approval
Proj_PIMS_id: 
5447
SDGs: 
SDG 5 - Gender Equality
SDG 6 - Clean Water and Sanitation
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
November 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Integrated Water Resource Management and Ecosystem-based Adaptation in the Xe Bang Hieng river basin and Luang Prabang city, Lao PDR

Lao PDR is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

Increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase with climate change.

Led by the Government of Lao PDR with support from the UN Development Programme, this proposed 4-year project will increase the resilience of communities in two particularly vulnerable areas – Xe Bang Hieng river basin in Savannakhet Province and the city of Luang Prabang – through:

  • Strengthened national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction;
  • Ecosystem-based Adaptation (EbA) interventions with supporting protective infrastructure and enhanced livelihood options;
  • Community engagement and awareness-raising around climate change and adaptation opportunities, as well as knowledge-sharing within and outside Lao PDR; and
  • The introduction of community-based water resource and ecological monitoring systems in the Xe Bang Hieng river basin.
English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The proposed project will directly benefit 492,462 people (including 247,991 women) by increasing the climate resilience of communities in nine districts in Savannakhet Province, as well as the city of Luang Prabang, through facilitating the adoption of ICM at the provincial and national level and urban EbA at the local level. Government ministries at central and provincial levels will also benefit from capacity-building; development of relevant plans; technical support; coordination; and mobilisation of human and financial resources.
Financing Amount: 
GEF-Least Developed Countries Fund: US$6,000,000
Co-Financing Total: 
Government of Lao PDR: $19,500,000 (in-kind) | UNDP: $300,000 (in-kind) + $200,000 (grant)
Project Details: 

General context

The Lao People’s Democratic Republic is a landlocked Least Developed Country in Southeast Asia. It has a population of ~7.1 million people and lies in the lower basin of the Mekong River, which forms most of the country’s western border with Thailand.

Its GDP has grown at more than 6% per year for most of the last two decades and reached ~US$ 18 billion in 2018 (~US$ 2,500 per capita). Much of this economic growth has been dependent on natural resources, which has placed increasing pressure on the environment. Agriculture accounts for ~30% of the country’s GDP and supports the livelihoods of 70–80% of the population.

Impacts of climate change

The country is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

In 2018, for example, floods across the country resulted in ~US$ 370 million (~2% of GDP) in loss and damage, with agriculture and transport the two most affected sectors.  Floods in 2019 — the worst in 4 decades — affected 45 districts and ~768,000 people country-wide floods, resulting in US$162 million in costs.

An increase in the frequency of these climate hazards, including floods and droughts, has been observed since the 1960s, as well as an increase in the average area affected by a single flood.

Following the floods, the Government identified several priorities for responding to flood risk in the country, including:

  1. Improving flood and climate monitoring and early warning systems;
  2. Public awareness raising to respond to disasters and climate change;
  3. Building resilience at community level; iv) improved risk and vulnerability mapping; and
  4. Strengthening the capacity of government at the provincial, district and community level for better climate change-induced disaster response.

 

In addition, average increases in temperature of up to 0.05°C per year were observed in the period between 1970 and 2010. These trends are expected to continue, with long-term climate modelling projecting: i) an increase in temperature between 1.4°C and 4.3°C by 2100; ii) an increase in the number of days classified as “Hot”; iii) an increase of 10–30% in mean annual rainfall, particularly in the southern and eastern parts of the country and concentrated in the wet season (June to September); iv) an increase in the number of days with more than 50 mm of rain; v) a 30–60% increase in the amount of rain falling on very wet days; and vi) changing rainfall seasonality resulting in a longer dry season.

The increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase as a result of the projected increase in extreme rainfall events — associated with changes iv) and v) described above.

About the project under development

The proposed project focuses on strengthening integrated catchment management (ICM) and integrated urban flood management within the Xe Bang Hieng river basin in Savannakhet Province – a major rice-producing area and particularly important for the country’s food security, as well as one of the areas in the country which is most vulnerable to droughts and experienced severe flooding in 2017, 2018 and 2019 – and the city of Luang Prabang – one of the cities in Lao PDR which is most vulnerable to flooding, as well as being an important cultural heritage site – for increased climate resilience of rural and urban communities.

The approach will ensure that water resources and flood risks are managed in an integrated manner, considering the spatial interlinkages and dependencies between land use, ecosystem health and underlying causes of vulnerability to climate change.

The protection and restoration of important ecosystems will be undertaken to improve the provision of ecosystem goods and services and reduce the risk of droughts, floods and their impacts on local communities, thereby increasing their resilience to the impacts of climate change.

Improved hydrological and climate risk modelling and information systems will inform flood management as well as adaptation planning in the Xe Bang Hieng river basin and Luang Prabang. This information will be made accessible to national and provincial decision-makers as well as local stakeholders who will be trained to use it.

Using the ICM and integrated urban flood management approaches and based on integrated adaptation planning, on-the-ground interventions to improve water resource management and reduce vulnerability to floods and droughts will be undertaken, including ecosystem-based adaptation (EbA).

These interventions will be complemented by capacity development and awareness raising as well as support for rural communities to adopt climate-resilient livelihood strategies and climate-smart agricultural practices.

Addressing gender equality

The proposed project will promote gender equality, women’s rights and the empowerment of women in several ways.

First, the proposed activities have been designed taking into account that in Lao PDR: i) women’s household roles should be considered in any interventions concerning natural resource management, land-use planning and decision-making; ii) conservation incentives differ for men and women; iii) gendered division of labour needs to be understood prior to the introduction of any livelihood interventions; and iv) women need to have access to, and control over, ecosystem goods and services.

Second, an understanding of gender mainstreaming in relevant sectors and associated ministries will be developed, and gaps in gender equality will be identified and addressed in all aspects of project design.

Third, women (and other vulnerable groups) will be actively involved in identifying environmentally sustainable activities and interventions that will support them in safeguarding natural resources and promoting their economic development, with specific strategies being developed to target and include female-headed households. To ensure that the project activities are both gender-responsive and designed in a gender-sensitive manner, a gender action plan will be developed during the project preparation phase.

Expected Key Results and Outputs: 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

 

Monitoring & Evaluation: 

The overall monitoring and evaluation of the proposed project will be overseen by the Department of Planning under the Ministry of Planning and Investments, which carries out M&E for all planning processes in the country.

Contacts: 
Ms. Keti Chachibaia
Regional Technical Advisor for Climate Change Adaptation, UNDP
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Output 1.1.1: Central and Provincial training program implemented to enable climate risk-informed water management practices in target urban and rural areas

Output 1.1.2: Current and future zones of the Xe Bang Hieng River catchment at risk of climate change-induced flooding and drought mapped, based on hydrological models produced and protective infrastructure optioneering conducted

Output 1.1.3. Economic valuation of urban ecosystem services in Luang Prabang and protective options conducted.

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Output 1.2.1: Fine-scale climate-resilient development and land-use plans drafted and validated for Luang Prabang and in the headwater and lowland areas of the Xe Bang Hieng and Xe Champone rivers.

Output 1.2.2: Current Xe Bang Hieng river basin hydrological monitoring network — including village weather stations — assessed and updated to improve efficiency.

Output 1.2.3: Early-warning systems and emergency procedures of vulnerable Xe Bang Hieng catchment communities (identified under Output 1.1.2) reviewed and revised

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Output 2.1.1:  Xe Bang Hieng headwater conservation zones restored to ensure ecological integrity is improved for delivery of ecosystem services

Output 2.1.2: Headwater conservation zone management supported to improve resilience to climate change

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Output 2.2.1: Protective infrastructure constructed to reduce flood (cascading weirs and drainage channels) and drought (reservoir networks and rainwater harvesting) risk

Output 2.2.2: Implementation and distribution of communication and knowledge management tools and technologies (e.g. mobile phone apps, community radio) to increase climate resilience of agricultural communities to floods and droughts

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Output 2.3.1: Market analysis conducted, including; i) analysing supply chains for climate-resilient crops, livestock, and farming inputs; ii) assessing economic impacts and market barriers; and iii) drafting mitigating strategies to address these barriers.

Output 2.3.2: Community Conservation Agreements process undertaken to encourage climate-resilient agriculture, fisheries, and forestry/forest-driven livelihoods and practices

Output 2.3.3: Diversified activities and opportunities introduced through Community Conservation Agreements (developed under Output 2.3.2) in agriculture (livestock and crops, including vegetable farming) as well as fisheries, non-timber forest products (NTFP), and other off-farm livelihoods.

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Output 3.1.1: Training and awareness raising provided to Xe Bang Hieng and Xe Champone headwater and lowland communities on: i) climate change impacts on agricultural production and socio-economic conditions; and ii) community-based adaptation opportunities and strategies (e.g. water resources management, agroforestry, conservation agriculture, alternatives to swiddening ) and their benefits

Output 3.1.2: Project lessons shared within Lao PDR and via South-South exchanges on  strengthening climate resilience with regards to: i) catchment management; ii) flash flood management; and iii) EbA.

Output 3.1.2: Awareness-raising campaign conducted in Luang Prabang for communities and the private sector on urban EbA and flood management.

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

Output 3.2.1: Community-based monitoring systems developed and implemented to measure changes in key ecological determinants of ecosystem health and resilience in the Xe Bang Hieng river basin

Project Dates: 
2020
Proj_PIMS_id: 
6547
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Support for Integrated Water Resources Management to Ensure Water Access and Disaster Reduction for Somalia's Pastoralists

Roughly 75% of Somalia’s 14.7 million people live in rural areas, with approximately 60% practicing pastoralism and 15% practicing agriculture. Less than one third of the population has access to clean water.

Climate change is now bringing more frequent, higher intensity droughts and floods, reducing already scare water supplies. Lack of water poses a serious threat to the health, wellbeing and livelihoods of farming and pastoral communities and limits Somalia’s overall economic and social development. Women in rural areas are particularly vulnerable.

Working with a range of development partners, as well as traditional leaders, women’s groups, local NGOs and community-based organizations, this four-year project (2019-2023) aims to increase Somalia’s capacity to manage water resources sustainably in order to build the climate resilience of rural communities.

The project focuses on:

  • National policy reform and development of integrated water resource management (IWRM)
  • Capacity-building at the national, state, district and local levels
  • Infrastructure for improved climate and water monitoring
  • Capture and sharing of best practices on IWRM.


The project will also provide training for pastoralists and small-scale farmers, men and women, on how to sustainably produce farming and livestock products.

English
Region/Country: 
Coordinates: 
POINT (45.307617150639 2.1056966206131)
Primary Beneficiaries: 
Over 360,000 farmers and pastoralists across Somalia
Financing Amount: 
GEF-LDCF $8,831,000; UNDP TRAC resources $1,500,000
Co-Financing Total: 
Ministry of Energy and Water Resources: US$ 8,000,000, EU: US$ 60,144,000, Global Water Partnership: US$ 100,000, TOTAL financing: US$ 78,575,000
Project Details: 

Water scarcity is a serious threat to Somalia, hindering economic and social development. Throughout the country, surface water and groundwater reserves are decreasing, while the frequency of droughts and floods is on the rise.

In response, this project directly supports integrated water resources development and management for over 360,000 farmers and pastoralists.

The development of a multi-sectorial IWRM Strategy conbined with technical and operational capacity development will support Somalia in planning sustainable water resources development schemes for all states down to the local level, particularly for states that formed as recently as 2015 and 2016.

The project will invest in monitoring infrastructure, including automatic weather stations, manual rain gauges, synoptic stations and radar river-level sensors, which will provide critical data for early warning dissemination in both arid regions and in key river basins to improve water resources management and contingency planning for farmers and pastoralists, including nomadic pastoralists. Currently the government lacks the capacity to put out timely early warnings and accurate hydrological information to support communities in the efficient and economic management of water.

Water mobilization from a diversified source of groundwater and surface water sources as well as construction of water diversion infrastructure will promote rural water supply and increased resilience in flood-prone areas. The resilience of rural populations  will be further enforced by enabling them to exploit their agro-pastoral value chains and increase their asset bases.

The project builds on existing initiatives, including the Integrated Drought Management Program in the Horn of Africa, the Somalia Water and Land Information Management service, the Joint Programme on Local Governance and Decentralized Service Delivery, the New Deal Compact and support provided by the Red Cross and Red Crescent Climate Centre to improve weather and climate forecasting.

Expected Key Results and Outputs: 

Component 1: National water resource management policy establishing clear national and state responsibilities

Outcomes

  1. Policy, legislative and institutional reform for improved water governance, monitoring and management in the context of climate change
  2. Strengthened government capacities at national and district levels to oversee sustainable water resources management

 

Component 2: Transfer of technologies for enhanced climate risk monitoring and reporting on water resources in drought and flood prone areas

Outcomes

  1. Improved water resource data collection and drought / flood indicator monitoring networks in Somalia’s Arid and Semi-Arid Lands (ASALs)
  2. Strengthened technical personnel from the National Hydro-Meteorological Services in IWRM and flood and drought forecasting
  3. Better understanding of the current hydrological and hydrogeological situation

 

Component 3: Improved water management and livelihood diversification for agro-pastoralists

Outcomes

  1. Reduced vulnerability for agro-pastoralists to water resource variability through investment in water resource management infrastructure and training on the livestock value chain
  2. Increased awareness of local communities on rainwater harvesting, flood management and water conservation during rainy seasons
  3. A national groundwater development action plan that will increase access to water for pastoral communities in drought affected areas taking into consideration aquifer characteristics, extent, location, recharge, GW availability and sustainable yields

 

Component 4: Gender mainstreaming, knowledge management and Monitoring and Evaluation

This component will focus on documenting best practices and spreading lessons learned on IWRM, effective hydro-geo-meteo monitoring and early warnings as well as agro-pastoral livelihood value chain skills transfer.

This will be done by first conducting a baseline study, including evaluating existing laws, policies and curriculums to determine how the existing position and status of women and youth can be improved with regards to water resources management.

The project will demonstrate the evolution of all gender-disaggregated baseline indicators and the mainstreaming of gender in all trainings and activities.

Included in this component will be stakeholder workshops in all 15 target villages.

All training materials will be collected and stored by the project’s M&E / KM expert and will be housed on an open-access database for all relevant government representatives, universities and NGOs/CSOs in all 6 states.

Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy.

Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies.

Supported by Component/Outcome Four (Knowledge Management and M&E) the project monitoring and evaluation plan will also facilitate learning and ensure knowledge is shared and widely disseminated to support the scaling up and replication of project results.

Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office.

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation 
Contacts: 
UNDP
Tom Twining-Ward
Regional Technical Advisor, Climate Change Adaptation
UNDP
Abdul Qadir
Climate Change and Resilience Portfolio Manager, UNDP Somalia
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
July 2019
Description: 
GEF CEO endorsement
Proj_PIMS_id: 
5464

Strengthening Climate Information and Early Warning Systems for Climate Resilient Development and Adaptation to Climate Change in Guinea

Despite considerable natural resources, including rich biodiversity, fertile soil, forests and mineral deposits, the West African nation of Guinea remains one of the world’s least developed countries due in part to the poor management of climate variability over past decades.

In line with climate change, the country has seen a decline in rainfall, recurring droughts since the 1970s, and frequent and early floods. The observed impacts of these disturbances are the drying up of many rivers and soils, the reduction of vegetation cover, a decline in agricultural, pastoral and fishing production, and the resurgence of waterborne diseases, all exacerbated by unsustainable production systems.

National development strategies are struggling to achieve results while the country is still recovering from the devastating effects of the 2015 Ebola virus disease.

By improving climate monitoring, forecasting and early warning for disasters, and strengthening the capacities of key actors, this four-year project (2019-2023) will help Guinea to respond to shocks and to mainstream adaptation into development planning for climate-sensitive sectors (agriculture, livestock, water, coastal and forestry areas) – supporting more inclusive and sustainable development into the future.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-13.623046879746 9.4942150191335)
Primary Beneficiaries: 
9,600,000 individuals (80 per cent of the Guinean population) who are currently affected by the effects of climate change in the agriculture, fishing, livestock farming, mining and forest industry sectors. Approximately 200,000 will be direct beneficiaries and around 51 per cent of the beneficiaries will be women. | Grassroots community organizations and farming associations | Over 120 political decision-makers from the agriculture, fishing, livestock farming, mining and forest industry sectors as well as from the planning and finance sectors.
Financing Amount: 
GEF-LDCF US$5,000,000; UNDP TRAC resources $350,000
Co-Financing Total: 
Ministry of Agriculture $30,000,000; Ministry of Transport - National Directorate of Meteorology $1,503,000; National Directorate of Hydrology $384,300; Agronomic Research Centers $240,000; SOGUIPAH $120,000; IRD $450,000
Project Details: 

A coastal country bordered by Côte d'Ivoire, Mali, Liberia, Sierra Leone, Guinea Bissau, Senegal and Mali, Guinea is at the crossroads of major West African climate groups including the Guinean coastal climate, the Sudanese climate and the wet tropical climate at the edge of the equatorial climate.

For several successive decades, the country has recorded a considerable decline in rainfall over the entire territory. This decline has been accompanied by a general rise in temperatures, recurring droughts since the 1970s, a decline in the frequency and intra-annual distribution of rainfall, early and frequent floods, and sea-level rise.

The effects of these changes is having negative consequences for many rural development sectors still largely dominated by rainfed activities and for communities already living under precarious conditions.

By expanding hydrometeorological infrastructure and strengthening institutional capacities in climate monitoring, early warning and development planning, this project is aimed at reducing vulnerability to shocks and promoting climate adaptation in Guinea’s most exposed sectors.

The project feeds into national and global priorities including Guinea’s National Economic and Social Development Plan (PNDES) 2016-2020, Vision Guinée 2040, Guinea’s National Adaptation Programme of Action (2007) and the country’s Intended Nationally Determined Contribution (2015) submitted to the UNFCCC under the global Paris Agreement.

It cuts across several Sustainable Development Goals in Guinea, including SDG 7 (Gender Equality); SDG 12 (Sustainable Consumption and Production), SDG 13 (Climate Action) and SDG 15 (Life on Land).

Expected Key Results and Outputs: 

COMPONENT 1: Technology transfer for monitoring climate and environmental infrastructure

Outcome 1: The capacities of the national hydrometeorological departments are strengthened in monitoring extreme weather phenomena and climate change

Outputs:

  • 64 hydrological stations with telemetry, processing and archiving of data rehabilitated/installed and operational.
  • 37 automatic weather stations, 1 upper air station and 24 lightening detection sensors with archiving and data processing facility rehabilitated/ installed
  • A training program for the efficient operating and maintaining of the hydrometeorology equipment is developed and delivered to hydrological and meteorological technicians of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A training program to run hydrological models and produce climate information products and services (including early warning information) is delivered to meteorologist engineers and hydrologist engineers of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A centralized national climate data and hazard information center and knowledge management system is set up

 

COMPONENT 2: Integrating climate information, early warning and climate adaptation products into development plans.

Outcome 2: The generated climate products and services are accessible and used efficiently and effectively for the production of warnings for producers and in the drafting of medium- and long-term climate-resilient development plans

Outputs:

  • Risk profiles and maps for floods, landslides, thunderstorms, bushfires, stormy winds, and droughts, malaria and meningitis (length of transmission period and geographic range), risk zoning based on hazard and risk maps for all ecological regions of the Guinea, the key river basins, agrometeorological bulletins, rainy season outlooks are developed
  • Hazards risks and climate information products and services are integrated in the multi-year investments plans of the agricultural, water, environment and health sectors, the national land use plan, the national disaster risks management strategy and the local development plans of 26 municipalities
  • A multi hazards Early Warning System covering all Guinea is developed and operational
  • A financial sustainability strategy for the Early Warning System and the centralized national hydroclimatic data and hazard information and knowledge system is developed
Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy. Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies. Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation  
Contacts: 
UNDP
Julien Simery
Technical Specialist - Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Programme Meetings and Workshops: 

Inception workshop, August 2019.

Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
February 2017
Description: 
Concept approved by the GEF
Month-Year: 
March 2019
Description: 
GEF CEO endorsement
Month-Year: 
August 2019
Description: 
Inception workshop
Proj_PIMS_id: 
5552

Safeguarding rural communities and their physical assets from climate-induced disasters in Timor-Leste

In Timor-Leste, increasing climatic variability and unpredictability – particularly related to rainfall and extreme weather events – present a significant risk to the lives and livelihoods of rural people.

Climate-induced hazards, such as floods, landslides and drought, frequently impact families’ lives and livelihoods while also damaging critical rural infrastructure including water supply and drainage, embankments, roads and bridges. These damages leave rural populations without basic services and often in full isolation. 

Targeting six municipalities that are highly susceptible to climate-related hazards, this six-year project (2020-2026) led by the Ministry of Commerce, Industry and Environment (General Directorate for Environment) focuses on:

• Climate risk reduction and climate-proofing measures for small-scale rural infrastructure, and

• The development and integration of climate risk into policies, regulations and institutions to inform rural infrastructure planning and management.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (125.2880858935 -9.1518123180295)
Primary Beneficiaries: 
Approximately 175,840 direct beneficiaries in the 6 target municipalities (15% of total population)
Funding Source: 
Financing Amount: 
US$22.9million via Green Climate Fund grant
Co-Financing Total: 
US$36.687 million via the Government of Timor-Leste; $400,000 via UN Development Programme
Project Details: 

The GCF-financed project in partnership with the GoTL aims to safeguard vulnerable communities and their physical assets from climate change-induced disasters. First, the project will strengthen technical capacities of mandated institutions to assess and manage the risks of climate-induced physical damages and economic losses as well as integrate climate resilient measures into policies and planning. GCF funds will be used to embed new technical skills, improve availability of risk information, and create effective response mechanisms. Second, the project will implement climate risk reduction and climate-proofing measures for small-scale rural infrastructure in order to build the resilience of vulnerable communities in six priority districts. GCF funds will be used to introduce engineering skills for climate proofing of small-scale rural infrastructure that are essential to reducing prevalent social and economic vulnerabilities that will only worsen with climate change. GCF resources will also be invested in the development and implementation of catchment management strategies, which will support landscape restoration and land stability as climate risk reduction and long-term resilience measures. The rehabilitation activities will be undertaken in the catchment areas located in the areas of small-scale infrastructure units.

Expected Key Results and Outputs: 
Output 1:  Climate risk information is developed, monitored and integrated into policies, regulations and institutions to inform climate resilient small-scale rural infrastructure planning and management
 
Activity 1.1 - Develop and deliver climate risk information services and vulnerability mapping to all sectoral institutions
 
Activity 1.2 - Establish a database system for monitoring, recording and accounting climate induced damages in order to inform climate risk reduction planning and budgeting
 
Activity 1.3 - Refine ordinances, regulations and associated codes and standards to enable climate proofing small-scale rural infrastructure
 
Output 2: Climate risk reduction and climate-proofing measures for small-scale rural infrastructure are implemented to build the resilience of vulnerable communities in six priority districts
 
Activity 2.1 - Climate risk reduction measures for small-scale rural infrastructure are fully integrated into the planning and budgeting cycles of Village and Municipal development plans
 
Activity 2.2 - Implementation of climate-proofing measures for small-scale rural infrastructure
 
Activity 2.3 - Supporting catchment management and rehabilitation measures to enhance climate resilient infrastructure and communities.
 
Monitoring & Evaluation: 
Project-level monitoring and evaluation for this project is undertaken in compliance with the UNDP POPP and the UNDP Evaluation Policy
 
The primary responsibility for day-to-day project monitoring and implementation rests with the National Project Manager. 
 
The UNDP Country Office will support the Project Manager as needed, including through annual supervision missions. Additional M&E, implementation quality assurance, and troubleshooting support will be provided by the UNDP Regional Technical Advisor. The project target groups and stakeholders including the NDA Focal Point are involved as much as possible in project-level M&E.
 
An Annual Project Report will be prepared for each year of project implementation, shared with the Project Board and other stakeholders.
 
Within three months after the third year of the project, interim independent evaluation will be conducted. The final project report, along with the terminal evaluation report and corresponding management response will serve as the final project report package. Semi-annual reporting will be undertaken in accordance with UNDP guidelines for quarterly reports produced by the Project Manager.
 
An independent Mid-Term Review will be undertaken and the findings and responses outlined in the management response will be incorporated as recommendations for enhanced implementation during the final half of the project’s duration. 
 
An independent Terminal Evaluation will take place no later than three months prior to operational closure of the project. 
 
Both the Mid Term Review and Terminal Evaluation will be carried out by an independent evaluator. The evaluation report prepared by the independent evaluator is then quality assessed and rated by the UNDP Independent Evaluation Office.
 
The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.
 
Contacts: 
Keti Chachibaia
Regional Technical Specialist, CCA
Climate-Related Hazards Addressed: 
Location: 
News and Updates: 

.

Display Photo: 
Expected Key Results and Outputs (Summary): 

• Outcome 1: Climate risk information is developed, monitored and integrated into policies, regulations and institutions to inform climate resilient small-scale rural infrastructure planning and management

• Outcome 2: Climate risk reduction and climate-proofing measures for small-scale rural infrastructure are implemented to build the resilience of vulnerable communities in six priority districts

Project Dates: 
2020 to 2026
Timeline: 
Month-Year: 
July 2019
Description: 
Green Climate Fund approval
Month-Year: 
December 2019
Description: 
FAA Effectiveness
Month-Year: 
August 2020
Description: 
Launch of project
Proj_PIMS_id: 
5910