Infrastructure/Climate Change Risk Management

Taxonomy Term List

Monrovia Metropolitan Climate Resilience Project

Liberia’s capital city Monrovia is extremely vulnerable to sea-level rise and the increased frequency of high-intensity storms. These climate change-related impacts are contributing to coastal erosion and shoreline retreat, putting lives and livelihoods at risk, and affecting efforts by the Government of Liberia to reach the targets outlined in the Paris Agreement and Sustainable Development Goals.

Compounding these issues, sea-level rise and urban encroachment into the Mesurado Wetland in the center of Monrovia threatens the sustainability the ecosystem services and fisheries in the region.

To address these challenges, the Green Climate Fund-financed “Monrovia Metropolitan Climate Resilience Project” will enhance coastal protection, foster improved coastal management and present local communities with diversified climate-resilient livelihoods. In this way, the project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will directly benefit a total of approximately 250,000 people through coastal defense, enhanced livelihoods, and improved protection of mangrove ecosystems. In addition, the project will indirectly benefit approximately 1 million people through the adoption of a transformative, climate risk-informed Integrated Coastal Zone Management approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-10.749755961229 6.3051065918459)
Primary Beneficiaries: 
250,000 direct beneficiaries, 1 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$17.2 million (Green Climate Fund)
Co-Financing Total: 
US$8.4 million (Government of Liberia)
Project Details: 

Liberia’s capital city, Monrovia[1], is extremely vulnerable to the climate change impacts of sea-level rise (SLR) and the increasing frequency of high-intensity storms, both of which contribute to coastal erosion and shoreline retreat. SLR is a significant contributor to accelerated coastal erosion, and along with the increasing intensity of offshore storms and waves, exacerbates coastal erosion, the impacts of which result in significant damage to buildings and infrastructure in Monrovia’s coastal zone. Additionally, SLR is threatening the sustainability of ecosystem services provided by mangroves in the Mesurado Wetland[2] at the centre of the Monrovia Metropolitan Area (MMA), which is further exacerbated by urban encroachment into, and over-exploitation of the mangroves. These changes negatively impact the habitat for economically important fish species and the loss of these nursery areas will have a considerable impact on the fishery-based livelihoods of approximately 55,000 Monrovians, 46% of whom are women.

The most vulnerable part of the MMA coast is West Point, an impoverished and densely-populated informal settlement situated on a narrow spit between the coast and the Mesurado Wetland, with dwellings built up to the shoreline. In the last decade[3], coastal erosion has caused the shoreline to regress by 30 m, leading to the loss of 670 dwellings and threatening public spaces and boat launching sites that are critical to fishery-based livelihoods. Without intervention — and with the added impact of climate change — coastal erosion is expected to cause further shoreline regression of 190 m by 2100. This is equivalent to an additional 110% more than the coastal retreat expected under a non-climate change or baseline scenario[4].

To adapt to the severe impacts of climate change on Monrovia’s coast, it is necessary to change the current approach to addressing the impacts of climate change from a focus on short-term solutions to long-term integrated and participatory planning that involves the public sector, private sector and communities at all levels of governance. The project is requesting GCF support to address barriers to effective climate change adaptation in the coastal zone of Monrovia, and Liberia more generally, through interventions in three inter-related focus areas: i) coastal protection; ii) coastal management; and iii) diversified climate-resilient livelihoods. In this way, the proposed project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will address one of the most urgent adaptation needs in Monrovia by constructing a rock revetment to protect West Point against coastal erosion and storms. The revetment was selected as the preferred solution, because while a ‘soft solution’ in the form of beach nourishment with an associated groyne was considered technically feasible, the sustainability of this option would be limited, because the regular maintenance required was not feasible in the local context[5]. From an infrastructural perspective, the project will protect and build the climate resilience of approximately 10,800 people in West Point and avoid damages of up to USD 47 million to the individual and communal property of West Point residents as well as securing launch sites for fishing boats which will have a positive impact on the fisheries sector. The construction of this coastal protection infrastructure will form part of a strategic, cohesive coastal adaptation strategy using an Integrated Coastal Zone Management (ICZM) approach.

The paradigm shift necessary for adopting an evidence-based and participatory ICZM approach across Liberia will be facilitated by the proposed project through initiatives to strengthen the technical and institutional capacity of the government and communities to adapt to the rapidly changing coastal landscape and to undertake long-term, climate-responsive planning on the coast. Based on quantitative, defensible scientific data in coastal management and planning, the proposed project will develop a national-scale high-resolution multi-criteria vulnerability map and design a national ICZM Plan (ICZMP) for Liberia in consultation with all relevant stakeholders, including the private sector. By fostering partnerships among government institutions and between the Government of Liberia (GoL), private sector actors, research institutions and communities, the project will improve coordination on coastal management and create an enabling environment for ongoing coastal adaptation beyond the project area and after the project implementation period.

The project will increase local adaptive capacity by strengthening gender- and climate-sensitive livelihoods and protecting mangroves in the Mesurado Wetland within Monrovia. Specifically, adaptative capacity in Monrovia will be increased by: i) safeguarding ecosystem services provided by mangroves and increasing the resilience of these ecosystems to climate change, through community co-management agreements between government and communities; ii) improving community knowledge on climate change impacts and adaptation practices; and iii) strengthening climate-sensitive livelihoods and supporting the uptake of climate-resilient livelihoods. This is an important element of the integrated approach because while the development of ICZMP will improve coastal management at an institutional level, limited institutional capacity in Liberia means that capacitating communities to engage positive adaptation strategies is critical to ensure an increase in their long-term climate resilience. The latter two activities will be based at the innovation and education centre — to be established in West Point. In addition to being the focal point for climate-resilient livelihood development, the innovation and education centre will act as a hub for awareness-raising and other community-led actions being implemented under the project[6]. An exit strategy and O&M plan (Annex 21) will ensure that the proposed project activities will be sustained in the long-term[7].

These investments by the GCF and the Government of Liberia (GoL) will catalyse a paradigm shift in the management of Monrovia’s coastal zone towards an integrated, transformative and proactive approach that addresses current and anticipated climate change risks and which mixes both infrastructure (where necessary) and coastal ecosystems in adaptation efforts. This will directly benefit a total of ~250,000 people in the communities of West Point through coastal defence and enhanced livelihoods; and through enhanced livelihoods and improved protection of mangrove ecosystems in the communities of Topoe Village; Plonkor and Fiamah; and Nipay Town and Jacob’s Town. In addition, the project will indirectly benefit approximately one million[8] people through the adoption of a transformative, climate risk-informed ICZM approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.




[1] In this proposal, ‘Monrovia’ and the ‘Monrovian Metropolitan Area’ (MMA) are used interchangeably to refer to the jurisdictional or administrative entity of the MMA.

[2] the estuary of the Mesurado River

[3] 2008 to 2018

[4] See Annex 2.B (Vulnerability Sub-assessment) for Economic and Financial Analysis of Monrovia Metropolitan Area, and specifically West Point.

[5] Stabilising or ‘fixing’ the shoreline by means of a rock revetment is the preferred solution to coastal erosion at West Point by both the Government of Libera and affected communities. This approach also represents the most socially sensitive design because it requires low-to-no maintenance while still accommodating boat launching and landing. A rubble mound revetment with rock armour, which is able to withstand extreme wave conditions and storm events, is proposed. The Engineering Sub-assessment Report (Annex 2.C) showed that the northern portion of the proposed revetment is a less dynamic wave environment, and the conceptual design for this portion of the intervention site consequently proposes lighter rock armour. The ‘toe’ of the structure will consist of a resistant geotextile and will be anchored in the existing beach sediment to a level of 5m below mean sea-level to account for future deepening of the area directly in front of the revetment. A six-metre wide promenade, for access to the shoreline and recreation activities, is proposed between the revetment and existing dwellings at West Point. Two boat launching and landing sites are proposed as part of the preferred option at the southern end and centre of the revetment, respectively. These launch and landing sites will be provided in addition to the open beach area to the north of the proposed revetment, where fishing boats are already launching and landing. Further details on the stakeholder engagement process that led to this decision is available in Annex 2.A Feasibility Study, Section 10.2 Analysis of coastal defence options.

[6] Recognising the risks of the COVID-19 pandemic, all project activities will operate strictly within government mandated regulations and best practices. All government directives, such as lockdowns and mandatory quarantine will be adhered to, as will any restrictions on travel, organisation of events or sizes of meetings and workshops.

[7] Further information on the exit strategy and sustainability of the proposed project can be found in Section B.6.

[8] Direct benefits will accrue at the site-specific scale, whereas indirect benefits will accrue at the municipal scale — i.e. the population of MMA, which is estimated at one million people.

 

Expected Key Results and Outputs: 

Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.

Activity 1.1: Prepare construction plan and finalise technical design specifications for coastal defence structure at West Point.

Activity 1.2: Construct coastal defence structure to protect West Point against climate change-induced coastal erosion.
 

Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.

Activity 2.1: Develop an Integrated Coastal Zone Management Plan for Liberia.

Activity 2.2: Capacitate the Cross-Sectoral Working Group to mainstream ICZM into relevant government sectors through a Training-of-Trainers approach.

Activity 2.3: Strengthen the asset base and technical capacity of the ICZMU for the collection of spatial and biophysical coastal information to support the implementation of the ICZMP.

Activity 2.4: Strengthen the existing Environmental Knowledge Management System (EKMS) to act as a platform for awareness-raising and sharing of climate risk-informed ICZM approach.

Activity 2.5: Conduct an awareness-raising campaign for communities in focus areas on climate change impacts and adaptation practices.


Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

Activity 3.1: Establish a community education and innovation centre to function as a community knowledge generation and learning hub, a repository on climate change adaptation practices and host community activities under Output 3.

Activity 3.2: Establish community-led co-management agreement to ease anthropogenic pressure on mangroves in the MMA.

Activity 3.3: Conduct annual assessments to evaluate the project-induced changes in mangrove degradation, community perceptions and awareness of climate change impacts, adaptation options and mangrove ecosystems throughout the project implementation period.

Activity 3.4: Establish small-scale manufacturing facilities and develop training material to capacitate community members to manufacture and sell cookstoves to support alternative climate-resilient livelihoods.

Activity 3.5: Purchase and install low-maintenance eco-friendly cold storage facilities near fish processing sites to reduce pressure on mangroves and increase market efficiency

Contacts: 
UNDP
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 
Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.
Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.
Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action

Integrated climate-resilient transboundary flood risk management in the Drin River basin in the Western Balkans (Albania, the Former Yugoslav Republic of Macedonia, Montenegro)

The Drin River Basin (DRB) is a transboundary river basin, which is home to 1.6 million people and extends across, Kosovo*, the Former Yugoslav Republic Macedonia, Montenegro and Greece. Climate change and climate variability have been increasing the frequency, intensity and impact of flooding in the basin. Historical flood data from the Western Balkans suggests a more frequent occurrence of flood events, attributed to an uneven distribution of precipitation and torrential rain, particularly over the last decade. More and larger areas - and more people - are being affected by flooding with a strong impact on national economies. Future climate scenarios project a further increase in the likelihood of floods as well as in their destructive nature. Increased frequency and intensity of floods and droughts, increased water scarcity, intensified erosion and sedimentation, increased intensity of snow melt, sea level rise, and damage to water quality and ecosystems are forecasted. Moreover, climate change impacts on water resources will have cascading effects on human health and many parts of the economy and society, as various sectors directly depend on water such as agriculture, energy and hydropower, navigation, health, tourism – as does the environment.

The objective of the "Integrated climate-resilient transboundary flood risk management in the Drin River basin in the Western Balkans (Albania, the Former Yugoslav Republic of Macedonia, Montenegro)" project is to assist the riparian countries in the implementation of an integrated climate-resilient river basin flood risk management approach in order to improve their existing capacity to manage flood risk at regional, national and local levels and to enhance resilience of vulnerable communities in the DRB to climate-induced floods. The countries will benefit from a basin-wide transboundary flood risk management (FRM) framework based on: improved climate risk knowledge and information; improved transboundary cooperation arrangements and policy framework for FRM and; concrete FRM interventions.

* References to Kosovo shall be understood to be in the context of Security Council Resolution 1244 (1999)

English
Level of Intervention: 
Coordinates: 
POINT (20.442993079765 40.096002692086)
Primary Beneficiaries: 
1.6 million people
Funding Source: 
Financing Amount: 
US$9,927,750
Project Details: 

Climate change impacts

Climate change is already having an impact and is likely to intensify in the future. According to the national communications to UNFCCC from Albania, Montenegro and the Former Yugoslav Republic of Macedonia, as well as to the report ‘The state of water in Kosovo’, climate change will have serious negative impacts in the Drin river basin including increased frequency and intensity of floods and droughts, increased water scarcity, intensified erosion and sedimentation, increased intensity of snow melt, sea level rise, and damage to water quality and ecosystems. Moreover, climate change impacts on water resources will have cascading effects on human health and many parts of the economy and society, as various sectors directly depend on water such as agriculture, energy and hydropower, navigation, health, tourism –as does the environment.

The DRB countries are increasingly exposed to the impact of climate change. They are experiencing increased periods of extreme heat in the summer months and increased rainfall during the cooler seasons. According to long-term projections, the average annual temperature will increase by 2° C to 3° C by 2050 and precipitation will decrease in the summer, resulting in longer dry periods followed by more sudden heavy rainfalls. This combination increases the likelihood of floods as well as their destructive nature.

Historical flood data from the Western Balkans suggests a more frequent occurrence of flood events, characterized by more extreme and more rapid increase in water levels, attributed to an uneven distribution of precipitation and torrential rain, particularly over the last decade. More and larger areas and, therefore, a greater population numbers are being affected by flooding with a strong impact on national economies.

In Albania, climate change projections indicate the intensification of heavy precipitation and an increase in the frequency of heavy rains with longer duration, causing flooding and economic damages. There is already evidence of increasing frequency of high intensity rainfall, which is increasing pluvial or flash flooding which inundates the floodplain in a matter of hours. In winter, longer duration rainfall causes flooding which lasts for several weeks during the winter period while long-duration spring rainfall combines with snowmelt to cause flooding. Flood risk is a combination of river flooding and coastal flooding due to sea water inundation (storm surges), both of which are increasing with climate change.

According to available climate change projections for Montenegro, there will be a sharp increase in variability of river flow, characterized by increased frequency and intensity of flooding and hydrological drought. In addition, coastal flooding and storm surges will also significantly increase. During this period the area of low air pressure develops in the coastal region of Montenegro and has a wide impact causing maximum precipitation in the southern areas. In the karst areas, during spring, there are periodic floods due to longer periods of precipitation, melting snow and high groundwater levels. Such floods have impacted the Cetinje plain several times and have caused severe damage to the buildings there.

The First and Second National Communications on Climate Change for FYR Macedonia outlined a number of scenarios related to water resources. The findings included a projection of a 15% reduction in rainfall by 2050, with a drastic decrease in runoff in all river basins. Although the long-term projection is for increased temperatures and a decrease in sums of precipitation, the past period studied shows significant climate variability with increased precipitation. The proportion of winter precipitation received as rain instead of snow is increasing. Such shifts in the form and timing of precipitation and runoff are of concern to flood risk.

Project details

The AF-financed project will build resilience of communities and livelihoods in the Drin Basin to climate-induced floods by catalyzing a shift to a holistic basin-wide climate-responsive flood risk management and adaptation approaches based on enhanced climate information, risk knowledge, and community structural and non-structural adaptationmeasures.

The proposed integrated approach to climate resilient flood risk management will encompass: a increased technical, human and financial capacities of relevant institutions within each Riparian country, with responsibility for flood risk monitoring, forecasting and management to enable implementation of climate resilient Integrated Flood Risk Management (IFRM). This would include strengthening of the a. hydrometric monitoring network, risk mapping, flood hazard and risk modelling capacity; b.an enhanced policy and risk financing framework for flood risk management based on enhanced understanding of climate risks; c.climate-proof and cost-effective investment into flood protection through enhanced capacities to design and implement structural and non-structural flood risk management measures, and to provide effective flood risk reduction measures to the population; d. enhanced awareness, response and adaptation capacity of the population; engaging private sector into climate information management and risk reduction investment.

The objective of the project is to assist the riparian countries in the implementation of an integrated climate-resilient river basin flood risk management approach in order to improve their existing capacity to manage flood risk at regional, national and local levels and to enhance resilience of vulnerable communities in the DRB to climate-induced floods. The countries will benefit from a basin-wide transboundary flood risk management (FRM) framework based on: improved climate risk knowledge and information; improved transboundary cooperation arrangements and policy framework for FRM and; concrete FRM interventions. 100.As a result, the Adaptation Fund project will improve the resilience of 1.6 million people living in the DRB (direct and indirect beneficiaries). 101.The project will contribute to the strengthening of the current flood forecasting and early warning system by increasing the density of the hydrometric network, and by digitizing historical data for stations not currently in the existing forecasting model. The project will develop and implement transboundary integrated FRM strategies providing the national authorities with robust and innovative solutions for FRM, DRR and climate adaptation, including ecosystem-based gender sensitive participatory approaches. In addition, the project will develop the underlying capacity of national and regional institutions to ensure sustainability and to scale up the results. It will support stakeholders by providing guidance, sharing climate information, knowledge and best practices. The project will also invest in the priority structural and community-based non-structural measures. Importantly, the project is aligned with and will support the implementation of the EU Floods Directive (EUFD) in DRB countries.102.The AF project will build upon experience of Regional UNDP/GEF Drin project (see baseline initiatives section above) and otherprojects25,26in the region and will include the following innovations:1) introduction of international best practice in flood hazard and risk assessment, modelling and mapping in line with EUFD; 2) innovative mix of structural and non-structural interventions based on climate risk-informed design; 3) agro-forestry measures and community-based flood resilience schemes. The socio-economic benefits include reduced damages and losses and improved food production (through protection of agricultural land). This will have direct and indirect livelihood protection and potential income generation benefits. Climate risk informed planning of the hydropower sector is important to enhance hydropower operations to include transboundary climate-induced flood risk management, thus ensuring the continued sustainable development of the hydropower sector which will help continue the shift to clean energy in the region. Climate risk information will also safeguard critical infrastructure assets such as transportation (roads and bridges) which are critical to the economic development and functioning of communities. Environmental benefits include improved ecosystem functions through better spatial planning and non-structural measures such as agro-forestry, which will provide water retention functions, regulation of hydrological flows (buffer runoff, soil infiltration, groundwater recharge, maintenance of base flows), natural hazard mitigation (e.g. flood prevention, peak flow reduction, soil erosion and landslide control), increased riverbed stabilization resulting in decreased erosion, habitat preservation, and reforestation. This project will directly benefit the most vulnerable parts of the population and will have significant gender co-benefits which will be ensured through close collaboration with a gender expert dedicated to ensuring that gender considerations are a key part of any consultation or activity planning process. Flooding and disasters in general, impact women disproportionately and the project will ensure that these differential impacts are taken account in all project interventions.

Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Hazard and Risk Knowledge Management Tools

Component 2: Transboundary institutional, legislative and policy framework for FRM (Flood Risk Management)

Component 3: Community-based climate change adaptation and FRM interventions

Project Dates: 
2019 to 2024
Timeline: 
Month-Year: 
May 2019
Description: 
Project Launch
Proj_PIMS_id: 
6215
SDGs: 
SDG 13 - Climate Action

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Landscape restoration for increased resilience in urban and peri-urban areas of Bujumbura in Burundi

The proposed "Landscape restoration for increased resilience in urban and peri-urban areas of Bujumbura in Burundi" project will strengthen integrated watershed management and flood management of the Ntahangwa river connected to Bujumbura to ensure the resilience of both upstream highland communities and downstream lowland communities living in urban areas. The proposed GEF Least Developed Countries Fund-financed project will include a comprehensive planning and management approach making use of climate information available in the country together with specific investments in landscape restoration, flood management measures and resilient livelihoods support. Landscape restoration in areas connected to Bujumbura will help restore flood-related ecosystem protection for both highland upstream communities and lowland urban communities with adaptive solutions ranging from tree planting to watershed protection and reinforcement of riverbank structures. The project is currently in the PIF stage.

At least 120,000 people from the two Bujumbura Provinces, Bujumbura Mairie and Bujumbura Rural, or about 8% of the total estimated population in these two provinces will directly benefit from the project (half of project beneficiaries are women). The project will restore 3,000 ha of degraded areas through tree planting, an additional 1,000 km of anti-erosion ditches and terraces and 1.5 km of flood control infrastructures along the Ntahangwa river in Bujumbura itself. The watershed area is estimated between 12,829 hectares, the project aims to ensure that 10,200 ha, or 80% of the watershed's estimated area, are put under improved management. 

To complement the restoration efforts, livelihood activities are needed to reduce the vulnerability of populations by promoting green entrepreneurship and providing better access to markets (initial main sectors targeted are agriculture and agro-industry as well as the charcoal sector) connecting urban communities to peri-urban communities in the watershed. The charcoal sector’s reliance on trees makes it a prime sector to target through a climate-resilient value chain approach. The agro-business sector will benefit from increasing the value of agricultural products and creating new investment opportunities. The urban focus of this project opens new doors to tap into the nascent startup ecosystems of Bujumbura while providing support for youth entrepreneurship and employment opportunities. Resilient livelihood options and green entrepreneurship are important strategies to rebuild Burundi’s economy as part of its post-COVID-19 recovery efforts.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (29.539672772821 -3.3803614343783)
Primary Beneficiaries: 
120,000 direct beneficiaries
Financing Amount: 
US$8.2 million
Co-Financing Total: 
US$16 million
Project Details: 

Impacts of climate change

Burundi is a small landlocked country of 11 million people. Agriculture is its primary economic sector, employing nearly 80% of its inhabitants who live from subsistence farming. The country is densely populated with high population growth. Bujumbura is Burundi’s biggest city and until February 2019, the capital city before it moved to Gitega. Bujumbura remains the main economic centre of the country and concentrate services and all of the business opportunities. Burundi’s landscape presents large swath of mountainous areas with elevations ranging from 770 m up to 2,670 m, on the eastern part of the country, the terrain drops to a flat plateau.

Burundi is subject to cyclical geophysical phenomenon like El Niño that are causing extreme climatic situations, strengthening the country’s vulnerability in different sectors, including infrastrutures development, transport, housing schemes and urban planning. This increased exposure to the impacts of climate change, together with the high poverty rate – 67% of the population living under the poverty threshold - puts the economy of Burundi as a whole in a very vulnerable and fragile situation. Burundi ranks as one of the countries most vulnerable to climate disruptions, ranking 171 out of 181 in the ND-GAIN index for climate vulnerability. The country is the 14th most vulnerable country and the 16th least ready country to combat the expected impact of climate change.

Current trends have shown an overall decrease in precipitation creating shorter wet seasons and a prolonged dry season. An increase in mean temperature of 0.7-0.9°C has been observed since 1930. Climate-induced natural hazards have become more frequent in the past decades with an increase in flood and drought as well as storm surges and landslides. Severe droughts frequently affect Burundi and account for a third of all natural hazards occurring in the country and torrential rains have caused major flooding issues around Lake Tanganyika, including Bujumbura. Between 1999 and 2007, the combined losses from severe flood (2006, 2007) and drought (1999, 2000, 2005) episodes were estimated by the government at 5% of the country’s GDP. Severe flooding and landslide have become a common yearly occurrence due to heavier rains than usual during the wet seasons. The country has reported important damages to crops, soil and infrastructure together with the increased presence of pests and disease that affect food crops and livestock.

Between 2013 and August 2020, the International Organization for Migration recorded 131,336 internally displaced people (IDPs), 83% of them as a result of natural disasters. The major part of these displacements occurred in the provinces of Bujumbura Mairie and Bujumbura Rural where 60,207 IDPs are on records. In January 2014, torrential rains caused rivers throughout the city of Bujumbura to come out of their bed. The flooding affected 220,000 people, 40% of Bujumbura’s population. 70 people were reported dead, 4 missing and 182 injured. Physical damage included 2,000 damaged or destroyed houses, the destruction of teaching materials at 7 flooded schools, lost merchandise at 500 stalls in 1 market, several bridges destroyed, 2 main roads cut, and 5000 ha of agricultural land degraded. A month later, in February 2014, floods and landslides in Bujumbura caused 64 deaths, destroyed 940 homes and rendered nearly 12,500 people homeless. Similar events causing deaths and massive destruction have been reported by the United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA) in 2019-2020. In April 2020, floods in Bujumbura Rural displaced 27,972 people and destroyed or damaged 6,010 houses. UN OCHA reported thousands of hectares of crops ready for harvest destroyed as well as an increased trend in prices for basic food commodities. Further increase are expected as traders try to preserve their stocks in anticipation of poor harvests.

Regional climate models using both a low and high emission scenarios (RCP 4.5 and RCP 8.5 respectively) indicate that the average annual temperature in the country could increase by 1.7-2.1°C by 2060 and 2.2-4.2°C by 2100 (mean change compared to the average for the 1970–1999). The highest increase is projected to occur during the dry season, which could lead to longer heat waves and more severe drought episodes. Climate models indicate an increase in mean annual precipitation of 5.7%-7.7% by 2060 and 8.6-13.2% by 2100 compared to 1970-1999. Furthermore, most of the regional climate models show an increase in precipitation during the main wet season (November-February) and all the models agree on a positive trend for the months of November and December and dryer conditions the months before the onset of the rainy season.

These changes and variability will result in challenges to agricultural productivity, food security and livelihoods, and a likely increase in the occurrence of climate disasters already observed. While evapo-transpiration will increase due to higher temperatures, the surplus of water from the precipitations is likely to increase the risk of extreme rainfalls, flash floods and landslides. A vulnerability analysis of Burundi showed that the area surrounding Bujumbura is particulary sensitive to erosion due to its mountainous landscape and soil profile, a situation that is likely to continue or worsen over time with climate change. On the other hand, the vulnerability analysis shows that drought is and will continue to remain an issue in the eastern and southern part of the country.

Infrastructure investments are concentrated in Bujumbura, making the city particularly prone to damage during flooding due to its geographical situation in lowlands surrounded by mountains prone to erosion and landslides. In order to address these issues, the Government of Burundi, through the National Platform of Prevention and Management of Disaster Risks in partnership with UN Agencies has prepared a “Flood contingency plan”. However, the existence of the Contigency Plan in absence of technical and financial resources has not brought significant changes to populations who suffer greatly from those disasters. In Bujumbura, city residents in the Nyakabiga, Kigobe, Mutanga and Mugoboka quartiers were forced to abandon their houses after they collapsed due to erosion and landslides. Other public infrastructures and private households are on the brink of collapse along the bank of the river Ntahangwa, putting lives directly at risk. The Ntahangwa watershed covers several districts east of Bujumbura and features steep hills prone to landslide and erosion, which then end up affecting densely populated areas of Bujumbura further downstream. Populations in the Ntahangwa watershed (outside Bujumbura itself) rely mostly on subsistence agriculture and agro-forestry on hills for their livelihoods and are highly vulnerable to the impact of climate change.

In addition, the country faces aggravating factors, in particular the socio-political crisis that leads to population movements, creating vulnerable groups and a polarization of the population in general. It is also important to highlight the situation of women, who, despite the efforts identified over the last years with regards to political and economic aspects, are still facing inequalities in terms of rights - in particular access to private property. Youth represents a key part of Burundi’s workforce, but opportunities for employment, including those with university degrees, is lacking and fails to fully tap into their potential. The Government has made youth employment a priority and a key pillar of their social protection policy.

COVID-19

Burundi reported its first case of COVID-19 in March 2020. As of the end of 27 October 2020, the country had 558 cases with one official death only. Burundi closed its borders in March 2020, but a comprehensive response to COVID-19 only started in July 2020 when the newly sworn president of Burundi, Évariste Ndayishimiye, declared the virus as “the worst enemy of Burundi” while announcing preventive measures against the disease inclu­ding mass screening, barrier gestures and economic incentives to reduce food prices. Similar to other African countries, the evolution of the pandemic has not seen the same dramatic progress as has been observed in Asia, Europe or America, but a response is required to maintain essential health services and avoid the spread of the virus beyond the capacity of Burundi’s fragile health system. The majority of confirmed cases were reported in the Bujumbura province.

COVID-19 is expected to impact agricultural production capacities and livelihoods, which could exacerbate food insecurity and limit the resilience capacities of the most vulnerable populations. The crisis has negative effects on food accessibility and price increases have already been observed (e.g. the price of maize is 37-61 percent higher compared to the same time last year). Food prices declined significantly between January and May, falling to their lowest level in seventeen months, but September 2020 marked the fourth consecutive monthly increase in the FAO Food Price Index. Border closure and quarantine requirements have led to a slow-down in trade and a disruption of cross-border markets affecting vulnerable households relying on casual labour and trade with the Democratic Republic of Congo. The COVID-19 crisis is impacting Burundi’s economic recovery. Some of the most affected sectors include services, hospitality and commercial services (transportation, travel, insurance) as well as agriculture, largely due to travel restrictions, a decline in international trade, waning demand for exports, and supply-chain disruptions.

Burundi has limited fiscal, monetary and financial buffers to cope with the current crisis. The GDP of Burundi had slightly risen to 1.8% in 2019 thanks to higher agricultural yields, but is poised to fall to 0.3% for 2020. As a result, public debt is expected to increase to 63.7 percent of the GDP in 2020 from 58.5 percent in 2019 due to reduced revenues and higher spending on health. Assuming the pandemic brought under control, the outlook could be positive in 2021 and 2022 with a significant rebound of growth supported by increased activity in all sectors.

The COVID-19 recovery efforts present opportunities for Burundi to use ecosystem-based adaptation and green economy principles to create jobs, strengthen agricultural value chains and supply chains from urban and rural areas and rebuild Burundi’s economy while addressing climate vulnerabilities and drivers of land degradation.

Project overview

The LDCF-financed project aims to address the vulnerability of urban and peri-urban communities of Bujumbura and the Ntahangwa watershed to the increased frequency of floods, storm runoffs and landslides projected by climate models. These natural hazards are destroying households and infrastructures of urban communities of Bujumbura along the bank of the Ntahangwa river and threaten the livelihoods and resilience of highland communities living in the upstream part of the watershed. Erosion is a key factor increasing the vulnerability of highland communities to adapt and solutions to increase their resilience have the potential to reduce the impact felt by lowland communities downstream. Floods and storms directly affect the capacity of the watershed’s ecosystem to buffer the impact of climate change, which is made worst by the degradation and deforestation of hills by communities. Despite investments in watershed restoration in the past, there is no planning and management tool at the watershed-level to ensure the long-term resilience of communities. Climate information can support those processes; however, the government lacks the capacity to analyse and make use of data and information for decision-making.

The long-term solution is to strengthen integrated watershed management and flood management of the Ntahangwa river connected to Bujumbura to ensure the resilience of both upstream highland communities and downstream lowland communities living in urban areas. The solution will include a comprehensive planning and management approach making use of climate information available in the country together with specific investments in landscape restoration, flood management measures and resilient livelihoods support. Landscape restoration in areas connected to Bujumbura will help restore flood-related ecosystem protection for both highland upstream communities and lowland urban communities with adaptive solution ranging from tree planting to watershed protection and reinforcement of riverbanks structures. To complement the restoration efforts, livelihood activities are needed to reduce the vulnerability of populations by promoting green entrepreneurship and providing better access to markets (at this stage, the main sectors targeted are agriculture and agro-industry as well as the charcoal sector) connecting urban communities to peri-urban communities in the watershed. The charcoal sector’s reliance on trees makes it a prime sector to target through a climate-resilient value chain approach. The agro-business sector will benefit from increasing the value of agricultural products and creating new investment opportunities. The urban focus of this project opens new doors to tap into the nascent startup ecosystems of Bujumbura while providing support for youth entrepreneurship and employment opportunities. Resilient livelihood options and green entrepreneurship are important strategies to rebuild Burundi’s economy as part of its post-COVID-19 recovery efforts.

Barriers

Several barriers to this solution have been identified, they will need to be addressed by the LDCF project in order for the project to achieve its results.

Barrier 1: Limited institutional and technical capacity for mapping and analysis of climate risks for resilient integrated watershed management (including flood management). While a climate information system for early warnings has been established in Burundi, operators are receiving training to operationalize the system, but their capacities to make use of data and information beyond early warning (e.g. planning and management) are and will remain limited without dedicated resources. Those capacity gaps need to be addressed before national authorities can analyse trends and develop models to understand flood and erosion risks and support policy and planning processes that can ensure a resilient integrated watershed management of the Ntahangwa river. The development of community development plans (PCDC) has been an important tool to ensure community engagement in shaping programming and investment priorities. However, the absence of an overarching strategic planning process at the watershed level leads to fragmentation and difficulties in developing and measuring the overall impact of interventions across the watershed and broader productive landscape.

Barrier 2: Limited capacities, knowledge and technologies for Ecosystem-based Adaptation. Local authorities do not have the knowledge and expertise to manage climate risks appropriately at their level, even when management measures are identified in a local development plan. Preventive measures are therefore not prioritized and the response to climate-related disasters has remained reactive. This results in significant damage and losses (human, material), which reduces productivity and leads to negative externalities and maladaptation. Communities of the watershed have limited exposure to ecosystem-based adaptation solutions that can improve the resilience of watersheds and restore ecosystem services for flood and erosion protection. They lack the capacity to implement EbA interventions and are not incentivized for doing so. While funding for local development is scarce, human resources are abundant and communities all over the nation willingly give time and effort to benefit their own community. This approach referred to as “labour intensive public work” does not focus on climate resilience, but could be leveraged for the implementation of climate-resilient initiatives with the right incentives.   

Barrier 3: Limited livelihood options and entrepreneurship support for climate resilience, in particular for vulnerable and under-represented populations such as women and the youth. Competing needs and interests make it difficult for vulnerable populations to factor in climate risks in their decisions. The lack of resilient alternative livelihood options means they often are forced to continue with maladapted practices despite experiencing increasing negative impacts from climate change every season. Deforestation and unsustainable agricultural practices worsen the slopes’ stability and compound the problems as climate change impacts worsens. Alternative options to reduce those pressures are extremely limited or not realistic due to lack of market access. While highland upstream areas become more prone to landslide and erosion during intense rainfall, they also worsen the situation of communities in the lowland downstream areas who face increasing risks of flood, flash floods and landslides. For the Ntahangwa watershed, demand for food and agricultural products is driven by urban population in Bujumbura while some of their needs are met by rural communities upstream. Despite this obvious link, there is a disconnect between the activities to meet urban demand and their impact on ecosystem services that protect them against flood and there is no win-win mechanisms to use market levers to encourage a shift to resilient livelihood options that meet urban demands while reducing pressure on ecosystem services that also benefit urban populations. In general, lack of market access is a barrier making those livelihood options difficult to implement as tools and mitigating strategies to overcome those barriers are limited/inexistent. Support for small business creation by the government is limited, even more for the implementation of innovative technological solutions deemed risky.

 

Expected Key Results and Outputs: 

Component 1: Developing technical capacities for climate-induced flood and erosion risks mapping and their use to inform climate-resilient integrated watershed management and other planning processes.

The Ntahangwa river connected to Bujumbura is a strategic asset that provides opportunities for productive sectors (e.g. agriculture, fisheries) but is also prone to climate risks and causes important damage due to erosion and landslides during wet seasons. Investments in parts of the Ntahangwa watershed have been made in the past, but they are insufficient to yield their intended results as they are scattered and not chosen based on an overall understanding of the watershed hydrologic processes and ecosystem services. A comprehensive integrated approach to land and water resources management of the Ntahangwa watershed is required to ensure long-term flood and erosion control and increased resilience of the communities in the watershed, including in areas at high risk of flood in densely populated areas of Bujumbura.

Under this component 1, capacities to analyse climate data and develop climate risk models will be enhanced to support climate-resilient integrated planning at the watershed level and inform communal development plans and flood-resilient urban development plans. The outcome under this component will address the first barrier to the long-term solutions identified in section 1. Interventions will cover the urban, peri-urban and rural settings, as they need to be considered together to understand the needs, priorities and constraints of populations in each of those areas to identify opportunities and synergies at the level of the watershed and attribute relevant role and responsibilities accordingly. For example, urban populations downstream need rural communities upstream to prevent soil erosion and reduce surface runoff causing flash floods. Rural communities need urban and peri-urban communities to access markets to sell their products.

Outcome1: Enhanced capacity for climate risk modelling and integrated planning in the Ntahangwa watershed and Bujumbura town

Under the LDCF project “Community based climate change related disaster risk management”, a community-based climate information system was developed to collect hydrological information and disseminate early warning information. 30 hydrometeorological stations were installed, with information collected centrally by the Geographic Institute of Burundi (IGEBU) and already covering the Ntahangwa watershed. As of 2021, the early-warning system should be operational, fully managed and funded by the government. Capacities and resources to make use of climate information will remains nonetheless limited and prevent use for planning and decision-making. Outcome 1 will build government capacities to expand the use of the climate information to better understand ecosystem health and their capacity to deliver benefits in terms of resilience under the current human, environmental and climate-related pressures. Modeling capacities also need to be enhanced to develop hydrological models to determine climate risks, more specifically flood and erosion risks, in the Ntahangwa watershed based on current climatic trends and future climate change scenarios. Those are pre-requisites for the development of an evidence-based, climate-resilient, integrated watershed management plan for the Ntahangwa river, as they will guide planning and decision-making processes.

Target areas for the World Bank-funded “Landscape Restoration and Resilience Project”, which constitute part of the baseline for land restoration and erosion control activities, were chosen in relation to their location in the Isare commune, but not primarily for their link to the Ntahangwa river. The resilient integrated watershed management plan will provide an understanding of the key areas in the watershed for the provision of ecosystem services for flood and erosion control and propose a watershed rehabilitation plan for those areas. The determination of priority areas will also confirm the critical gaps in the areas of treatment in the Ntahangwa watershed. Integrated watershed planning is an exercise requiring cross-sectoral cooperation and intense stakeholders’ consultation and participation, involving vulnerable and under-represented groups of people, such as women, youth, and indigenous people (n.b. indigenous Batwas are known to be present in the Ntahangwa watershed). The watershed planning exercise will make use of the climate information systems and climate-sensitive risk maps and evaluate adaptation solutions based on their geographical situation in the watershed. This should be complemented by ecosystem valuations to determine the economic value of ecocystem services provided by the watershed areas. Training will be provided to increase the capacity of relevant provincial and communal government officials, decision-makers and planners. The training will help them identify cost-beneficial ecosystem-based adaptation opportunities (rural as well as urban) and flood protection measures that address the climate threats facing the watershed.

The resilient integrated watershed planning exercise will be used to inform the preparation or revision of existing urban development plans in Bujumbura and communal local development plans in rural communes of the watershed. Those plans are the main tools to translate watershed-level planning into concrete field intervention on the ground while supporting long-term sustainability of the project activities and as a result long-term climate resilience.

Outcome 1 will support the other outcomes by creating the necessary basis upon which this LDCF project can conduct ecosystem restoration, flood protection and livelihood development activities to increase the resilience of communities in the watershed (in rural, urban and peri-urban areas). The evidence-based framework for planning and investment decisions will help ensure the sustainability and scalability of the project. Improvements to the climate information system will also help with collection of data and information that make monitoring and evaluation of the project’s impact easier to measure quantitively.

Outputs under Outcome 1 are listed below:

  • Output 1.1: The community-based climate information system supported and improved to monitor changes in key ecological determinants of ecosystem health and resilience in the Ntahangwa watershed.
  • Output 1.2: Training program implemented to enable the use of hydrological and climate models to map out climate-sensitive flood and erosion risks in the Ntahangwa watershed.
  • Output 1.3: A resilient integrated watershed management plan prepared to guide the development and rehabilitation of the Ntahangwa watershed in areas critical for the provision of ecosystem services for flood and erosion control.
  • Output 1.4: Flood and erosion risks maps developed for use in climate-resilient planning (urban development and investment in Bujumbura,  local development plans in communes of the Ntahangwa watershed).

 

Component 2: Landscape restoration and flood management measures to protect communities in the Ntahangwa watershed and Bujumbura from flood and erosion risks.

The area surrounding Bujumbura is the most prone to erosion and landslides, a situation which will increase over time according to climate projections[1]. Component 2 will build on the evidence base and the climate-resilient integrated watershed management plan provided in Component 1 to implement ecosystem-based adaptation (EbA) interventions and flood protection measures in strategic locations across the Ntahangwa watershed. The EbA interventions will restore or maintain ecosystem services for flood and erosion control while protective measures against flood will help stabilize critical riverbanks in at-risk populated areas of Bujumbura. This component represents the bulk of the investments proposed by this LDCF project and will complement and strengthen other investments made in landscape restoration, afforestation and resilience-building activities in parts of the Ntahangwa watershed (See Section 2 on Associated baseline projects).

Outcome 2: Ecosystems services for flood and erosion protection restored and flood protection measures implemented to improve the resilience of communities in the Ntahangwa watershed and in Bujumbura.

Under this outcome, the project will promote ecosystem-based adaptation techniques in the highland upstream areas of the Ntahangwa watershed. The specific measures include landscape restoration techniques and community-based anti-erosion measures. Landscape restoration techniques will focus on planting trees and creating quickset hedges to stabilize hills in the watershed and will be complemented by anti-erosion contour trenches and terraces. Those techniques are meant to reduce soil erosion, increase soil moisture and reduce surface water runoff, therefore improving ecosystem services provided by the watershed and its streams. During intense rainfall, contour trenches channel water runoff and reduce erosion and crop losses due to flooding. By increasing soil moisture, they also provide added protection against drought and heat waves on crops. These EbA techniques increase land productivity and food security. They bring additional economic benefits to communities as most of the hills in the watershed are used for agricultural production.

The landscape restoration efforts will be implemented directly with the local communities in each of the targeted hills in selected communes of the Ntahangwa watershed. Local authorities and local communities will enforce a ban on tree cutting and maintain anti-erosion trenches as part of their community work (half a day per week is dedicated to community work) under a labor-intensive public works (LIPW) scheme. Those EbA techniques are appropriate for a LIPW approach as they are low-tech and easy to implement and maintain with little capital. The LIPW approach has been applied successfully in Burundi for many years and is one of the approaches used to implement activities of the local development plans (e.g. Plan Communal de Développement Communautaire (PCDC)).

The risk mapping and modelling exercise undertaken under Outcome 1 and the watershed rehabilitation plan will help prioritize the hills and communes of the watershed based on their vulnerability to erosion and landslide and their contribution to the ecological status of the river and streams. This prioritization will also consider current and previous investments in the watershed to avoid overlaps and duplication as well as ensure that other interventions in contribute to addressing the climate threats facing the watershed. In total, the project will plant 3,000 ha of specific trees and herbaceous/shrubby quickset hedges in critical degraded areas as well as establish 1,000 km of contour trenches and radical terraces. 

Additional protection from flood will be provided through investment in protective infrastructures in lowland downstream areas, more specifically at-risk populated areas of Bujumbura close to the river. While Bujumbura is less prone to erosion, floods have devastating impacts on the city and the rivers flowing through it, including the Ntahangwa river where critical infrastructures such as schools, churches and habitation are directly at risk of collapsing. Climate change projections indicate that this situation will worsen over time, with increased variability between seasons and increased rainfall causing will increase the frequency of flash flood and landslides. Initial investments in flood protection measures was conducted along the river as part of the previous LDCF intervention. Those measures were considered a success by beneficiaries and the government. The risk mapping exercise under Component 1 will be used to determine the physical location and protective infrastructures options for implementation at a fine-scale level. This work involves civil engineering techniques to reinforce the sides of the river chanel with gabions and terraced surfaces. A social and environmental impact assessment will be undertaken before work on the riverbank can start.

These interventions will be supported by tools and technologies to increase communication and knowledge management at the community level to ensure better responses and handling when climate-related disasters occur. These will aim to create awareness and promote targeted interventions to shift response behaviours to improve climate resilience. South-South cooperation and exchanges of experience and lessons learned on EbA solutions for landscape restoration and urban-based flood protection measures will also be explored during the PPG. These activities will promote the sustainability and scalability of the project, in particular for their application in other rivers and watersheds connected to Bujumbura and Lake Tanganyika.

Outputs under Outcome 2 are listed below:

  • Output 2.1: Restoration measures of vulnerable hilltops of the Ntahangwa watershed connected to Bujumbura completed through the methods of tree planting and quickset hedges;
  • Output 2.2: Establishment of community-based anti-erosion measures, such as ditches and radical terraces, in vulnerable hills critical for the ecosystem health and resilience of the Ntahangwa watershed;
  • Output 2.3: Flood control measures built along the Ntahangwa river channel in areas of Bujumbura where public and private infrastructures are at imminent risk of landslide during extreme climate events;
  • Output 2.4: Knowledge and guidance material on (i) landscape restoration, and (ii) flood management and protective infrastructures prepared and disseminated within Burundi and via South-South exchanges.

 

Component 3: Livelihoods options and green entrepreneurship to increase resilience of the urban, peri-urban and rural communities in the Ntahangwa watershed.

Component 3 aims to support and strengthen the watershed restoration activities under Component 2 by inducing a shift away from unsustainable and vulnerable practices and livelihoods. Livelihoods enhancements and diversification activities proposed under this component will provide incentives to ensure participation and ownership of the project activities by beneficiaries and improve the long-term sustainability of the project results after it ends. The Ntahangwa river is strategic due to its geographic situation connecting highland areas highly sensitive to climate with major strategic assets for Burundi, the city of Bujumbura and Lake Tanganyika. While the connection between the urban, peri-urban and rural communities of the Ntahangwa watershed has been ignored or overlooked, the project will identify and build on the synergies between those communities to deliver win-win adaptation solutions benefiting populations of the watershed, no matter their location or situation. This component also provides specific entry points to support women, young people and indigeneous people with concrete resilience-building solutions or opportunities and tailored support and incentives. Although rural areas have higher poverty rates, the COVID-19 has had immediate and severe impact in urban areas due to the high dependance of the urban poor on informal and non-wage income streams which easily succumb to crises due to low capacity to adapt to sudden changes in market conditions. The livelihood options and green entrepreneurship opportunities proposed under this component build climate resilience while creating green jobs and contributing to building back better as part of the COVID-19 recovery efforts.

Outcome 3: Community livelihood is improved with sustainable adaptation measures contributing to urban, peri-urban and rural resilience.

This outcome introduces adaptation measures promoting resilient livelihoods options and green entrepreneurship opportunities building on synergistic opportunities between populations in urban, peri-urban and rural areas of the watershed and resulting in increased resilience to climate change for populations in the watershed. The options and strategies will be informed by a climate-sensitive market analysis looking at demand levers that could be used to trigger climate-resilient offerings reducing land degradation in the watershed. The market analysis will look at relevant value chains and supply chains to make recommendations on the feasibility and cost-effectiveness of climate-resilient strategies, both on-farm and off-farm. Relevant value chains and supply chains would include agricultural and food products, crops and farming inputs, livestock, fisheries, and non-timber forest products (NTFP). The market analysis will assess economic impacts and market barriers and will include mitigating strategies to address these barriers. The market analysis will be gender-sensitive and aim to provide specific strategies and options for vulnerable and under-represented groups. Food supply systems are key sources of livelihoods and income generating opportunities and can be instrumental in strengthening positive rural-urban linkages. The market analysis will consider COVID-19-related constraints on value chains and supply chains to identify resilience building solutions also contributing to a more robust recovery from COVID-19. The results of the market analysis will be used to inform urban and local development plans supported as part of Outcome 1.

Based on the results of the market analysis, the project will support 5 to 8 Ecosystem-based Adaptation solutions providing resilient livelihoods options that are also compatible with watershed resilience. Those solutions could include, but not limited to, family orchard, food processing and preservation, beekeeping, use of NTFP. Family orchard is a promising EbA solutions that could be used in the Ntahangwa watershed to develop small-scale cultivation systems optimizing the use of space and family labour to produce vegetables, herbs and fruits for both domestic consumption and supplemental income. Family orchard can be implemented in a variety of configurations in both rural and urban settings. Using crop diversification, families can produce food year-round and distribute losses due to climate-induced events. The technique contributes to food security and resilience, it can be complemented by other techniques for increased resilience and autonomy, such as water harvesting techniques, composting and seed management[2]. The project will explore food processing and preservation techniques for agricultural and NTFP products to create added value, reduce post-harvest losses, access new markets and diversify income opportunities, increasing general resilience to climate as a result. While this strategy can be applied to small producers, it could also apply to small agro-business enterprise development.

Under outcome 3, the project aims to foster innovation by supporting green entrepreneurship for urban/peri-urban adaptation. The project will provide investment and support for startup creation, capacity building and skill training, access to improved technologies, mentorship and networking. Green entrepreneurship will aim to tap into the potential of Burundi’s burgeoning startup community to come up with innovative solutions for urban and peri-urban resilience. This activity will provide employment opportunities and connect with young people and women, including those with higher education who often fail to find opportunities matching their career ambitions and expectations. For this activity, UNDP will partner with national, regional and global technological hubs, startup incubators and accelerators to connect startups and entrepreneurs with relevant actors and support. Through green entrepreneurship, the project will contribute to building a more resilient, greener economy in Burundi, which UNDP is promoting as a key recovery strategy post-COVID-19. In times of restricted mobility due to the pandemic, digital solutions are emerging as essential to keep businesses active and ensure safety and security. Where possible, the project will use innovative digital tools to make green businesses easier, more inclusive and more capable of sustaining services during crisis.

UNDP initiated discussions to partner with Impact Hub Bujumbura, a local technology hub supporting Burundi’s startup ecosystem to tackle the Sustainable Development Goals via entrepreneurial and innovative solutions. To generate ideas and interest, the project will support Impact Hub Bujumbura with the organization of the first Climathon in Burundi, Climathon x Bujumbura. Climathon is hackathon programme organized globally under the auspice of Climate-KIC to translate climate action solutions into tangible projects for climate positive businesses and start-ups and addressing local policy changes. Climathon x Bujumbura will gather the startup community to come up with innovative solutions for adaptation and urban resilience. The project, with support from UNDP, will seek to connect startup and entrepreneurs with resources and actors in Burundi, including funding (e.g. UNDP Acceleration Lab, Climate-KIC Accelerator).

Lessons learned from the GEF-LDCF project “Community based climate change related disaster risk management” will be used to guide and inform some of those activities for green entrepreneurship. Such activities include a pilot initiative for briquette production from recycled waste for cooking that is ready for upscaling. Charcoal production is an important driver of deforestation and land degradation in Burundi and the production of briquettes from organic waste contributes to reducing the reliance on wood for charcoal production. The pilot initiative supported by UNDP has created an additional source of income for over 20 young people, men and women, who have learnt the skills needed to prepare the briquettes from waste and build improved cooking stoves. The initiative is generating revenues and has identified areas to improve production bottlenecks for further expansion (e.g. shaping of briquettes with a motorized engine instead of manual work). The market analysis will provide solutions and de-risking incentives to upscale this initiative and will support the establishment of additional briquette production units with, among others, skill training and marketing training, improved production equipments and access to finance.

To facilitate investments and entrepreneurship, the project includes a specific activity on access to micro-finance for smallholder farmers and small-scale entrepreneurs, with a specific focus on women and youth entrepreneurs. This will include capacity building in financial literacy to give beneficiaries a better understanding of credit and business models applicable to their livelihood activities. The project will establish partnerships with banks and micro-finance institutions to develop credit products at affordable interest rates and accessible by vulnerable groups. During the PPG, de-risking measures to incentivize micro-finance institutions and banks will be explored. Strategies to facilitate positive impact on women and other vulnerable groups will form the basis for tailoring policies, practices and products that better address gender equality and promote women’s empowerment. The project will train MFI’s staff member on gender analysis and help them incorporate empowerment indicators (e.g. proportion of women in the loan portfolio) into their client monitoring and assessment processes and help them adjust their financial services to respond to diverse client needs (e.g. adapting loan amounts and repayment schedules for women). The project will build on and strengthen women’s network and conduct marketing campaigns to influence people’s attitudes on women’s status and employment to facilitate community approval of women’s projects and build women’s self-confidence.

As in Outcome 2, Outcome 3 will promote communication and knowledge management, and explore mechanisms to share experience and lessons learned and promote sustainability and scalability of the project’s livelihood options for EbA and green entrepreneurship initiatives.

  • Output 3.1: Market analysis conducted, including; i) identifying demand levers that could to drive a shift to sustainable resilient practices in  the watershed (considering opportunities from/between urban/peri-urban/rural settings); ii) analysing relevant supply chains for climate-resilient agricultural and food products, crops and farming inputs, livestock and fisheries, and non-timber forest products; iii) assessing economic impacts and market barriers; and iv) drafting mitigating strategies to address these barriers.
  • Output 3.2: Ecosystem-based Adaptation solutions providing resilient livelihoods options compatible with watershed resilience are supported (e.g.: family orchard, food processing and preservation, beekeeping, use of NTFP…);
  • Output 3.3: Startup creation facilitated through the provision of technical support (training, mentoring) and finance (to invest in resilient practices and technologies);
  • Output 3.4: Development of micro-finance products (micro-credit) with Micro-Finance Institutions to support small business development, with a focus on women and youth entrepreneurs.
  • Output 3.5: Knowledge and guidance material on (i) resilient livelihood options and (ii) and green entrepreneurship and startup creation leveraging urban, peri-urban and rural win-win opportunities for climate resilience prepared and disseminated within Burundi and via South-South exchanges.



[1] Analyse intégrée de la Vulnérabilité au Burundi. GIZ, December 2014.

[2] Microfinance for Ecosystem-based Adaptation: Options, costs and benefits, UNEP, 2013.

 

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing technical capacities for climate-induced flood and erosion risks mapping and their use to inform climate-resilient integrated watershed management and other planning processes;

Component 2: Implementing landscape restoration and flood management approaches to restore ecosystem services against flood and erosion in the Ntahangwa watershed in and around Bujumbura;

Component 3: Livelihoods options and green entrepreneurship to increase resilience of the urban, peri-urban and rural communities in the Ntahangwa watershed.

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
Proj_PIMS_id: 
5879
SDGs: 
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Climate change adaptation in the lowland ecosystems of Ethiopia

Ethiopia is among the most vulnerable countries on the African continent. Small-holder farmers, agro-pastoralists and pastoralists in the Ethiopian lowland ecosystem are particularly and increasingly vulnerable to climate change. Climate change has resulted in food insecurity and dependence on food aid, and limited awareness of its long-term risks hinders efforts to promote climate-smart solutions to build resilience and adaptive capacity.

Due to lack of weather information for the short, medium and long-term and limited knowledge of adaptation measures, land users follow unsustainable livelihood practices. As it currently stands, generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is challenging and faced with capacity limitations. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather prediction, which has proved ineffective in the context of a changing climate. 

The "Climate change adaptation in the lowland ecosystems of Ethiopia" project will strengthen the ability of land users to adapt to the discernible impacts of climate change by disseminating credible weather information and advisory services using locally suitable communication channels to inform the preparation and implementation of actions meant for building resilience and adaptive capacity at a watershed level; reaching a wider audience of land users and government stakeholders across the lowland ecosystem of Ethiopia through a Training-of-Trainers (TOT) approach; conducting a “learning by doing” training to promote clarity and commitment of land users; and by providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas (districts)  across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

The project will promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems.  In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

Undefined
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (39.292967305264 7.8270963920238)
Primary Beneficiaries: 
The project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions
Financing Amount: 
US$5,836,073
Co-Financing Total: 
$10,450,000
Project Details: 

Context

Ethiopia has the second largest population of 102 million (2016) in Africa, making it the second most populous nation in the continent, after Nigeria. Ethiopia’s economy has grown rapidly primarily as a result of increased agricultural production. The agricultural sector in Ethiopia – which accounts for more than 80% of total employment and 45% of the country’s GDP is dominated by smallholder farmers, agro-pastoralists and pastoralists, (here referred to as “Land users”) that rely on rainfall and traditional farming practices. Current practices of cultivating crops and overgrazing of livestock contribute towards large-scale land degradation. Deforestation is taking place at a rate of about 140,000 hectares per year in Ethiopia.

At the national level, temperatures have increased by an average of around 1°C since the 1960s. Rainfall is subject to high variability between years, seasons and regions. Yearly variation around mean rainfall level is 25% and can increase to 50% in some regions. Extreme climate events are also common, particularly droughts and floods. Floods and droughts have resulted in severe losses of crops and livestock, leading to food insecurity. The economic impact depends on the extent of the variability and extreme events but droughts alone can reduce total GDP by 1% to 4%.

The rain in the lowland ecosystem of Ethiopia has often started later than expected over the last decade and has been mostly inadequate and unreliable. In many places water scarcity has increased. The unavailability of water imposes higher demands on women’s and girls’ time which would have otherwise been spent on other productive and human development activities. According to the views of land users, in 2018 alone, women and girls walked an average of 6kms a day to collect water. This is significant considering that the twelve woredas being targeted by this project consist of an estimated population of 600,000 people (or 120,000 households) and, according to the records of the concerned woreda administration offices, women represent about 49% of this population.

The land users rely on rain-fed agriculture and their crop production system has been buffeted by acute shocks related to climate. This has made it more difficult for them to grow crops or raise animals in the same way they have been doing. They stated that rain has been erratic, and when it comes it is too much and destroys their crops. They are now questioning the suitability of agriculture as an occupation in view of changing climatic conditions. The lowland ecosystem of Ethiopia is also home to significant livestock population which is characterized by low productivity, poor nutrition, low veterinary care and uncontrolled overgrazing. The grazing land has lower quality of pasture due to intensive grazing. The quality of the grazing land is progressively declining due to shorter rainy seasons, frequent droughts and overgrazing, causing cattle to graze before grasses have produced seeds, creating more shortages in subsequent seasons.

Changes in temperature coupled with frequency of extreme weather events have been damaging crops and reducing yields. Heat stress has entailed disease outbreaks, reduced milk production and resulted in extra expenditure or loss of income. In particular, prolonged dry seasons and droughts have become more frequent and severe. These risks are made worse by an upsurge in pests and diseases, especially the increasing threat of Fall Armyworm. Changes in pest and disease patterns have also threatened crop production and animal husbandry. The ranges and distribution of pests and diseases are likely to increase; causing new problems for crops and animals previously unexposed to these pests and diseases. These challenges are further aggravated by climate change and the absence of resilient alternative sustainable income generating activities.

Land users in the Ethiopian lowland ecosystems view climate change as a threat that has resulted in food insecurity and dependence on food aid. However, they also express having limited awareness of the long-term risks that climate change poses, and do not know how to respond to these risks and / or of the options available to adapt to them. Indeed, due to lack of reliable information as well as limited knowledge of, and access to a wide range of adaptation options they are forced to follow unsustainable livelihood systems as they use short term coping mechanisms. Generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is a challenge in Ethiopia. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather forecasting, which has proved ineffective given the context of a changing climate. Discussion with land users and government stakeholders revealed that the challenge of meeting poverty reduction and food security goals has been mainly associated with incapability to plan better so as to minimize climate related losses and damages.

The land users in the target project areas are resource-poor and their low income means they are unable to make investment and take on risk. In particular, the pastoralists in the Somali and Afar regions have seen their daily livelihood challenges being the constant need to cope with challenges like livestock feed, food, water shortages and migration from internal displacement among others. Moreover, because the main resources in the lowland ecosystem of Ethiopia are controlled by men, women rarely participate in decision-making and their contributions in building resilience and adaptive capacity are seldom recognized. In addition, the decrease in food in times of drought has affected human health especially among children under five years, pregnant women and old people, and reduced human disease resistance and productivity.

The focus group discussion (FGD) held during the PPG phase on impacts of and vulnerability to climate change with lowland farmers, agro-pastoralists and pastoralists revealed that land users are taking actions to cope with climate change and related hazards. However, their current coping strategies such as charcoal and firewood selling are not effective in serving their long-term adaptation needs. These coping strategies are based on short-term considerations, and survival needs, leading to mal-adaptation.

Due to the  limited support tailored to the needs of land users to maintain their livelihoods while adjusting to climate change,  land users across the Ethiopian lowland ecosystems are at risk due to climate-change threats. They face several barriers to effectively managing these risks.

THE BARRIERS IN BUILDING RESILIENCE AND ADAPTIVE CAPACITY

The following three sets of overarching barriers stand in the way of advancing towards the project objective of building sustainable and climate-resilient economic growth among vulnerable communities, targeting lowland areas in Ethiopia. The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

Barrier #1:

Lowland communities lack knowledge on risks of climate change; and the benefits of climate smart solutions and adaptation practices.

The causes and implications of current and future climate change are not well understood within lowland communities. Therefore, the land users in these communities are not ready to adopt climate resilient farming and animal husbandry practices because their knowledge of the risk of climate change as well as how to minimize risks and take advantage of these opportunities are limited. The current coping strategies of land users are not also effective in serving their long-term adaptation needs. On the other hand, there are a number of interventions that can make farming and animal husbandry practices in the lowland ecosystems of Ethiopia climate resilient and more productive. Yet, designing actions based on appropriate and participatory interventions that can steer course away from climate sensitive activities remain a challenge.

Although climate change is recognised as a matter of national importance within Ethiopia’s CRGE strategy, the Agriculture Sector Climate Resilient Strategy and the NAPA, the technical and scientific understanding of climate change and adaptation and its practical application is not well developed within government institutions. Gaps in the technical capacity can be attributed to insufficient training of staff employed in relevant departments within the Ministry of Agriculture, Environment, Forest and Climate Change Commission as well as development agents and extension officers at Woreda-level. As a result, they lack the capacity to offer needed advisories and effective extension support to the land users that would enable them to adopt more resilient and productive practices.  Consequently, the land users have limited awareness of the risks that climate change poses and are not familiar with climate smart solutions to build their resilience and adaptive capacity.

At present, there are few initiatives – either through the GoE or elsewhere – to conduct training activities supporting the implementation of the Climate Resilient Green Economy Strategy (CRGE). In particular, there are few training programmes on land management practices for climate change adaptation that are appropriate for Ethiopia’s lowland ecosystems. In addition, there are limited opportunities available for training on how to mainstream activities that are congruent with the CRGE strategy into decision-making and agricultural planning either at the federal or at the regional and woreda levels.

Government stakeholders and land users in the lowland communities require better understanding of community-based adaptation processes as a basis for incorporating climate smart solutions through a practical learning-by-doing approach in order to overcome the barrier.  The proposed project activities under outcome 1: Technical capacity for implementing diversified climate change adaptation practices strengthened will address this barrier.

Barrier #2: Limited access to climate forecasts, decision-making tools and climate advisory services for Lowland communities 

Effective adaptation requires farmers to have access to up-to-date, downscaled climate information, and the appropriate tools and advisory services at their disposal. Ethiopia’s Lowland communities do not have access to these, and are not connected to the climate information, products and advisory services. Technological and capability constraints have hindered the provision of weather and climate forecasts, including guidance and value-added advisory services to land users. In addition, information on how to adopt alternative and innovative farming, pastoral and agro-pastoral practices based on these climate forecasts is not available. This is a result of insufficient availability of climate forecast information, particularly at the local level and inadequate capacity of agricultural extension officers to guide farmers and other land users based on climate forecasts. Consequently, lowland farmers, pastoralists and agro-pastoralists can only undertake limited proactive measures in response to climate change.

At the level of overarching policies, plans and strategies, Ethiopia has made some progress in mainstreaming climate change considerations into national and regional frameworks. This has provided a good basis for the implementation of national adaptation priorities through existing LDCF projects. There is need to find more operational ways of influencing policies and actions on the ground. This requires expanding the capability to gather climate data and to share downscaled weather information and climate change information products with practical applications that combine climate predictions with advisory support services for vulnerable land users. However, the capacity at the national level to generate downscaled climate data and use it at local level is not yet well developed. Often, climate data is provided in complex scientific formats and at high resolutions. The generation of the data is also not informed by the needs of users on the ground.

Moreover, having the tools and undertaking climate information analyses is not in itself enough without the ability to use it to inform decisions at the farm level. Currently, there exists no climate advisory services tailored to the needs of Lowland communities. Practical application requires concerned government stakeholders and land users to have the capacity to use these information and analysis to respond to ongoing and emerging threats in the project area.

Overall, there is no alignment among the components of the climate information products and services value chain, from the collection, analysis and packaging of such information to meet the needs of communities, to the application of this information at local level to support adaptation decisions and actions. Along the chain, there are huge capacity constraints and disconnects in government institutions to provide the information, tools and advisory services synergistically.

The proposed project activities under outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools will address this barrier.

Barrier #3: Inability of land users to invest in climate smart technologies and solutions required to diversify and sustain their livelihoods in the face of climate change.

The land users in the project area are resource-poor and unable to invest in the available climate smart technologies, opportunities and solutions for the diversification of their livelihood system. In the project area, there is potential for constructing reservoirs, ponds and boreholes that help address the prevailing water scarcity. Indeed, the land users in the project area have underutilized this potential and few of them rely on flowing streams/rivers and shallow wells with limited capacity to supply domestic water needed during the drought period. There are also opportunities for local communities to diversify their livelihood options thereby building their adaptive base and assets, but are not able to do so due to a number of reasons. They lack technical knowhow to tap into these opportunities, while the advisory services available to them from support institutions is largely lacking in these areas. These services also focus on traditional agro-based livelihoods which themselves are climate-sensitive. Opportunities in activities such as bee keeping, fish farming, processing and marketing of natural products are not fully tapped by lowland land users to diversify their livelihoods and incomes while building adaptive assets.

These opportunities also remain untapped as they are out of reach for the land users who are not able to access funding and technical knowhow. They are therefore not able to construct, own and operate integrated water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures to enable the creation, improvement and sustenance of diversified livelihood options. Some of the investments especially in the construction of water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures require a high up-front capital investment.

This has also become more difficult in the absence of appropriate financial capital especially for poor land users with limited access to the financial services (Ethiopia is one of the most under-banked countries in sub-Saharan level, with a bank branch to population ratio of 1:43912 in 2013/14). Small land users are also perceived as risky borrowers by the formal financial services sector, which is compounded by their lack of collateral, while the costs of finance from the informal financial services sector makes this source unaffordable to them.

The proposed project activities under outcome 3: Climate change adaptation practices adopted in communities in lowland ecosystems will address this barrier.

Although no single initiative can address all the barriers mentioned above, the LDCF-financed project will deliver complimentary outcomes to contribute towards overcoming these barriers. The theory of change (ToC) (Annex K below) underpinning the design of this LDCF-financed project includes the barriers discussed above and activities that contribute to the preferred solution discussed in section III through the delivery of the outcomes 1, 2 and 3.

Strategy

The objective of the LDCF project is to promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems; which are selected using predefined criteria set by EFCCC through a bottom-up process. In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

The proposed project will develop and implement a capacity building support programme to strengthen the ability of land users through i) reaching a wider audience of land users and government stakeholders across the lowland ecosystems of Ethiopia using a TOT approach; ii) disseminating credible weather information and advisory services using a locally suitable communication channels to inform the preparation and implementation of actions designed for building resilience and adaptive capacity at a watershed level, iii) conducting a “learning by doing” training to promote clarity and commitment of land users and iv) providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

Accordingly, at the local-level, this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for prioritizing and incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds in the project regions.

This LDCF project will also support the GoE in reaching its development targets such as those specified under the GTP II, the CRGE Strategy and the SDGs. The project will contribute to Ethiopia’s National Adaptation Programme of Action (NAPA) through inter alia: i) Key Adaptation Need 24 – Promotion of on-farm and homestead forestry and agro-forestry practices in arid, semi-arid and dry sub-humid parts of Ethiopia; ii) Key Adaptation Need 29 –  Strengthening/enhancing drought and flood early warning systems in Ethiopia; and iii) Key Adaptation Need 32 – Enhancing the use of water for agricultural purposes on small farms in arid and semi-arid parts of Ethiopia.

In addition, the project will contribute to several Sustainable Development Goals (SDGs), including: i) SDG 8 – Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; ii) SDG 12 – Achieve food security and improved nutrition and promote sustainable agriculture; iii) SDG 13 –Take urgent action to combat climate change and its impacts; and iv) SDG 15 – Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss.

RELEVANT NATIONAL AND INTERNATIONAL REGIONAL RELATED INITIATIVES

Ethiopia has undertaken several efforts to strengthen technical, financial and institutional capacities for enabling climate change adaptation. There are already a number of existing national policy initiatives, sectoral policies, programs and strategies that may directly or indirectly address climate change adaptation. The most relevant public documents that have relevance for climate change adaptation include Ethiopia’s National Economic Development Plan (The Growth and Transformation Plan (GTP II), Ethiopia’s Programme of Adaptation to Climate Change (EPACC), the Green Economy Strategy (GE), the Nationally Determined Contribution (NDC) of Ethiopia, the recently prepared National Adaptation Plan (NAP), the Environmental Policy of Ethiopia, the Agriculture and Rural Development Policy and Strategy, the Water resources Management Policy, the Health Sector Development Policy and Program, the National Policy on Disaster Prevention and Preparedness, the National Policy on Biodiversity Conservation and Research, the Science and Technology Policy, the Population Policy and National Agricultural Research Policy and Strategy. In Ethiopia, various international initiatives continue to strive for sustainable development.

In spite of these efforts, there is disparity between objectives and what has been implemented due to the technical capacity limitations of government stakeholders and land users to translate these public documents into on-the-ground action to the fullest.

In view of the recent development with adaptation project implementation in Ethiopia, the project will coordinate with the following relevant projects including; The Green Climate Fund (GCF) financed project-‘’Responding to the increasing risk of drought’’; the Adaptation Fund (AF) financed project- ‘’Building gender responsive resilience of the most vulnerable communities’’ and the USAID Financed FAO Project on Fall Army Worm with the Ministry of Agriculture.

 

Expected Key Results and Outputs: 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened (Co-financing for Component 1, Outcome 1: $2,099,702; LDCF grant requested for Outcome 1: $450,000)

This outcome will deliver strengthened capacity of farmers, agro-pastoralists and pastoralists on planning, monitoring and evaluating diverse climate change adaptation approaches. To this effect, the project would develop targeted training modules to be eventually made available online by appropriate partner institution. The modules would be put online for wider use across the country. These modules would be based on agreed areas of interventions that help strengthen adaptive capacity of the pastoralist, farmer and agro-pastoralist communities. Key considerations would be given to community-based adaptation training that leads to the development of climate resilient action plans across the watershed. The training modules would also include community forecasting, monitoring and early detection of such risks as the Fall Armyworm infestation. Using the developed training modules (as listed below), sets of capacity building seminars and training workshops would be delivered to government officials and woreda development agents respectively.

Subsequently, specific learning by doing community adaptation and participatory trainings would be devolved to the local communities to help strengthen their adaptive capabilities.: More specifically, the training modules will include issues identified for training needs as detailed below. These trained communities from the twelve woredas will in turn develop their own respective water security focused climate adaptive action plans through incorporating climate smart technologies and good practices, as well as early response measures including community-based monitoring, forecasting and early warning initiatives using the guidelines developed by FAO and being implemented by the MoANR. In addition to the Fall Armyworm response plan, targeted community based adaptive response will be developed to include the flash flood risks adaptive response and grievance and response mechanism to address Farmers Pastoralist Conflicts at the community level. The early warning and response measure will depend on the need of each of the twelve project sites.

Furthermore, the results of project interventions implemented under outcomes 2 and 3 will be monitored and the results thereof would be used as an input for the development of best practice guidelines to promote the up-scaling of climate‑resilient farming, agro‑pastoralism and pastoralism in Ethiopia’s lowland ecosystems. Best practices from the training and demonstrations would be documented across the twelve woredas. These experiences would be shared across the regions through effective television and radio documentaries, local language-based posters and other awareness materials.

During the PPG phase, the following training needs were identified to address specific needs of institutions and communities at regional and woreda/community‑levels:

  • Training on climate smart technology and good practices for community adaptation (Regional Institution level training: support Output 1.1)
  • Training on developing climate adaptive community-based action plan (Regional Institution level training; support Output 1.2)
  • Responding to climate emergency at community level: early detection and monitoring training on Fall Armyworm, Pastoralist/farmers conflict and Emergency flood (Woreda and Community level training; support Output 1.3)
  • Training session on adaptive soil and water conservation techniques, including rehabilitation, improvement and maintenance of a productive and healthy watershed (Woreda and Community level training; support Output 1.2, 3.3)
  • Training on climate and weather information for planning and agricultural advisory support for the agro-metrology task force established and hosted by the MoANR (Regional Institution Level training; support Output 2.1)
  • Training on climate smart technologies for adaptive capacities and diversified livelihoods, including provision of enhances the knowledge base and capability of land users, including women and youths, on the establishment of community-based enterprises like water storage and rainwater harvesting techniques, livestock fattening and agroforestry, poultry production, etc. (Woreda/Community Level training; support Output 3.2)
  •  

The outputs under Outcome 1 include:

  1. Training modules and platform for enhancing the knowledge and capability of government officials, DAs and local-communities in twelve woredas on the formulation and implementation of adaptation measures are established and sustained.
  2. Strengthened capacity of development agents (DAs)[1] and government officials to support the implementation of climate change adaptation practices at the woreda and regional levels.
  3. Community action plans for adaptive crop production and animal husbandry developed using a participatory approach in twelve Woredas.
  4. Project benefits and climate change adaptation practices are documented and disseminated to local community members in twelve woredas through learning, using innovative and locally adapted means.

 

The strengthened technical capacity for planning climate change adaptation practices through the provision of targeted training under outcome 1 informs and contributes to Outcome 2 by enhancing the understanding of farmers, agro-pastoralists and pastoralists as well as other stakeholders to generate the inputs required for the formulation and adoption of climate adaptive management plan. The capabilities built under outcome 1 for the provision of inputs to Outcome 2 will be achieved including through enhancing capacity of stakeholders on how to i) define the geographical boundaries of the project area; 2) identify and document climate-related challenges faced by stakeholders; 3) gather credible climate related data; 4) identify climate risks and prioritize climate-related challenges that are likely to affect the social, environmental and/or economic status of local communities and their watershed by considering drivers of future trends and how these issues are currently being addressed as well as 5) on how to plan, monitor and evaluate diverse climate change adaptation approaches.

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools. (Co-financing for Component 1, Outcome 2: $2,193,632; LDCF grant requested for Outcome 2: $681,782)

This outcome will deliver the adoption of climate adaptive management practices by local communities using climate information and appropriate decision-making tools. To this effect, functional Automatic weather stations (AWS) – that will complement and be connected to the on-going effort to extend Ethiopia’s climate observatory network will be installed. Protocols will be developed for climate data collection and analysis as well as on the provision of support regarding climate data storage and management for future reference and decision making in collaboration with the National Meteorology Agency (NMA). Climate monitoring technologies such as rain gauges and handheld climate forecast devices will be distributed to the woredas in the intervention sites. In addition, training on the use of these climate monitoring technologies will be provided to woreda-level officers and DAs. The data collected from the AWS and the household monitoring devices will be used to compile short‑term and seasonal climate forecasts meant for land users.

In order to down-scale the data, the project will work with the Agro-meteorology Task Force established and hosted by the MoANR. This task force currently meets every other week to manually compile agro-meteorology data. Partnership with the MoANR Agro-meteorology Task Force will be formed with the aim of enhancing efficiency and clarity on the implications of weather information and on the practical application of climate science and traditional weather forecast practices. This multi-stakeholders Task force team will ensure that weather and climate forecast services are made easily accessible. The project will also provide capacity building support to the Task Force. The project will facilitate the linkage of activities under this outcome with the Agro-meteorology Task Force Initiative and support the updating of the Task force decision tools to digitized tools. These tools will allow the effective use of climate forecasts provided by the AWS and the downscale of the weather and advisory information to farmers, pastoralist and agro-pastoralist in the project area. Once implemented, the decision-making tools will be tested for a two-year period. The results of this testing period will be combined with lessons learned from the project “CCA Growth: Implementing Climate Resilient and Green Economy plans in highland areas in Ethiopia” to inform national up-scaling of decision-making tools for agro-pastoralists, pastoralists and farmers.

Local weather forecasts will be made available to the land users through mobile phones in each woreda. This would complement the Task Force on Agro-meteorology on-going collaboration[2] with Wageningen University, Netherlands and the Agricultural Transformation Agency (ATA) of Ethiopia. By providing end-users with information in a tailored, useable format, this outcome is building on the GEF financed LDCF project that is being implemented in the highland ecosystem of Ethiopia. This outcome will also build on the lessons learned through the LDCF-funded project “Strengthening climate information and early warning systems in Africa for climate resilient development and adaptation to climate change – Ethiopia” and solicit international expertise to develop climate forecast and decision-making tools.

The outputs under Outcome 2 include:         

  1. Nine Automatic Weather Stations (AWS) installed and linked to the national meteorological network and protocols for use and maintenance established in each woreda.
  2. Appropriate weather and climate monitoring and forecast technologies acquired by representatives of the beneficiary communities and maintained through a functional and durable partnership.
  3. Climate-risk assessment and decision-making tools developed and used in collaboration with local communities in twelve woredas.
  4. Climate-risk assessment and decision-making tools are pilot tested and periodically improved using the results thereof in each of the twelve woredas.
  5. Proactive climate adaptive management plan prepared anchored on functional water storage infrastructure to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.

 

The formulation and adoption of climate adaptive management plan using an up-to-date, downscaled climate information, and the necessary tools and advisory services under Outcome 2 explicitly links the information gathered under outcome 1 for the formulation and adoption of proactive climate adaptive management that would also describe who will be doing what and when to deal with the prioritized climate challenge risks under Outcome 1. Outcome 2 in turn provides inputs that will be implemented by local communities in lowland ecosystem through investment in climate smart technologies, opportunities and solutions as specified under Outcome 3.

Woreda level plans, climate risk assessments and data from AWS integrated with the Met department will inform the interventions under component 3 and the proposed special innovation direct investment.The uptake and use of data and information by local communities gives the AWS infrastructure its ultimate value, and is the purpose for having this infrastructure under the project. This has value both within the project areas as well as within the broader national network. In this regard, the project will facilitate the uptake and use of information and data by local communities through the Agro-Met Task Force Mobile Data provision to farmers and communities at large. It will also strategically support the relevant government institutions, including National Meteorological Agency and Ministry of Agriculture to facilitate community access and use of this information in decision making. This will not only be supported through this project, but through other projects as well thereby ensuring that the installed AWS serve the needs of farmers.

Component 2: Adaptation practices adopted at scale in lowland ecosystem

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems. (Co-financing for Component 2, Outcome 3: $5,956,666 ; LDCF grant requested Component 2, Outcome3: $4,426,383)

This outcome will strengthen land users capacity for the implementation of climate change adaptation practices  for building resilience and diversification of their livelihoods options. This component of the project will thus support land users to create, improve and sustain diversified livelihood options through rehabilitating degraded watersheds in a way that would lead to tangible and replicable changes. This will be achieved through the provision of needs-based technical support for soil and water conservation activities (soil bund, afforestation, check dam, hill-side terracing, etc.) and construction, operation and utilization of water storage structures for the diversification of livelihood options. As a result of this, land users will be able to do supplementary irrigation and engage in creating alternative climate resilient income generating opportunities. Water storage locations would be identified through the development of climate adaptive community-based action plans from Outputs 1.3. The climate adaptive plan will be developed for each woreda in the 6 regions through a participatory consultation process with the aim of securing, in advance, the commitment of the local community to contribute labor during construction, operation and maintenance; as well as to conserve the entire catchment area for long time durability and functionality of the water storage structure.

Local communities in the woredas targeted under this component will benefit from the implementation of a number of on‑the‑ground activities including; increased adaptive capacity through implementation of adaptive farming, agro-pastoral and pastoral practices; improvement of land productivity through such agro-ecological interventions as the bunds, alley cropping and terracing techniques and enhanced availability of fodder crops for livestock feed through planting of drought-resistant and high yield and early maturing varieties. Furthermore, to enhance access to resources in order to scale innovation for climate adaptation in the lowland ecosystem, the project would assist land users to organize into groups to learn from each other and replicate resilient practices.

A range of livelihood improvement activities will be implemented based on the community action plans developed under Component 2, and will vary from community to community. Examples of activities that will be considered include growing, processing and marketing of fruits and vegetables, installation of technologies for water and energy provision such as solar powered water pumps  and biogas to reduce deforestation for community groups, planting fast growing trees for firewood and construction, energy-efficient fuel-wood stoves for clean cooking solutions, growing area closure (fencing) plants using fruits trees, growing  animal forage plants, poultry and animal fattening. The project will train beneficiaries, and especially empower women to engage in value chain business opportunities such as processing and marketing of milk and milk products. Location-specific alternative livelihood support activities such as tree nurseries, bee keeping, fish farming at natural and artificial lakes, edible mushroom cultivation, compost preparation or sustainable use of incense and gum to reduce deforestation and forest degradation would be supported in the intervention sites. To support the offtake and sustainability of these options, the project will support beneficiaries to initiate business enterprises, and will link them to financing schemes.

Following the initial assessments done during the PPG phase, the project will conduct in-depth, focused capacity needs assessments with the aim of strengthening the capacity of beneficiaries for the delivery of sustainable and scalable businesses. The in-depth assessments, based on the selected livelihood activities for each community, will strengthen community buy-in and increase the levels of uptake and sustainability of the adaptive practices and technologies. As well as providing entry points for the establishment of community-based enterprises and involvement of the private sector in running the business enterprises. The assessments will include: i) analysis of market opportunities; ii) identification and implementation of selected income-generating activities; and iii) appropriate support to local communities on value-addition activities, including agro-processing and marketing skills; iv) sustainable financing options. In addition, the development of community business enterprises (CBEs) will be supported to: i) increase local communities’ access to markets; ii) increase market efficiencies; and iii) promote the development of local private sector agents such as agricultural service providers.

The project will also support training of extension agents to follow-up on the implementation of the adaptation and livelihoods activities and review progress in each Woreda with the aim to i)  review successes and failures from the LDCF and to suggest up scaling activities; and ii) develop training material and provide training workshops on developing bankable business plans  It will also develop a long-term M&E strategy for each Woreda that will be followed up by the extension agents and other development facilitators at Woreda level.

The outputs under Outcome 3 include:

  1. Sites identified, through community planning processes, as critically degraded are rehabilitated in the twelve woredas anchored on functional water storage infrastructure designed, constructed and utilized to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.
  2. Alternative livelihood opportunities created, expanded and made more responsive to climate change through the implementation of community-led climate adaptive initiatives in the twelve woredas.
  3. Farm/pasture land rehabilitated through physical and biological soil and water conservation measures in degraded areas in each woreda for and by the vulnerable lowland farmer, pastoralist and agro-pastoralist communities. 
  4. Community-based enterprises established and operationalized in each woreda to develop and strengthen climate resilient local business.
  5. Woreda-level M&E and follow-up strategy developed and adopted by woreda development facilitators and extension agents.

 

The implementation of adaptation plans outlined under Outcome 2 by local communities in lowland ecosystem ensures that land users in the project area enhance their investment in climate smart technologies, opportunities and solutions in order to diversify their livelihood system while mitigating risks and driving actual improvements in performance (Outcome 3). Project performance will be tracked periodically in order to learn from the outcomes and inform future climate change adaptation plans and actions within and outside the geographical boundaries of the Project area. Undertaking frequent evaluation in this way helps to generate and document knowledge and obtain good practice results that would be disseminated to strengthen capacity for the implementation of diversified climate change adaptation practices.

Outcomes 1 and 2 are intended to provide the basis for implementing climate adaptive solutions and practices (Outcome 3) through climate-informed planning at the local level as well as the use of climate information. For each community, the strategies and practices selected under Outcome 3 will be based on the skills and information from planning processes (Outcome 1) that take into account climate change considerations, as well as the capacity to generate provide and use climate information (Outcome 2) to come up with solutions that address climate risks and vulnerabilities. This will generate knowledge that will be applied in the long term. The implementation of Outcome 3 will follow a participatory process that involves communities as well as local level planning and development institutions in the application of climate-informed planning tools and locally relevant climate data. This structure and approach of the project is a deliberate strategy to ensure that planning capacity and the use of climate information are the basis for climate change interventions, and that there is capacity in the local planning structures to facilitate this process. A provision has been made for special innovation direct investment in community infrastructure and alternative livelihoods creation for Woredas with capacity to include additional site making maximum of 3 sites per woreda.




[1] At Kebele level, “development agents” are responsible for technical advisory services to farmers. At a Woreda-level, “extension officers” oversee the activities of and provide guidance to development agents. The term “extension agents” is used to refer to both levels throughout this document, as their roles often overlap.

 

[2] The partnership between MoANR and Wageningen University to develop downscaled weather and Agricultural advisory support to farmers and pastoralist would be explored further and supported by the project to achieve the objective set out in this component.

 

Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
October 2020
Description: 
CEO Endorsement
Proj_PIMS_id: 
5630
SDGs: 
SDG 2 - Zero Hunger
SDG 8 - Decent Work and Economic Growth
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action
SDG 15 - Life On Land

Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70 percent of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening of the already profound poverty levels. Climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas, forcing subsistence agro-pastoralist and nomadic pastoralist households living under deep-rooted levels of poverty into making livelihood decisions out of desperation because their co-dependence on water, agriculture and rangelands is becoming unsustainable. State and federal government budgets, already under strain with development challenges unrelated to climate change, are unable to cope with mounting tolls of a changing climate.

The "Building resilience in the face of climate change within traditional rain fed agricultural and pastoral systems in Sudan" project supports climate change adaptation efforts among subsistence agro-pastoralist and nomadic pastoralist communities in dryland zones across nine states (West Darfur, Central Darfur, East Darfur, Western Kordofan, South Kordofan, Kassala, Red Sea , Northern and Khartoum state). The project will build climate resilience, health, well-being and food and water security for approximately 3.8 million people - almost 1.2 million direct beneficiaries and 2.5 million indirect beneficiaries - accounting for more than 32% of the total population across the nine targeted states, and about 9.2% of the total population of the country.

Its overall goal is to promote a paradigm shift in dryland pastoral and farming systems through i) an integrated approach by increasing resilience of food production systems; ii) improving availability/access to climate resilient water sources; and iii) strengthening capacities of institutions/communities on climate resilience. The project capitalizes on synergies in climate risk management practices across agriculture, water, and rangelands to enhance water and food security under changing climate conditions. Key results are enhanced resilience to climate risks among subsistence farmer and nomadic pastoralist communities and promoting an enabling environment for long-term (post-project) adaptation activities in Sudan. Moreover, the enhanced capacity of the state-level administration in areas of environmental governance, management of shared natural resources, inter- and intra-state relations and how to establish a network of early warning systems will help prevent conflicts and out-mitigation in the targeted areas.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (31.552734354975 15.424028679987)
Primary Beneficiaries: 
1,181,538 direct, 2,499,712 indirect
Funding Source: 
Financing Amount: 
US$25.6 million
Co-Financing Total: 
US$15.5 million
Project Details: 

The project introduces several interventions among highly vulnerable communities in the target communities. First, the project disseminates a set of sustainable technologies and practices including drought-resistant, early maturing seeds, establishment of integrated women-led sustainable farms, rehabilitation of communal rangelands, development of multi-purpose tree nurseries, and the establishment of shelterbelts to shield cultivatable plots from dust storms. Second, the project increases the availability of water resources through the construction and/or rehabilitation of hafirs (i.e. dugout enlargements into which surface-water runoff is converged during the rainy season), water yards (i.e. water extraction and distribution facility which includes borehole, storage tank, animal watering basins and tap stands), and sand water-storage dams (i.e. rain water harvesting structures). Third, the project strengthens local governance by building capacity among local leaders and stakeholders (i.e. village councils, village development committees, popular committees) regarding best practices, as well as increasing capacity of extension agents from state-level offices of the Ministry of Agriculture and Natural Resources and Ministry of Irrigation and Water Resources  on sustainable technologies/practices suitable for dryland areas.

In introducing these interventions, the project builds upon the lessons learned from recent climate change adaptation projects such as: The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer and Pastoral Communities; and the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these initiatives and applies a similarly integrated approach to crop, water and rangeland management that addresses recurring drought concerns and the linkages between agro-pastoralist and nomadic pastoralist livelihoods.

The barriers addressed by the project include weak drought contingency planning; low institutional capacity; limitations in food security research capacity; limited smallholder access to financing; and limited data infrastructure. Micro-credit and micro-finance systems that have been piloted successfully in other regions have been incorporated into project design to promote financial sustainability and overcome some barriers. The project facilitates transformational change in the short-term by building community resilience against climate change impacts, primarily recurrent drought, and in the long-term by integrating lessons learned into state-level planning, budgeting and implementation of risk reduction measures that will ultimately improve livelihoods in the targeted communities.

Project activities will directly benefit nearly 1,200,000 people in over 211,000 subsistence agro-pastoralist and nomadic pastoralist households. These direct beneficiaries are among 138 dryland villages across nine states. These households correspond to 10% of the total population in the targeted regions. Project activities will indirectly benefit an additional nearly 2,499,712 people through autonomous adoption by neighboring communities of the risk mitigation strategies that direct beneficiaries will implement. The project will take advantage of existing linkages with regional and global research institutions such as CGIAR and the Association for Strengthening Agricultural Research in Eastern and Central Africa.

The project’s paradigm shift potential is rooted in the fact that that the specific adaptation interventions can be leveraged to empower women in large numbers across adjoining communities. Providing women with access to information and knowledge on climate change issues can help reverse their lack of power and build their autonomy. In parallel, the implementation of a suite of adaptation initiatives will build resilience among vulnerable rural communities from future climatic shocks that would otherwise deepen their poverty, while also enabling them to diversify household incomes and assets. Moreover, effective adaptation within traditional agricultural systems will not expand in the poorest states in the absence of catalytic donor support.

The project is aligned with Sudan’s priorities as outlined in its Nationally Determined Contribution to the Paris Agreement and is line with Sudan’s Country Work Programme, as submitted to the Green Climate Fund (GCF). Based on a request made to UNDP by the Government of Sudan, Sudan’s National Designated Authority (NDA), the project is also a part of UNDP’s Entity Work Programme to the GCF and is fully aligned with Government priorities upon which UNDP is focusing.

Climate change challenges

Increasing climate variability is leading to major changes to rainfall and temperatures across Sudan’s arid and semi-arid drylands, exceeding the limited capacity of rural households to cope. Drylands are home to nearly 70% of the population of Sudan and there are places where increasingly erratic rainfall has resulted in recurrent drought episodes, together with associated crop failures, livestock deaths, and deepening already profound poverty levels. Notably, climatic shocks, particularly drought, are occurring in the absence of adequate social safety nets in rural areas of Sudan, forcing many subsistence agro-pastoralist and nomadic pastoralist households into making livelihood decisions out of desperation because their co-dependence on water, agriculture, and rangelands is becoming less and less viable. State and federal government budgets, already straining to cope with numerous development challenges unrelated to climate change, are simply unable to cope with the mounting tolls of climate change.

There is strong evidence confirming that Sudan’s climate has been changing over the past decades. First, there has been a steady decline in annual precipitation throughout Sudan. This is most pronounced in the Darfur States, where the data record from the sole meteorological station over the 40-year period from 1952-1992 indicates that rainfall has been declining by about 5.12 mm per year on average. Other areas such as Khartoum and South Kordofan show similar rainfall patterns (decline of 4.90 and 3.99 mm per year, respectively). These trends are reflected by mean annual normal rainfall isohyets. A comparison of the isohyets for the period 1941-1970 and 1971-2000 show that there is a southward shift by hundreds of kilometers.[1]

Moreover, a rainfall trend analysis for 21 meteorological stations across Sudan confirm that mean annual rainfall for the past two decades has been both decreasing and intensifying relative to the 40-year period from 1960 to 2000. This is illustrated in Figure 1 which shows the location of the meteorological stations (top) and indicates that, when compared to the historical period, average annual rainfall declined by an average drop of 9.3 mm per year during the 1990s (middle) and by an average of 23.4 mm per year 2000s (bottom).

These changes have posed profound adverse impacts for rural livelihoods. For faming activities, roughly 90% of cultivated areas depend exclusively on rainfall, with fluctuations in crop yield attributed almost solely to fluctuations in rainfall patterns. While irrigated agriculture is also practiced, it is minor in scope and limited to small areas along wadis and in small plots near hand-dug wells. For pastoralist activities, increasingly erratic rainfall patterns, as well as drought episodes, have led to the deterioration of natural rangelands. Declining rangeland productivity has been accompanied by an increase in seasonal fires, excessive grazing in communal lands, and by large livestock populations unsustainably concentrated around perennial water sources.

Second, there has also been a steady increase in temperature throughout Sudan over the period 1960-2010.  During the March-June and June-September periods, temperatures have been increasing between 0.2°C and 0.4°C per decade, on average. The decadal trend of increasing temperature is more intense during the March-June period. When averaged across all seasons, temperatures in the 2000-2009 period are roughly 0.8°C to 1.6°C warmer than they were in the 1960-1969 period. Figure 2 illustrates annual average temperature trends for a subset of 6 meteorological stations located across Sudan (top) for the period 1960-2010 (bottom).

Third, the above adverse changes in rainfall and temperature have been accompanied by recurrent drought episodes across Sudan since the 1970s. There have been widespread recurring droughts across Sudan during the period 1967-1973 and again during the period 1980-1984, the latter period being the more severe. In addition, there have been a series of spatially localized droughts during the years 1987, 1989, 1990, 1991, and 1993. These drought episodes have occurred mainly in Kordofan and Darfur states in western Sudan and in parts of central Sudan near Khartoum.

Such mounting evidence of decreasing rainfall and increased temperatures, have reduced available grazing lands, have led to crop failures, high livestock mortality and increased rural to urban migration. These climate-related impacts have also aggravated urban health and sanitation concerns. Together this evidence suggests that drought has been a major stress factor on farmer and pastoralist communities and has worsened regional conflicts over environmental resources. Additional information on the climate rationale underlying project design is provided in Annex 19f.

In the future, these climatic changes are projected to intensify. Dynamic downscaling of an ensemble of General Circulation Modeling outputs suggests that over the next two decades, average annual surface temperatures across Sudan will increase significantly relative to the historical climatic baseline, with increasing levels of rainfall variability. This is illustrated in Figure 3 which shows an ensemble of temperature and rainfall projections under Representative Concentration Pathway 8.5 (RCP8.5) for three meteorological stations with sharply differing annual historical rainfall regimes: Port Sudan (medium annual rainfall), Dongola (low annual rainfall), and Gedaref (high annual rainfall).

Baseline situation

The baseline situation is one in which rural households in Sudan are becoming increasingly unable to withstand and recover from climatic shocks, particularly drought. While there are other types of shocks that farmer/pastoralist households are forced to endure related to health, forced migration, or conflicts, they are largely derivative of an inability to effectively cope with recurring drought episodes. This vulnerability is likely to intensify for dryland households in Sudan in the absence of effective climate change adaptation interventions that build increased resilience to drought.

Since subsistence agro-pastoralist and nomadic pastoralist households derive a large share of their income from crop- and/or livestock-related activities, they are also particularly sensitive to drought. Household income from rainfed agriculture and pasture-based livestock production is far more vulnerable to climatic shocks than, for example, irrigated agriculture or other less shock-impacted activities such as the so-called cottage industries (i.e. a business activity carried on in an agro-pastoralist’s home). At present and likely for the foreseeable future, sensitivity to drought among dryland households is largely determined based on prevailing risk-hedging strategies that regard land, water, and livestock – and the mix of those resources – as essential to livelihood preservation. To the extent that household incomes are not diversified, or alternative income-generating strategies not introduced, sensitivity to drought is expected to remain unacceptably high.

The ability of farmer/pastoralist households to cope with droughts has been compromised by the increasing frequency of drought episodes. In the baseline situation, the time between climatic shocks is becoming shorter and shorter, leading to inadequate time to rebuild household assets to withstand subsequent weather-related shocks. Given the lack of governmental safety nets and access to credit, households are forced to rely on their own already depleted savings and assets to try and make up as best they can for food/income shortfalls. Hence, the liquidation of household assets to limit the harmful impacts of a drought episode is becoming less and less of a viable risk-hedging strategy, forcing households into increasingly desperate circumstances.

Taken together, the exposure and sensitivity of farmer/pastoralist households combined with their compromised coping capacity infers that overall vulnerability to climatic shocks is high in the baseline situation. Assent effective adaptation measures, climatic variability has become largely incompatible with traditional agro-pastoralist practices regarding crop selection, water resource management, communal rangeland management, drought preparedness, and household income generation. Additionally, access to tools and extension services designed to build adaptive capacity remains quite low given the overall lack of knowledge to make informed decisions under climate change.

States targeted for project activities

The target region of the project consists of 138 villages in dryland zones across 9 states in Sudan. The selection of these villages has been based on several common characteristics, namely subsistence agro-pastoralists and nomadic pastoralists who are highly vulnerable to climate change, with few opportunities for household income diversification and adaptation. Despite their vulnerability, local populations have little access to measures and practices that can increase their resilience in the face of climate change. A brief description of the major targeted state characteristics, together with key dimensions of vulnerability to climate change, is provided in the bullets below.

West Darfur: West Darfur is characterized by great environmental diversity with seasonal valleys that can sustain forests, rangelands, and agriculture. About 80% of the state's economy is based on cash crops and livestock production. Nevertheless, the state has a history of chronic food insecurity - it is the most food insecure region in Sudan with greater than 40% of the population unable to obtain a health daily diet.

East Darfur: East Darfur is largely characterized by nomadic tribes facing acute water scarcity. Increasingly rainfall variability has led to serious rangeland degradation and in some cases, the disappearance of essential grasses and herbs. Nomads who rely on these resources have been forced to cope by resorting to inferior options for feeding their livestock, namely lower quality tree leaves; limited crop residues, or moving across the border to South Sudan. East Darfur has become the home for significant numbers of displaced people from other Darfur states, all suffering from reduced rainfall. This has amplified the consequences of climatic change for the state and further exacerbated environmental degradation and socio-economic disruption.

Central Darfur: Central Darfur is characterized by diverse climate and soils, including volcanic soils in Jebel Marra (a mountainous area) sandy, clay and alluvial soils in the different valleys traverse the state towards the west to Chad and Central African Republic. Most economic activities are focused on agriculture and pastoralism, with 80% of the population comprised of farmers and pastoralists. Communities are suffering from recurrent droughts, increasing temperature and rainfall variability, which together with high poverty rates have led to a growing misuse of resources as evidenced by overgrazing and denuding of forests.

South Kordofan: The state is characterized by widespread poverty, lack of basic services, poor infrastructure and continued land disputes. While South Kordofan is less prone to drought conditions than its northern counterpart, the state is vulnerable to the impact of forced migration. That is, as agricultural regions in other parts of Sudan become less productive, South Kordofan may see an influx of climate refugees while lacking the infrastructure to accommodate rapid population growth. 

West Kordofan: West Kordofan is characterized by nomadic and transhumant tribes that concentrate in areas where water and other services are available. For farmers, higher temperatures and increased rainfall variability has led to crop failure, increased pest incidence, and out-migration by farmers. For pastoralists, lower humidity levels and higher temperatures have led to grassland degradation and animal diseases. The state has experienced diminishing levels of healthy drinking water due to lower rainfall as well as a higher incidence of certain climate-related epidemics.

Kassala: Kassala is characterized by widespread poverty and lack of basic services. Roughly 85% of the population live below the poverty line and rely on traditional rain-fed agriculture. Flash flooding is a growing risk with frequent seasonal flooding from the Gash and Atbara rivers in the western part of the state. While floods have occurred every 6-7 years over 1970-2000, they have been recently occurring every 4-5 years. Drought frequency has also been increasing, with two major droughts occurring in 2008 and 2011.

Red Sea: The Red Sea state is distinguished from other states in the Eastern region as the only state with a coastline (750 km).  The region supports varied and diverse coastal and marine habitats, including coral reefs, mangroves, and seagrass beds. Many species of birds and fish are supported by these ecosystems, many of which are not found anywhere else in the world. These resources also provide food and income for the communities living along the Red Sea coast. Water scarcity is a persistent problem across inland and coastal areas, while overgrazing is rapidly degrading rangelands.

Northern: The Northern state is characterized by an economy that depends upon both irrigated and rain-fed agriculture. In this region, rainfall is typically very low, temperatures are high in the extreme, and vegetative cover is sparse outside the immediate vicinity of the Nile. Rising temperatures, decreasing rainfall, fluctuations in River Nile water levels, and increased wind speeds have combined to result in a mix of drought and flooding with adverse effects on crop yields, rangelands, animal production, and riverbank erosion. Shifting climates have also hastened the arrival of new plant diseases, such as the date palm disease in the Elgab area, and new skin diseases, such as Jarab, which are not historically common in the state.

Khartoum State: Khartoum is the capital of Sudan and is in the tropical zone around the River Nile. It is characterized by rapid urban growth and the largest concentration of infrastructure. About 20% of the state population is located in rural areas and practice traditional cultivation and pastoralism. Dust storms are regular occurrences and river fluctuations threaten riverbank erosion and flooding. Increasing climatic variability have placed serious pressure on Khartoum’s crop yields, rangelands, and natural forests.

Related projects/interventions

The project builds upon the lessons learned from recent climate change adaptation projects such as: 1) The GEF/LDCF-funded Climate Risk Finance for Sustainable and Climate Resilient Rain-fed Farming and Pastoral Systems; 2) the CIDA-funded Implementing Priority Adaptation Measures to Build Resilience of Rainfed Farmer/Pastoral Communities; and 3) the GEF/LDCF-funded Implementing NAPA Priority Interventions to Build Resilience in the Agriculture and Water Sectors to the Adverse Impacts of Climate Change in Sudan. The project complements these projects and applies a similarly integrated approach to crop, water, and rangeland management that incorporate recurring drought concerns and understanding linkages between agro-pastoralist and nomadic pastoralist livelihoods. Some of the specific lessons that have been directly accounted for in project design are outlined below.

Rural water supply for domestic and small-scale irrigation using solar pumping has been readily adopted and effective in several rural settings, resulting in availability of water for agriculture and clean water for human an animal use and saving time of getting it;

Cultivation of drought-resistant horticultural crops (e.g., introduction of new vegetables and practicing cultivation in 3 seasons instead of one season cropping system in Gerf area in Gedarif State) has resulted in improved crop productivity;

Rehabilitation and improvement in irrigated agricultural production (e.g., in Wad Hassan village of Gedarif State) contributed to the creation of new income sources and labor opportunities, which contributed to improved socio-economic status of communities;  

Shelter belts around some farms in River Nile State demonstrably protected farms from hot wind and also created favorable microclimates, which helped to increase productivity and yields;

Afforestation in North Kordofan State - where 7 community nurseries were established, and 53,000 trees were planted – effectively protected agricultural lands and residential areas; and

Awareness-raising and capacity building through demonstration women’s farms led to improvement in crop productivity (e.g. fava beans) in river Nile State and led to women being more oriented to climate change adaptation practices.

 

Expected Key Results and Outputs: 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Activity 1.1:  Introduce drought-resilient seed varieties of sorghum, millet groundnut and wheat that have demonstrated greater yields in the face of climatic changes through village procurement systems;

Specifically, Activity 1.1 will involve a) developing and implementing a programme for drought tolerant and early maturing certified seed distribution; b) replicating successful implementation of drought tolerant and early maturing seed varieties of sorghum, millet, groundnut and wheat to neighboring communities through participatory process; c) establish climate adapted seed multiplication farms; d) conducting community-based drought tolerant and early mature seed procurement by ensuring farmer knowledge of technical aspects of seed production, handling and exchange, including establishment of seed multiplication farm at village level; and e) facilitation of access to micro-financing schemes . Drought tolerant and early maturing seeds constitute crop varieties that can better cope with heat, drought, flood and other extremes and help farmers adapt to climatic changes and lead to increases in agricultural production and productivity. The focus of seed varieties will be on adapted food and cash crops seed varieties that are currently available in Sudan that have shown desirable traits in withstanding climatic stresses such as drought, heat, and waterlogging. Seeds will be procured based on community-based procurement protocols that promote the role of the local farmers in procurement of quality seeds of improved varieties at household and community levels. It is predicated on the frequent circumstance of seed supply from the formal sector unable to reach or meet traditional farmers’ demand. The viability of community-based seed procurement programs is well established in rural Sudan thanks to past projects and local resource management practices. Seed multiplication farms consist of community-based drought-resistant seed supply on local farms through introducing improved seed varieties and strengthening farmers’ capacity and knowledge regarding technical aspects of seeds such as quality control, testing, storage, and certification. These farmers subsequently become a source of quality seeds of improved climate-smart varieties to the communities. The community–based seed supply can be a reliable and efficient way to access high quality seeds. Finally, micro-financing schemes (i.e., sandugs) will be established will be established through the village communities with mechanisms in place to facilitate access to funds.

Activity 1.2:  Introduce sustainable practices in agricultural production at the community level. This involves the introduction of greater irrigation efficiency in the management of water resources through the introduction of integrated women’s farms, home gardens, and demonstration plots;

Specifically, Activity 1.2 will involve a) establishing integrated women sustainable agriculture farms with access to micro-financing schemes; b) establishing sustainable women-centered home gardens, with access to micro-financing schemes; c) training farmers on sustainable wadi cultivated practices and subsequent cultivation in at least 5 specific wadi/depression zones; d) preparing technical manual and provide trainings to farmer groups on water management under climate change (for integrated farmland; home garden and Wadi); and e) setting up climate adaptation-oriented Farmers’ Field Schools. Women-run farms and gardens are enterprises for cultivation of a small portion of land which are around the household or within walking distance from the residence. They will be planted with vegetables and fruits and as well as extra-early maturing crops that can serve as a supplementary and urgent source of food and income during period of food scarcity. Women’s farms and gardens have proven to be a promising approach to enhance food security and wellbeing of resource-poor households in vulnerable areas, offering benefits of security, convenience, and marketable items. Sustainable wadi cultivated practices involve the implementation of climate-adapted technologies and practices that address the challenge of how to transition to a climate-adapt agriculture at needed scales for enabling agricultural systems to be transformed and reoriented to support food security under the new realities of climate change in rural Sudan. Two main categories of sustainable agriculture are the focus of project activities: a) improving water/soil management practices through the introduction of small scale irrigation and conservation tillage techniques and b) improving crop production practices through seed priming, fertilizer micro-dosing, adjusting planting density, and changing planting dates to conform to new climatic trends. Farmers’ field schools (FFSs) are based on the FAO’s Farmer Field School methodology[1] and have been introduced successfully in other parts of Africa to increase farmers awareness about climate change and climate-smart technologies. Among other things, they help farmers learn to integrate weather and climate information with disaster management and agricultural planning while creating awareness about disaster risk reduction and climate change adaptation. The project will address the short time frame to develop climate information by incorporating protocols and lessons learned from the GEF-funded Climate Risk Finance (CRF) project mentioned in Section B.1. That is, the logistical challenge of the time it takes to get climate data, then the time to build climate advisories and then the time to disseminate in FFSs and expect usage for impact will be overcome by the head start provided by the CRF project through the mobile-phone partnership established between the Sudanese Meteorological Authority, the Agriculture Research Center, extension service representatives, and a mobile phone company to develop and distribute climate information to local communities across 6 states in Sudan. As a result, rain-fed farmers and pastoralists now receive forecast/climate information and risk / agricultural / pest / livestock advisories by Short Message Service (SMS). At the same time, the CRF project is developing a Mobile Based Application comprising weather information, agriculture practices, crop insurance scheme, marketing information and advisory services that should be readily available by the start of project activities. Such information will be integrated into the FFS programme.

Activity 1.3:   Introduce rangeland management practices that reduce pastoral stress on communal lands through demonstration farms and rangeland rehabilitation techniques;

Specifically, Activity 1.3 will involve a) the development of technical guidelines for climate adaptive rangeland management; b) establishment of communal rangeland reserves for drought resistant ranged seed production; and c) Rehabilitation of 2,000 hectares of degraded rangelands and an additional 2,500 hectares of strategic rangelands by using site-suitable types of soil conservation and water harvesting techniques Technical guidelines will focus on climate-adaptive rangeland management techniques. Rangelands are a crucial resource for the poorest people in Sudan’s drylands, representing the major source of fodder in livestock production systems. Today, however, these areas are threatened by severe livestock population pressures and environmental degradation New rangeland management practices to be implemented include rotation grazing, reduced burning, reseeding, brush control, and scheduled rest periods.  Rangeland rehabilitation will consist of four main activities: reseeding, water harvesting, grazing management, and fire control. The modalities for introducing and sustaining these new practices will be addressed in Output 3 capacity building activities to ensure that the need for vegetation/soil recovery is community-learned and community-practiced.

Activity 1.4:   Establish shelterbelts/agroforestry to improve productivity and reduce land and environmental degradation.  This involves the plantation of trees to absorb energy from dust storms and protection of cultivatable areas

Specifically, Activity 1.4 will involve a) developing and implementing a programme for a total of 30 multi-purpose tree nurseries to be run by women groups; b) establishing shelterbelts with drip irrigation system; and c) establishing climate adaptive community-based afforestation. Shelterbelts will be equipped with drip irrigation systems to act as a barrier to reduce the harmful effect of wind velocities, wind erosion and sand drift and heat waves while improving existing harsh environmental condition. Community based afforestation will involve the planting of climate-resilient tree species and greater and continued community participation in the development of tree nurseries and the management and long-term protection of new forest cover. In addition to increasing resiliency against climate-related impacts, afforested areas will provide an important co-benefit of carbon sequestration. Principal species to be planted include Acacia Senegal with other Acacia species planted as needed, with a rotation of about 15 years and an uptake period of 30 years. Post-project sustainable management of nurseries, shelterbelts and afforested areas will rely on community mobilization/engagement, awareness-raising, and village institutional capacity building that has been achieved as part of Output 3.

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Activity 2.1:  Construct/rehabilitate water yards and drilling of shallow/borehole for drinking water for human and livestock and small-scale irrigation in targeted locations. This involves increasing the access to water by installing communal water infrastructure;

Specifically, Activity 2.1 will involve a) rehabilitation work for existing water yards to repair/replace components as needed (e.g., borehole, storage tank, animal watering basins, tap stands, solar pumps); b) drilling of new water yards, including boreholes, solar pumps, storage tanks and small-scale irrigated plots in vicinity of water yards; and c) conducting community training for maintenance in water yards, including access to micro-financing schemes. A total of 30 existing water yards will be rehabilitated, together with the installation of 50 new water yards among the targeted communities. Water yards are essentially a water extraction and distribution complex which includes borehole, storage tank, animal watering basins and tap stands. The borehole is equipped with a pump, typically powered by a diesel engine although in the proposed project, solar-powered pumping is the chosen alternative in order to avoid greenhouse gas (GHG) emissions. Project activities include both rehabilitation of existing water yards and the installation new ones. The installation of new water yards requires approval from State Water Councils which are part of the Ministry of Irrigation and Water Resources (MIWR), one of the Responsible Parties of the project. The MIWR has already committed to providing permission for the installation of new water yards. The procurement of all materials (i.e. pipe, fencing, solar panels, water storage tank, cement, sand, stone aggregate) for rehabilitating or installing new water yards are locally available, obviating the need for importing any goods from abroad.  The 80 new and rehabilitated water yards will each provide a daily storage capacity of 50 m3, or 1.46 Mm3 per year. Specific locations for rehabilitated and new water yards are indicated in Annex 2.

Activity 2.2: Establish sand water-storage dams in support of small-scale irrigation in targeted localities and villages. This involves the blocking seasonal wadis for groundwater storage and exploitation;

Specifically, Activity 2.1 will involve a) constructing sand water-storage dams in drought-prone areas; b) installing small pumping units around sand water-storage dam for sustainable agriculture; and c) providing training for operation and maintenance of sand water-storage dam and solar pumps for water management scheme, including access to micro-financing schemes. A total of 30 new sand water-storage dams and 50 solar-powered pumps will be installed at selected locations within the project sites. These are cost-effective rainwater harvesting structures which are used as a response to conditions of water scarcity due to severe drought and climate extremes in drylands. They are simple structures that consist of a reinforced concrete wall built up to 5 meters high across a seasonal water stream that transports runoff-water from catchment areas to streambeds. They are designed like ordinary dams, but the spillway is raised to enable sediments to sit in the dam. Project activities include constructing new sand water-storage dams which do not require a permit or approval from State Water Councils. The procurement of any materials for constructing sand water-storage dams are locally available, obviating the need for importing any goods from abroad.  Each sand water storage dam has an annual design capacity of 20,000 cubic meters. The 30 new sand water storage dams will contribute a total of 0.6 Mm3 in new annual water storage capacity. Specific locations for the new sand water-storage dams and pumps are indicated in Annex 2.

Activity 2.3:  Construct improved Hafirs and upgrade existing ones, excavating natural pond and cistern to increase availability of drinking water. This involves the construction of water storage infrastructure

Specifically, Activity 2.1 will introduce 75 new hafirs at selected locations within the project sites.  A hafir is simply an artificial excavation designed for harvesting rainwater. During the rainy season it will be filled by the discharge from seasonal streams and enhances the access of vulnerable communities to drinking water. Hafirs are usually constructed big enough to cater for the needs of the villagers/nomads and their livestock during the dry season.  Each improved hafir has an annual storage capacity of 50,000 cubic meters. The 75 new improved hafirs will contribute a total of 3.75 Mm3 in new water storage capacity.Project activities include both constructing improved Hafirs and upgrading existing ones. The installation of new hafirs does not require approval from State Water Councils. The procurement of any materials for rehabilitating or constructing new hafirs are locally available, obviating the need for importing any goods from abroad.

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Activity 3.1: Train extension officers and other government stakeholders on climate change resilience and adaptation related issues.  This involves the development of training materials tailored to local circumstances and delivered through a series of workshops;

Specifically, Activity 3.1 will involve a) conducting a training needs assessment for executing and concerned government agencies; b) developing manuals and technical guidelines for strengthening technical capacity for expanding climate-resilient practices throughout other communities; c) training extension staff from the Ministry of Agriculture and concerned government agencies; d) developing guidelines on adaptation measures for up-scaling to other localities; and e) developing a manual of best practices on climate change adaptation measures

Activity 3.2: Build capacity of beneficiaries for coping with climate change risks and local operation & maintenance of project interventions. This involves a series of seminars and workshops to raise awareness among village leaderships councils about climate change coping strategies

Specifically, Activity 3.2 will involve a) conducting climate resilience training of village extension networks, including role of micro-financing schemes; b) conducting training of village development committees, including role of micro-financing schemes and community procurement processes; c) carrying out awareness-raising campaigns on building resilience to climate change, including role of micro-financing schemes; and d) facilitating exchange visits of communities and extension staff across localities. A fair and transparent selection process will be established regarding beneficiary selection for capacity building. Several criteria will be employed to select training beneficiaries including specific level of stakeholder engagement; specific level of vulnerability, status as female-headed household, and other criteria to be determined.

 

Contacts: 
Tom Twining-Ward
Climate-Related Hazards Addressed: 
Location: 
Signature Programmes: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Resilience of food production systems and food insecure communities improved in the face of climate change in Sudan, benefiting at least 200,000 households of farmers and pastoralists with 35 percent women

Output 2: Improved access of water for human, livestock and irrigation to sustain livelihoods in the face of climatic risks in the nine targeted states benefiting at least 200,000 households

Output 3: Strengthened capacities and knowledge of institutions and communities on climate change resilience and adaptation

Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
June 2020
Description: 
GCF Board Approval
Proj_PIMS_id: 
5813
SDGs: 
SDG 2 - Zero Hunger
SDG 3 - Good Health and Well-Being
SDG 6 - Clean Water and Sanitation
SDG 13 - Climate Action

Support for Integrated Water Resources Management to Ensure Water Access and Disaster Reduction for Somalia's Pastoralists

Roughly 75% of Somalia’s 14.7 million people live in rural areas, with approximately 60% practicing pastoralism and 15% practicing agriculture. Less than one third of the population has access to clean water.

Climate change is now bringing more frequent, higher intensity droughts and floods, reducing already scare water supplies. Lack of water poses a serious threat to the health, wellbeing and livelihoods of farming and pastoral communities and limits Somalia’s overall economic and social development. Women in rural areas are particularly vulnerable.

Working with a range of development partners, as well as traditional leaders, women’s groups, local NGOs and community-based organizations, this four-year project (2019-2023) aims to increase Somalia’s capacity to manage water resources sustainably in order to build the climate resilience of rural communities.

The project focuses on:

  • National policy reform and development of integrated water resource management (IWRM)
  • Capacity-building at the national, state, district and local levels
  • Infrastructure for improved climate and water monitoring
  • Capture and sharing of best practices on IWRM.


The project will also provide training for pastoralists and small-scale farmers, men and women, on how to sustainably produce farming and livestock products.

English
Region/Country: 
Coordinates: 
POINT (45.307617150639 2.1056966206131)
Primary Beneficiaries: 
Over 360,000 farmers and pastoralists across Somalia
Financing Amount: 
GEF-LDCF $8,831,000; UNDP TRAC resources $1,500,000
Co-Financing Total: 
Ministry of Energy and Water Resources: US$ 8,000,000, EU: US$ 60,144,000, Global Water Partnership: US$ 100,000, TOTAL financing: US$ 78,575,000
Project Details: 

Water scarcity is a serious threat to Somalia, hindering economic and social development. Throughout the country, surface water and groundwater reserves are decreasing, while the frequency of droughts and floods is on the rise.

In response, this project directly supports integrated water resources development and management for over 360,000 farmers and pastoralists.

The development of a multi-sectorial IWRM Strategy conbined with technical and operational capacity development will support Somalia in planning sustainable water resources development schemes for all states down to the local level, particularly for states that formed as recently as 2015 and 2016.

The project will invest in monitoring infrastructure, including automatic weather stations, manual rain gauges, synoptic stations and radar river-level sensors, which will provide critical data for early warning dissemination in both arid regions and in key river basins to improve water resources management and contingency planning for farmers and pastoralists, including nomadic pastoralists. Currently the government lacks the capacity to put out timely early warnings and accurate hydrological information to support communities in the efficient and economic management of water.

Water mobilization from a diversified source of groundwater and surface water sources as well as construction of water diversion infrastructure will promote rural water supply and increased resilience in flood-prone areas. The resilience of rural populations  will be further enforced by enabling them to exploit their agro-pastoral value chains and increase their asset bases.

The project builds on existing initiatives, including the Integrated Drought Management Program in the Horn of Africa, the Somalia Water and Land Information Management service, the Joint Programme on Local Governance and Decentralized Service Delivery, the New Deal Compact and support provided by the Red Cross and Red Crescent Climate Centre to improve weather and climate forecasting.

Expected Key Results and Outputs: 

Component 1: National water resource management policy establishing clear national and state responsibilities

Outcomes

  1. Policy, legislative and institutional reform for improved water governance, monitoring and management in the context of climate change
  2. Strengthened government capacities at national and district levels to oversee sustainable water resources management

 

Component 2: Transfer of technologies for enhanced climate risk monitoring and reporting on water resources in drought and flood prone areas

Outcomes

  1. Improved water resource data collection and drought / flood indicator monitoring networks in Somalia’s Arid and Semi-Arid Lands (ASALs)
  2. Strengthened technical personnel from the National Hydro-Meteorological Services in IWRM and flood and drought forecasting
  3. Better understanding of the current hydrological and hydrogeological situation

 

Component 3: Improved water management and livelihood diversification for agro-pastoralists

Outcomes

  1. Reduced vulnerability for agro-pastoralists to water resource variability through investment in water resource management infrastructure and training on the livestock value chain
  2. Increased awareness of local communities on rainwater harvesting, flood management and water conservation during rainy seasons
  3. A national groundwater development action plan that will increase access to water for pastoral communities in drought affected areas taking into consideration aquifer characteristics, extent, location, recharge, GW availability and sustainable yields

 

Component 4: Gender mainstreaming, knowledge management and Monitoring and Evaluation

This component will focus on documenting best practices and spreading lessons learned on IWRM, effective hydro-geo-meteo monitoring and early warnings as well as agro-pastoral livelihood value chain skills transfer.

This will be done by first conducting a baseline study, including evaluating existing laws, policies and curriculums to determine how the existing position and status of women and youth can be improved with regards to water resources management.

The project will demonstrate the evolution of all gender-disaggregated baseline indicators and the mainstreaming of gender in all trainings and activities.

Included in this component will be stakeholder workshops in all 15 target villages.

All training materials will be collected and stored by the project’s M&E / KM expert and will be housed on an open-access database for all relevant government representatives, universities and NGOs/CSOs in all 6 states.

Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy.

Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies.

Supported by Component/Outcome Four (Knowledge Management and M&E) the project monitoring and evaluation plan will also facilitate learning and ensure knowledge is shared and widely disseminated to support the scaling up and replication of project results.

Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office.

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation 
Contacts: 
UNDP
Tom Twining-Ward
Regional Technical Advisor, Climate Change Adaptation
UNDP
Abdul Qadir
Climate Change and Resilience Portfolio Manager, UNDP Somalia
Climate-Related Hazards Addressed: 
Location: 
News and Updates: 

Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
July 2019
Description: 
GEF CEO endorsement
Proj_PIMS_id: 
5464

Strengthening Climate Information and Early Warning Systems for Climate Resilient Development and Adaptation to Climate Change in Guinea

Despite considerable natural resources, including rich biodiversity, fertile soil, forests and mineral deposits, the West African nation of Guinea remains one of the world’s least developed countries due in part to the poor management of climate variability over past decades.

In line with climate change, the country has seen a decline in rainfall, recurring droughts since the 1970s, and frequent and early floods. The observed impacts of these disturbances are the drying up of many rivers and soils, the reduction of vegetation cover, a decline in agricultural, pastoral and fishing production, and the resurgence of waterborne diseases, all exacerbated by unsustainable production systems.

National development strategies are struggling to achieve results while the country is still recovering from the devastating effects of the 2015 Ebola virus disease.

By improving climate monitoring, forecasting and early warning for disasters, and strengthening the capacities of key actors, this four-year project (2019-2023) will help Guinea to respond to shocks and to mainstream adaptation into development planning for climate-sensitive sectors (agriculture, livestock, water, coastal and forestry areas) – supporting more inclusive and sustainable development into the future.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-13.623046879746 9.4942150191335)
Primary Beneficiaries: 
9,600,000 individuals (80 per cent of the Guinean population) who are currently affected by the effects of climate change in the agriculture, fishing, livestock farming, mining and forest industry sectors. Approximately 200,000 will be direct beneficiaries and around 51 per cent of the beneficiaries will be women. | Grassroots community organizations and farming associations | Over 120 political decision-makers from the agriculture, fishing, livestock farming, mining and forest industry sectors as well as from the planning and finance sectors.
Financing Amount: 
GEF-LDCF US$5,000,000; UNDP TRAC resources $350,000
Co-Financing Total: 
Ministry of Agriculture $30,000,000; Ministry of Transport - National Directorate of Meteorology $1,503,000; National Directorate of Hydrology $384,300; Agronomic Research Centers $240,000; SOGUIPAH $120,000; IRD $450,000
Project Details: 

A coastal country bordered by Côte d'Ivoire, Mali, Liberia, Sierra Leone, Guinea Bissau, Senegal and Mali, Guinea is at the crossroads of major West African climate groups including the Guinean coastal climate, the Sudanese climate and the wet tropical climate at the edge of the equatorial climate.

For several successive decades, the country has recorded a considerable decline in rainfall over the entire territory. This decline has been accompanied by a general rise in temperatures, recurring droughts since the 1970s, a decline in the frequency and intra-annual distribution of rainfall, early and frequent floods, and sea-level rise.

The effects of these changes is having negative consequences for many rural development sectors still largely dominated by rainfed activities and for communities already living under precarious conditions.

By expanding hydrometeorological infrastructure and strengthening institutional capacities in climate monitoring, early warning and development planning, this project is aimed at reducing vulnerability to shocks and promoting climate adaptation in Guinea’s most exposed sectors.

The project feeds into national and global priorities including Guinea’s National Economic and Social Development Plan (PNDES) 2016-2020, Vision Guinée 2040, Guinea’s National Adaptation Programme of Action (2007) and the country’s Intended Nationally Determined Contribution (2015) submitted to the UNFCCC under the global Paris Agreement.

It cuts across several Sustainable Development Goals in Guinea, including SDG 7 (Gender Equality); SDG 12 (Sustainable Consumption and Production), SDG 13 (Climate Action) and SDG 15 (Life on Land).

Expected Key Results and Outputs: 

COMPONENT 1: Technology transfer for monitoring climate and environmental infrastructure

Outcome 1: The capacities of the national hydrometeorological departments are strengthened in monitoring extreme weather phenomena and climate change

Outputs:

  • 64 hydrological stations with telemetry, processing and archiving of data rehabilitated/installed and operational.
  • 37 automatic weather stations, 1 upper air station and 24 lightening detection sensors with archiving and data processing facility rehabilitated/ installed
  • A training program for the efficient operating and maintaining of the hydrometeorology equipment is developed and delivered to hydrological and meteorological technicians of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A training program to run hydrological models and produce climate information products and services (including early warning information) is delivered to meteorologist engineers and hydrologist engineers of the National Directorate of Meteorology and National Directorate of Hydraulics
  • A centralized national climate data and hazard information center and knowledge management system is set up

 

COMPONENT 2: Integrating climate information, early warning and climate adaptation products into development plans.

Outcome 2: The generated climate products and services are accessible and used efficiently and effectively for the production of warnings for producers and in the drafting of medium- and long-term climate-resilient development plans

Outputs:

  • Risk profiles and maps for floods, landslides, thunderstorms, bushfires, stormy winds, and droughts, malaria and meningitis (length of transmission period and geographic range), risk zoning based on hazard and risk maps for all ecological regions of the Guinea, the key river basins, agrometeorological bulletins, rainy season outlooks are developed
  • Hazards risks and climate information products and services are integrated in the multi-year investments plans of the agricultural, water, environment and health sectors, the national land use plan, the national disaster risks management strategy and the local development plans of 26 municipalities
  • A multi hazards Early Warning System covering all Guinea is developed and operational
  • A financial sustainability strategy for the Early Warning System and the centralized national hydroclimatic data and hazard information and knowledge system is developed
Monitoring & Evaluation: 

Project results are monitored annually and evaluated periodically during project implementation in compliance with UNDP requirements as outlined in the UNDP POPP and UNDP Evaluation Policy. Additional mandatory GEF-specific M&E requirements are undertaken in accordance with the GEF M&E policy and other relevant GEF policies. Further M&E activities deemed necessary to support project-level adaptive management will be agreed during the Project Inception Workshop and will be detailed in the Inception Report.

The Project Manager is responsible for day-to-day project management and regular monitoring of project results and risks, including social and environmental risks. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions.

The Project Board holds project reviews to assess the performance of the project and appraise the Annual Work Plan for the following year. The Board will take corrective action as needed to ensure results.

In the project’s final year, the Project Board will hold an end-of-project review to capture lessons learned and discuss opportunities for scaling up and to highlight project results and lessons learned with relevant audiences. This final review meeting will also discuss the findings outlined in the project terminal evaluation report and the management response.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations undertaken by the UNDP Independent Evaluation Office and/or the GEF Independent Evaluation Office. 

Key reports:

  • Annual GEF Project Implementation Reports
  • Independent Mid-term Review and management response 
  • Independent Terminal Evaluation  
Contacts: 
UNDP
Julien Simery
Technical Specialist - Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Programme Meetings and Workshops: 

Inception workshop, August 2019.

Display Photo: 
Project Dates: 
2019 to 2023
Timeline: 
Month-Year: 
February 2017
Description: 
Concept approved by the GEF
Month-Year: 
March 2019
Description: 
GEF CEO endorsement
Month-Year: 
August 2019
Description: 
Inception workshop
Proj_PIMS_id: 
5552

Supporting Climate Resilience and Transformational Change in the Agriculture Sector in Bhutan

Given its geographic location and mountainous terrain, Bhutan is particularly vulnerable to changes in climate.
 
With the goal enhancing the resilience of smallholder farms, in particular to shifting rainfall patterns and frequent extreme weather events, this project, led by Bhutan's Gross National Happiness Commission, focuses on three complementary outcomes:
 
Promoting resilient agricultural practices in the face of changing climate patterns
Integrating climate change risks into water and land management practices that affect smallholder farmers
Reducing the risk and impact of climate change induced landslides during extreme events that disrupt market access
 
English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (89.593505836139 27.459539334553)
Primary Beneficiaries: 
27,598 agricultural households (118,000+ people) in eight dzongkhags (districts): Dagana, Punakha, Trongsa, Tsirang, Sarpang, Samtse, Wangdue Phodrang and Zhemgang, equal to approximately 46.5% of the rural population of Bhutan.
Funding Source: 
Financing Amount: 
US$25.347 million Green Climate Fund grant
Co-Financing Total: 
US$19.866 million Gross National Happiness Commission*; US$10.020 million Ministry of Agriculture and Forests*; US$2.540 million Ministry of Works and Human Settlements*; US$242,000 National Center for Hydrology and Meteorology* *Grants and in-kind
Expected Key Results and Outputs: 
Output 1: Promote resilient agricultural practices in the face of changing climate patterns
 
1.1. Developing and integrating climate risk data into crop and livestock planning at the national and sub-national levels
1.2. Tailored climate information and related training to local government and farmers to interpret and apply climate risk data to local and household level agriculture planning
1.3. Scaling up climate-resilient agriculture practices, and training local entities in community seed production and multiplication and cultivation of climate-resilient crop alternatives
 
Output 2:  Integrate climate change risks into water and land management practices that affect smallholders
 
2.1. Enhancing climate-informed wetland and water management to support agriculture planning
2.2. Establishment of climate resilient irrigation schemes and water saving technologies for smallholder farmers in 8 target dzongkhags
2.3. Scaling up of sustainable land management (SLM) technologies to support soil and slope stabilization
2.4. Capacity strengthening to farmers and extension officers on SLM technologies
 
Output 3: Reduce the risk and impact of climate change induced landslides during extreme events that disrupt market access
 
3.1. Slope stabilization along key sections of roads, critical for market access, and related technical capacity and knowledge products to support climate resilient road planning and construction going forward
3.2 Technical capacity building to support climate-risk informed and cost-effective slope infrastructure including stabilization, drainage and road construction & maintenance
 
Monitoring & Evaluation: 
The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager. The UNDP Country Office supports the Project Manager as needed, including through annual supervision missions. All project-level monitoring and evaluation is undertaken in compliance with the UNDP POPP, the UNDP Evaluation Policy.
 
An Annual Project Report for each year of project implementation will objectively document progress and will be shared with the Project Board and other stakeholders.
 
An independent Mid-Term Review will be undertaken and the findings and responses outlined in the management response incorporated as recommendations for the final half of the project’s duration. 
 
An independent Terminal Evaluation will take place no later than three months prior to operational closure of the project and will be made available to the public via UNDP’s Evaluation Resource Centre.
 
The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.
 
Contacts: 
UNDP
Mariana Simoes
Regional Technical Specialist, CCA
Climate-Related Hazards Addressed: 
Location: 
News and Updates: 

.

Display Photo: 
Expected Key Results and Outputs (Summary): 
  • Output 1: Promote resilient agricultural practices in the face of changing climate patterns
  • Output 2: Integrate climate change risks into water and land management practices that affect smallholders
  • Output 3: Reduce the risk and impact of climate change induced landslides during extreme events that disrupt market access
Project Dates: 
2020 to 2025
Timeline: 
Month-Year: 
July 2019
Description: 
Green Climate Fund approval
Month-Year: 
January 2020
Description: 
Project signing (GNHC and UNDP)
Month-Year: 
March 2020
Description: 
Launch of implementation
Proj_PIMS_id: 
5777