Climate change adaptation in the lowland ecosystems of Ethiopia

Project Overview

Ethiopia is among the most vulnerable countries on the African continent. Small-holder farmers, agro-pastoralists and pastoralists in the Ethiopian lowland ecosystem are particularly and increasingly vulnerable to climate change. Climate change has resulted in food insecurity and dependence on food aid, and limited awareness of its long-term risks hinders efforts to promote climate-smart solutions to build resilience and adaptive capacity.

Due to lack of weather information for the short, medium and long-term and limited knowledge of adaptation measures, land users follow unsustainable livelihood practices. As it currently stands, generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is challenging and faced with capacity limitations. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather prediction, which has proved ineffective in the context of a changing climate. 

The "Climate change adaptation in the lowland ecosystems of Ethiopia" project will strengthen the ability of land users to adapt to the discernible impacts of climate change by disseminating credible weather information and advisory services using locally suitable communication channels to inform the preparation and implementation of actions meant for building resilience and adaptive capacity at a watershed level; reaching a wider audience of land users and government stakeholders across the lowland ecosystem of Ethiopia through a Training-of-Trainers (TOT) approach; conducting a “learning by doing” training to promote clarity and commitment of land users; and by providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas (districts)  across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

The project will promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems.  In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

*The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.

Expected Outcomes

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems

Project Details

Levels of Intervention

District

Source of Funds

Global Environment Facility - Least Developed Countries Fund

Key Implementers

Country Office
National Governments
United Nations Development Programme (UNDP)

Funding Amounts

US$5,836,073
$10,450,000

Project Partners

Ethiopia National Meteorological Agency, Disaster Risk Management and Food Security Sector
Global Environment Facility (GEF)
United Nations Development Programme (UNDP)

Project Dates

2021 to 2027

Introduction

Ethiopia is among the most vulnerable countries on the African continent. Small-holder farmers, agro-pastoralists and pastoralists in the Ethiopian lowland ecosystem are particularly and increasingly vulnerable to climate change. Climate change has resulted in food insecurity and dependence on food aid, and limited awareness of its long-term risks hinders efforts to promote climate-smart solutions to build resilience and adaptive capacity.

Due to lack of weather information for the short, medium and long-term and limited knowledge of adaptation measures, land users follow unsustainable livelihood practices. As it currently stands, generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is challenging and faced with capacity limitations. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather prediction, which has proved ineffective in the context of a changing climate. 

The "Climate change adaptation in the lowland ecosystems of Ethiopia" project will strengthen the ability of land users to adapt to the discernible impacts of climate change by disseminating credible weather information and advisory services using locally suitable communication channels to inform the preparation and implementation of actions meant for building resilience and adaptive capacity at a watershed level; reaching a wider audience of land users and government stakeholders across the lowland ecosystem of Ethiopia through a Training-of-Trainers (TOT) approach; conducting a “learning by doing” training to promote clarity and commitment of land users; and by providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas (districts)  across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

The project will promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems.  In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

Project Details

October 2020
CEO Endorsement

Context

Ethiopia has the second largest population of 102 million (2016) in Africa, making it the second most populous nation in the continent, after Nigeria. Ethiopia’s economy has grown rapidly primarily as a result of increased agricultural production. The agricultural sector in Ethiopia – which accounts for more than 80% of total employment and 45% of the country’s GDP is dominated by smallholder farmers, agro-pastoralists and pastoralists, (here referred to as “Land users”) that rely on rainfall and traditional farming practices. Current practices of cultivating crops and overgrazing of livestock contribute towards large-scale land degradation. Deforestation is taking place at a rate of about 140,000 hectares per year in Ethiopia.

At the national level, temperatures have increased by an average of around 1°C since the 1960s. Rainfall is subject to high variability between years, seasons and regions. Yearly variation around mean rainfall level is 25% and can increase to 50% in some regions. Extreme climate events are also common, particularly droughts and floods. Floods and droughts have resulted in severe losses of crops and livestock, leading to food insecurity. The economic impact depends on the extent of the variability and extreme events but droughts alone can reduce total GDP by 1% to 4%.

The rain in the lowland ecosystem of Ethiopia has often started later than expected over the last decade and has been mostly inadequate and unreliable. In many places water scarcity has increased. The unavailability of water imposes higher demands on women’s and girls’ time which would have otherwise been spent on other productive and human development activities. According to the views of land users, in 2018 alone, women and girls walked an average of 6kms a day to collect water. This is significant considering that the twelve woredas being targeted by this project consist of an estimated population of 600,000 people (or 120,000 households) and, according to the records of the concerned woreda administration offices, women represent about 49% of this population.

The land users rely on rain-fed agriculture and their crop production system has been buffeted by acute shocks related to climate. This has made it more difficult for them to grow crops or raise animals in the same way they have been doing. They stated that rain has been erratic, and when it comes it is too much and destroys their crops. They are now questioning the suitability of agriculture as an occupation in view of changing climatic conditions. The lowland ecosystem of Ethiopia is also home to significant livestock population which is characterized by low productivity, poor nutrition, low veterinary care and uncontrolled overgrazing. The grazing land has lower quality of pasture due to intensive grazing. The quality of the grazing land is progressively declining due to shorter rainy seasons, frequent droughts and overgrazing, causing cattle to graze before grasses have produced seeds, creating more shortages in subsequent seasons.

Changes in temperature coupled with frequency of extreme weather events have been damaging crops and reducing yields. Heat stress has entailed disease outbreaks, reduced milk production and resulted in extra expenditure or loss of income. In particular, prolonged dry seasons and droughts have become more frequent and severe. These risks are made worse by an upsurge in pests and diseases, especially the increasing threat of Fall Armyworm. Changes in pest and disease patterns have also threatened crop production and animal husbandry. The ranges and distribution of pests and diseases are likely to increase; causing new problems for crops and animals previously unexposed to these pests and diseases. These challenges are further aggravated by climate change and the absence of resilient alternative sustainable income generating activities.

Land users in the Ethiopian lowland ecosystems view climate change as a threat that has resulted in food insecurity and dependence on food aid. However, they also express having limited awareness of the long-term risks that climate change poses, and do not know how to respond to these risks and / or of the options available to adapt to them. Indeed, due to lack of reliable information as well as limited knowledge of, and access to a wide range of adaptation options they are forced to follow unsustainable livelihood systems as they use short term coping mechanisms. Generating, interpreting, packaging and disseminating credible and timely weather and climate forecasts is a challenge in Ethiopia. Lack of access to timely and credible weather and climate forecasts has left land users with no option except to rely on traditional methods of weather forecasting, which has proved ineffective given the context of a changing climate. Discussion with land users and government stakeholders revealed that the challenge of meeting poverty reduction and food security goals has been mainly associated with incapability to plan better so as to minimize climate related losses and damages.

The land users in the target project areas are resource-poor and their low income means they are unable to make investment and take on risk. In particular, the pastoralists in the Somali and Afar regions have seen their daily livelihood challenges being the constant need to cope with challenges like livestock feed, food, water shortages and migration from internal displacement among others. Moreover, because the main resources in the lowland ecosystem of Ethiopia are controlled by men, women rarely participate in decision-making and their contributions in building resilience and adaptive capacity are seldom recognized. In addition, the decrease in food in times of drought has affected human health especially among children under five years, pregnant women and old people, and reduced human disease resistance and productivity.

The focus group discussion (FGD) held during the PPG phase on impacts of and vulnerability to climate change with lowland farmers, agro-pastoralists and pastoralists revealed that land users are taking actions to cope with climate change and related hazards. However, their current coping strategies such as charcoal and firewood selling are not effective in serving their long-term adaptation needs. These coping strategies are based on short-term considerations, and survival needs, leading to mal-adaptation.

Due to the  limited support tailored to the needs of land users to maintain their livelihoods while adjusting to climate change,  land users across the Ethiopian lowland ecosystems are at risk due to climate-change threats. They face several barriers to effectively managing these risks.

THE BARRIERS IN BUILDING RESILIENCE AND ADAPTIVE CAPACITY

The following three sets of overarching barriers stand in the way of advancing towards the project objective of building sustainable and climate-resilient economic growth among vulnerable communities, targeting lowland areas in Ethiopia. The full and effective implementation of this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity of land users to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds.

Barrier #1:

Lowland communities lack knowledge on risks of climate change; and the benefits of climate smart solutions and adaptation practices.

The causes and implications of current and future climate change are not well understood within lowland communities. Therefore, the land users in these communities are not ready to adopt climate resilient farming and animal husbandry practices because their knowledge of the risk of climate change as well as how to minimize risks and take advantage of these opportunities are limited. The current coping strategies of land users are not also effective in serving their long-term adaptation needs. On the other hand, there are a number of interventions that can make farming and animal husbandry practices in the lowland ecosystems of Ethiopia climate resilient and more productive. Yet, designing actions based on appropriate and participatory interventions that can steer course away from climate sensitive activities remain a challenge.

Although climate change is recognised as a matter of national importance within Ethiopia’s CRGE strategy, the Agriculture Sector Climate Resilient Strategy and the NAPA, the technical and scientific understanding of climate change and adaptation and its practical application is not well developed within government institutions. Gaps in the technical capacity can be attributed to insufficient training of staff employed in relevant departments within the Ministry of Agriculture, Environment, Forest and Climate Change Commission as well as development agents and extension officers at Woreda-level. As a result, they lack the capacity to offer needed advisories and effective extension support to the land users that would enable them to adopt more resilient and productive practices.  Consequently, the land users have limited awareness of the risks that climate change poses and are not familiar with climate smart solutions to build their resilience and adaptive capacity.

At present, there are few initiatives – either through the GoE or elsewhere – to conduct training activities supporting the implementation of the Climate Resilient Green Economy Strategy (CRGE). In particular, there are few training programmes on land management practices for climate change adaptation that are appropriate for Ethiopia’s lowland ecosystems. In addition, there are limited opportunities available for training on how to mainstream activities that are congruent with the CRGE strategy into decision-making and agricultural planning either at the federal or at the regional and woreda levels.

Government stakeholders and land users in the lowland communities require better understanding of community-based adaptation processes as a basis for incorporating climate smart solutions through a practical learning-by-doing approach in order to overcome the barrier.  The proposed project activities under outcome 1: Technical capacity for implementing diversified climate change adaptation practices strengthened will address this barrier.

Barrier #2: Limited access to climate forecasts, decision-making tools and climate advisory services for Lowland communities 

Effective adaptation requires farmers to have access to up-to-date, downscaled climate information, and the appropriate tools and advisory services at their disposal. Ethiopia’s Lowland communities do not have access to these, and are not connected to the climate information, products and advisory services. Technological and capability constraints have hindered the provision of weather and climate forecasts, including guidance and value-added advisory services to land users. In addition, information on how to adopt alternative and innovative farming, pastoral and agro-pastoral practices based on these climate forecasts is not available. This is a result of insufficient availability of climate forecast information, particularly at the local level and inadequate capacity of agricultural extension officers to guide farmers and other land users based on climate forecasts. Consequently, lowland farmers, pastoralists and agro-pastoralists can only undertake limited proactive measures in response to climate change.

At the level of overarching policies, plans and strategies, Ethiopia has made some progress in mainstreaming climate change considerations into national and regional frameworks. This has provided a good basis for the implementation of national adaptation priorities through existing LDCF projects. There is need to find more operational ways of influencing policies and actions on the ground. This requires expanding the capability to gather climate data and to share downscaled weather information and climate change information products with practical applications that combine climate predictions with advisory support services for vulnerable land users. However, the capacity at the national level to generate downscaled climate data and use it at local level is not yet well developed. Often, climate data is provided in complex scientific formats and at high resolutions. The generation of the data is also not informed by the needs of users on the ground.

Moreover, having the tools and undertaking climate information analyses is not in itself enough without the ability to use it to inform decisions at the farm level. Currently, there exists no climate advisory services tailored to the needs of Lowland communities. Practical application requires concerned government stakeholders and land users to have the capacity to use these information and analysis to respond to ongoing and emerging threats in the project area.

Overall, there is no alignment among the components of the climate information products and services value chain, from the collection, analysis and packaging of such information to meet the needs of communities, to the application of this information at local level to support adaptation decisions and actions. Along the chain, there are huge capacity constraints and disconnects in government institutions to provide the information, tools and advisory services synergistically.

The proposed project activities under outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools will address this barrier.

Barrier #3: Inability of land users to invest in climate smart technologies and solutions required to diversify and sustain their livelihoods in the face of climate change.

The land users in the project area are resource-poor and unable to invest in the available climate smart technologies, opportunities and solutions for the diversification of their livelihood system. In the project area, there is potential for constructing reservoirs, ponds and boreholes that help address the prevailing water scarcity. Indeed, the land users in the project area have underutilized this potential and few of them rely on flowing streams/rivers and shallow wells with limited capacity to supply domestic water needed during the drought period. There are also opportunities for local communities to diversify their livelihood options thereby building their adaptive base and assets, but are not able to do so due to a number of reasons. They lack technical knowhow to tap into these opportunities, while the advisory services available to them from support institutions is largely lacking in these areas. These services also focus on traditional agro-based livelihoods which themselves are climate-sensitive. Opportunities in activities such as bee keeping, fish farming, processing and marketing of natural products are not fully tapped by lowland land users to diversify their livelihoods and incomes while building adaptive assets.

These opportunities also remain untapped as they are out of reach for the land users who are not able to access funding and technical knowhow. They are therefore not able to construct, own and operate integrated water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures to enable the creation, improvement and sustenance of diversified livelihood options. Some of the investments especially in the construction of water storage facilities and reservoirs, including accompanying irrigation and solar pump support structures require a high up-front capital investment.

This has also become more difficult in the absence of appropriate financial capital especially for poor land users with limited access to the financial services (Ethiopia is one of the most under-banked countries in sub-Saharan level, with a bank branch to population ratio of 1:43912 in 2013/14). Small land users are also perceived as risky borrowers by the formal financial services sector, which is compounded by their lack of collateral, while the costs of finance from the informal financial services sector makes this source unaffordable to them.

The proposed project activities under outcome 3: Climate change adaptation practices adopted in communities in lowland ecosystems will address this barrier.

Although no single initiative can address all the barriers mentioned above, the LDCF-financed project will deliver complimentary outcomes to contribute towards overcoming these barriers. The theory of change (ToC) (Annex K below) underpinning the design of this LDCF-financed project includes the barriers discussed above and activities that contribute to the preferred solution discussed in section III through the delivery of the outcomes 1, 2 and 3.

Strategy

The objective of the LDCF project is to promote climate change adaptation and sustainable economic growth among communities in Ethiopia’s lowland ecosystems; which are selected using predefined criteria set by EFCCC through a bottom-up process. In so doing, the project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions.

The proposed project will develop and implement a capacity building support programme to strengthen the ability of land users through i) reaching a wider audience of land users and government stakeholders across the lowland ecosystems of Ethiopia using a TOT approach; ii) disseminating credible weather information and advisory services using a locally suitable communication channels to inform the preparation and implementation of actions designed for building resilience and adaptive capacity at a watershed level, iii) conducting a “learning by doing” training to promote clarity and commitment of land users and iv) providing needs responsive support to diversify livelihood options in a way that leads to tangible and replicable changes.

Accordingly, at the local-level, this project will deliver the following benefits to vulnerable communities in twelve Woredas across the six regions: i) increased understanding of key adaptation issues, including community-based adaptation techniques as a basis for prioritizing and incorporating climate smart technologies and good practices through a practical learning-by-doing approach; ii) enhanced capability to respond to ongoing and emerging threats through the development of climate adaptive action plans by utilizing early warning, downscaled weather information and climate change knowledge products and iii) enhanced capacity to create, improve and sustain diversified livelihood options at the same time as rehabilitating degraded watersheds in the project regions.

This LDCF project will also support the GoE in reaching its development targets such as those specified under the GTP II, the CRGE Strategy and the SDGs. The project will contribute to Ethiopia’s National Adaptation Programme of Action (NAPA) through inter alia: i) Key Adaptation Need 24 – Promotion of on-farm and homestead forestry and agro-forestry practices in arid, semi-arid and dry sub-humid parts of Ethiopia; ii) Key Adaptation Need 29 –  Strengthening/enhancing drought and flood early warning systems in Ethiopia; and iii) Key Adaptation Need 32 – Enhancing the use of water for agricultural purposes on small farms in arid and semi-arid parts of Ethiopia.

In addition, the project will contribute to several Sustainable Development Goals (SDGs), including: i) SDG 8 – Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; ii) SDG 12 – Achieve food security and improved nutrition and promote sustainable agriculture; iii) SDG 13 –Take urgent action to combat climate change and its impacts; and iv) SDG 15 – Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss.

RELEVANT NATIONAL AND INTERNATIONAL REGIONAL RELATED INITIATIVES

Ethiopia has undertaken several efforts to strengthen technical, financial and institutional capacities for enabling climate change adaptation. There are already a number of existing national policy initiatives, sectoral policies, programs and strategies that may directly or indirectly address climate change adaptation. The most relevant public documents that have relevance for climate change adaptation include Ethiopia’s National Economic Development Plan (The Growth and Transformation Plan (GTP II), Ethiopia’s Programme of Adaptation to Climate Change (EPACC), the Green Economy Strategy (GE), the Nationally Determined Contribution (NDC) of Ethiopia, the recently prepared National Adaptation Plan (NAP), the Environmental Policy of Ethiopia, the Agriculture and Rural Development Policy and Strategy, the Water resources Management Policy, the Health Sector Development Policy and Program, the National Policy on Disaster Prevention and Preparedness, the National Policy on Biodiversity Conservation and Research, the Science and Technology Policy, the Population Policy and National Agricultural Research Policy and Strategy. In Ethiopia, various international initiatives continue to strive for sustainable development.

In spite of these efforts, there is disparity between objectives and what has been implemented due to the technical capacity limitations of government stakeholders and land users to translate these public documents into on-the-ground action to the fullest.

In view of the recent development with adaptation project implementation in Ethiopia, the project will coordinate with the following relevant projects including; The Green Climate Fund (GCF) financed project-‘’Responding to the increasing risk of drought’’; the Adaptation Fund (AF) financed project- ‘’Building gender responsive resilience of the most vulnerable communities’’ and the USAID Financed FAO Project on Fall Army Worm with the Ministry of Agriculture.

 

Level of Intervention: 
Primary Beneficiaries: 
The project will target close to 60,000 (52% women and 48% men) beneficiaries in twelve Woredas across six regions
Implementing Agencies & Partnering Organizations: 
Ethiopia National Meteorological Agency, Disaster Risk Management and Food Security Sector
Global Environment Facility (GEF)
United Nations Development Programme (UNDP)
Project Status: 
Source of Funds Approval/Endorsement
Location: 
Urban
Financing Amount: 
US$5,836,073
Co-Financing Total: 
$10,450,000

Key Results and Outputs

Outcome 1: Technical capacity for planning diversified climate change adaptation practices strengthened (Co-financing for Component 1, Outcome 1: $2,099,702; LDCF grant requested for Outcome 1: $450,000)

This outcome will deliver strengthened capacity of farmers, agro-pastoralists and pastoralists on planning, monitoring and evaluating diverse climate change adaptation approaches. To this effect, the project would develop targeted training modules to be eventually made available online by appropriate partner institution. The modules would be put online for wider use across the country. These modules would be based on agreed areas of interventions that help strengthen adaptive capacity of the pastoralist, farmer and agro-pastoralist communities. Key considerations would be given to community-based adaptation training that leads to the development of climate resilient action plans across the watershed. The training modules would also include community forecasting, monitoring and early detection of such risks as the Fall Armyworm infestation. Using the developed training modules (as listed below), sets of capacity building seminars and training workshops would be delivered to government officials and woreda development agents respectively.

Subsequently, specific learning by doing community adaptation and participatory trainings would be devolved to the local communities to help strengthen their adaptive capabilities.: More specifically, the training modules will include issues identified for training needs as detailed below. These trained communities from the twelve woredas will in turn develop their own respective water security focused climate adaptive action plans through incorporating climate smart technologies and good practices, as well as early response measures including community-based monitoring, forecasting and early warning initiatives using the guidelines developed by FAO and being implemented by the MoANR. In addition to the Fall Armyworm response plan, targeted community based adaptive response will be developed to include the flash flood risks adaptive response and grievance and response mechanism to address Farmers Pastoralist Conflicts at the community level. The early warning and response measure will depend on the need of each of the twelve project sites.

Furthermore, the results of project interventions implemented under outcomes 2 and 3 will be monitored and the results thereof would be used as an input for the development of best practice guidelines to promote the up-scaling of climate‑resilient farming, agro‑pastoralism and pastoralism in Ethiopia’s lowland ecosystems. Best practices from the training and demonstrations would be documented across the twelve woredas. These experiences would be shared across the regions through effective television and radio documentaries, local language-based posters and other awareness materials.

During the PPG phase, the following training needs were identified to address specific needs of institutions and communities at regional and woreda/community‑levels:

  • Training on climate smart technology and good practices for community adaptation (Regional Institution level training: support Output 1.1)
  • Training on developing climate adaptive community-based action plan (Regional Institution level training; support Output 1.2)
  • Responding to climate emergency at community level: early detection and monitoring training on Fall Armyworm, Pastoralist/farmers conflict and Emergency flood (Woreda and Community level training; support Output 1.3)
  • Training session on adaptive soil and water conservation techniques, including rehabilitation, improvement and maintenance of a productive and healthy watershed (Woreda and Community level training; support Output 1.2, 3.3)
  • Training on climate and weather information for planning and agricultural advisory support for the agro-metrology task force established and hosted by the MoANR (Regional Institution Level training; support Output 2.1)
  • Training on climate smart technologies for adaptive capacities and diversified livelihoods, including provision of enhances the knowledge base and capability of land users, including women and youths, on the establishment of community-based enterprises like water storage and rainwater harvesting techniques, livestock fattening and agroforestry, poultry production, etc. (Woreda/Community Level training; support Output 3.2)
  •  

The outputs under Outcome 1 include:

  1. Training modules and platform for enhancing the knowledge and capability of government officials, DAs and local-communities in twelve woredas on the formulation and implementation of adaptation measures are established and sustained.
  2. Strengthened capacity of development agents (DAs)[1] and government officials to support the implementation of climate change adaptation practices at the woreda and regional levels.
  3. Community action plans for adaptive crop production and animal husbandry developed using a participatory approach in twelve Woredas.
  4. Project benefits and climate change adaptation practices are documented and disseminated to local community members in twelve woredas through learning, using innovative and locally adapted means.

 

The strengthened technical capacity for planning climate change adaptation practices through the provision of targeted training under outcome 1 informs and contributes to Outcome 2 by enhancing the understanding of farmers, agro-pastoralists and pastoralists as well as other stakeholders to generate the inputs required for the formulation and adoption of climate adaptive management plan. The capabilities built under outcome 1 for the provision of inputs to Outcome 2 will be achieved including through enhancing capacity of stakeholders on how to i) define the geographical boundaries of the project area; 2) identify and document climate-related challenges faced by stakeholders; 3) gather credible climate related data; 4) identify climate risks and prioritize climate-related challenges that are likely to affect the social, environmental and/or economic status of local communities and their watershed by considering drivers of future trends and how these issues are currently being addressed as well as 5) on how to plan, monitor and evaluate diverse climate change adaptation approaches.

Outcome 2: Climate adaptive management adopted by local communities through accessible climate information and decision-making tools. (Co-financing for Component 1, Outcome 2: $2,193,632; LDCF grant requested for Outcome 2: $681,782)

This outcome will deliver the adoption of climate adaptive management practices by local communities using climate information and appropriate decision-making tools. To this effect, functional Automatic weather stations (AWS) – that will complement and be connected to the on-going effort to extend Ethiopia’s climate observatory network will be installed. Protocols will be developed for climate data collection and analysis as well as on the provision of support regarding climate data storage and management for future reference and decision making in collaboration with the National Meteorology Agency (NMA). Climate monitoring technologies such as rain gauges and handheld climate forecast devices will be distributed to the woredas in the intervention sites. In addition, training on the use of these climate monitoring technologies will be provided to woreda-level officers and DAs. The data collected from the AWS and the household monitoring devices will be used to compile short‑term and seasonal climate forecasts meant for land users.

In order to down-scale the data, the project will work with the Agro-meteorology Task Force established and hosted by the MoANR. This task force currently meets every other week to manually compile agro-meteorology data. Partnership with the MoANR Agro-meteorology Task Force will be formed with the aim of enhancing efficiency and clarity on the implications of weather information and on the practical application of climate science and traditional weather forecast practices. This multi-stakeholders Task force team will ensure that weather and climate forecast services are made easily accessible. The project will also provide capacity building support to the Task Force. The project will facilitate the linkage of activities under this outcome with the Agro-meteorology Task Force Initiative and support the updating of the Task force decision tools to digitized tools. These tools will allow the effective use of climate forecasts provided by the AWS and the downscale of the weather and advisory information to farmers, pastoralist and agro-pastoralist in the project area. Once implemented, the decision-making tools will be tested for a two-year period. The results of this testing period will be combined with lessons learned from the project “CCA Growth: Implementing Climate Resilient and Green Economy plans in highland areas in Ethiopia” to inform national up-scaling of decision-making tools for agro-pastoralists, pastoralists and farmers.

Local weather forecasts will be made available to the land users through mobile phones in each woreda. This would complement the Task Force on Agro-meteorology on-going collaboration[2] with Wageningen University, Netherlands and the Agricultural Transformation Agency (ATA) of Ethiopia. By providing end-users with information in a tailored, useable format, this outcome is building on the GEF financed LDCF project that is being implemented in the highland ecosystem of Ethiopia. This outcome will also build on the lessons learned through the LDCF-funded project “Strengthening climate information and early warning systems in Africa for climate resilient development and adaptation to climate change – Ethiopia” and solicit international expertise to develop climate forecast and decision-making tools.

The outputs under Outcome 2 include:         

  1. Nine Automatic Weather Stations (AWS) installed and linked to the national meteorological network and protocols for use and maintenance established in each woreda.
  2. Appropriate weather and climate monitoring and forecast technologies acquired by representatives of the beneficiary communities and maintained through a functional and durable partnership.
  3. Climate-risk assessment and decision-making tools developed and used in collaboration with local communities in twelve woredas.
  4. Climate-risk assessment and decision-making tools are pilot tested and periodically improved using the results thereof in each of the twelve woredas.
  5. Proactive climate adaptive management plan prepared anchored on functional water storage infrastructure to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.

 

The formulation and adoption of climate adaptive management plan using an up-to-date, downscaled climate information, and the necessary tools and advisory services under Outcome 2 explicitly links the information gathered under outcome 1 for the formulation and adoption of proactive climate adaptive management that would also describe who will be doing what and when to deal with the prioritized climate challenge risks under Outcome 1. Outcome 2 in turn provides inputs that will be implemented by local communities in lowland ecosystem through investment in climate smart technologies, opportunities and solutions as specified under Outcome 3.

Woreda level plans, climate risk assessments and data from AWS integrated with the Met department will inform the interventions under component 3 and the proposed special innovation direct investment.The uptake and use of data and information by local communities gives the AWS infrastructure its ultimate value, and is the purpose for having this infrastructure under the project. This has value both within the project areas as well as within the broader national network. In this regard, the project will facilitate the uptake and use of information and data by local communities through the Agro-Met Task Force Mobile Data provision to farmers and communities at large. It will also strategically support the relevant government institutions, including National Meteorological Agency and Ministry of Agriculture to facilitate community access and use of this information in decision making. This will not only be supported through this project, but through other projects as well thereby ensuring that the installed AWS serve the needs of farmers.

Component 2: Adaptation practices adopted at scale in lowland ecosystem

Outcome 3: Climate change adaptation practices implemented by communities in lowland ecosystems. (Co-financing for Component 2, Outcome 3: $5,956,666 ; LDCF grant requested Component 2, Outcome3: $4,426,383)

This outcome will strengthen land users capacity for the implementation of climate change adaptation practices  for building resilience and diversification of their livelihoods options. This component of the project will thus support land users to create, improve and sustain diversified livelihood options through rehabilitating degraded watersheds in a way that would lead to tangible and replicable changes. This will be achieved through the provision of needs-based technical support for soil and water conservation activities (soil bund, afforestation, check dam, hill-side terracing, etc.) and construction, operation and utilization of water storage structures for the diversification of livelihood options. As a result of this, land users will be able to do supplementary irrigation and engage in creating alternative climate resilient income generating opportunities. Water storage locations would be identified through the development of climate adaptive community-based action plans from Outputs 1.3. The climate adaptive plan will be developed for each woreda in the 6 regions through a participatory consultation process with the aim of securing, in advance, the commitment of the local community to contribute labor during construction, operation and maintenance; as well as to conserve the entire catchment area for long time durability and functionality of the water storage structure.

Local communities in the woredas targeted under this component will benefit from the implementation of a number of on‑the‑ground activities including; increased adaptive capacity through implementation of adaptive farming, agro-pastoral and pastoral practices; improvement of land productivity through such agro-ecological interventions as the bunds, alley cropping and terracing techniques and enhanced availability of fodder crops for livestock feed through planting of drought-resistant and high yield and early maturing varieties. Furthermore, to enhance access to resources in order to scale innovation for climate adaptation in the lowland ecosystem, the project would assist land users to organize into groups to learn from each other and replicate resilient practices.

A range of livelihood improvement activities will be implemented based on the community action plans developed under Component 2, and will vary from community to community. Examples of activities that will be considered include growing, processing and marketing of fruits and vegetables, installation of technologies for water and energy provision such as solar powered water pumps  and biogas to reduce deforestation for community groups, planting fast growing trees for firewood and construction, energy-efficient fuel-wood stoves for clean cooking solutions, growing area closure (fencing) plants using fruits trees, growing  animal forage plants, poultry and animal fattening. The project will train beneficiaries, and especially empower women to engage in value chain business opportunities such as processing and marketing of milk and milk products. Location-specific alternative livelihood support activities such as tree nurseries, bee keeping, fish farming at natural and artificial lakes, edible mushroom cultivation, compost preparation or sustainable use of incense and gum to reduce deforestation and forest degradation would be supported in the intervention sites. To support the offtake and sustainability of these options, the project will support beneficiaries to initiate business enterprises, and will link them to financing schemes.

Following the initial assessments done during the PPG phase, the project will conduct in-depth, focused capacity needs assessments with the aim of strengthening the capacity of beneficiaries for the delivery of sustainable and scalable businesses. The in-depth assessments, based on the selected livelihood activities for each community, will strengthen community buy-in and increase the levels of uptake and sustainability of the adaptive practices and technologies. As well as providing entry points for the establishment of community-based enterprises and involvement of the private sector in running the business enterprises. The assessments will include: i) analysis of market opportunities; ii) identification and implementation of selected income-generating activities; and iii) appropriate support to local communities on value-addition activities, including agro-processing and marketing skills; iv) sustainable financing options. In addition, the development of community business enterprises (CBEs) will be supported to: i) increase local communities’ access to markets; ii) increase market efficiencies; and iii) promote the development of local private sector agents such as agricultural service providers.

The project will also support training of extension agents to follow-up on the implementation of the adaptation and livelihoods activities and review progress in each Woreda with the aim to i)  review successes and failures from the LDCF and to suggest up scaling activities; and ii) develop training material and provide training workshops on developing bankable business plans  It will also develop a long-term M&E strategy for each Woreda that will be followed up by the extension agents and other development facilitators at Woreda level.

The outputs under Outcome 3 include:

  1. Sites identified, through community planning processes, as critically degraded are rehabilitated in the twelve woredas anchored on functional water storage infrastructure designed, constructed and utilized to enhance the resilience and adaptive capacity of local communities in the twelve Woredas.
  2. Alternative livelihood opportunities created, expanded and made more responsive to climate change through the implementation of community-led climate adaptive initiatives in the twelve woredas.
  3. Farm/pasture land rehabilitated through physical and biological soil and water conservation measures in degraded areas in each woreda for and by the vulnerable lowland farmer, pastoralist and agro-pastoralist communities. 
  4. Community-based enterprises established and operationalized in each woreda to develop and strengthen climate resilient local business.
  5. Woreda-level M&E and follow-up strategy developed and adopted by woreda development facilitators and extension agents.

 

The implementation of adaptation plans outlined under Outcome 2 by local communities in lowland ecosystem ensures that land users in the project area enhance their investment in climate smart technologies, opportunities and solutions in order to diversify their livelihood system while mitigating risks and driving actual improvements in performance (Outcome 3). Project performance will be tracked periodically in order to learn from the outcomes and inform future climate change adaptation plans and actions within and outside the geographical boundaries of the Project area. Undertaking frequent evaluation in this way helps to generate and document knowledge and obtain good practice results that would be disseminated to strengthen capacity for the implementation of diversified climate change adaptation practices.

Outcomes 1 and 2 are intended to provide the basis for implementing climate adaptive solutions and practices (Outcome 3) through climate-informed planning at the local level as well as the use of climate information. For each community, the strategies and practices selected under Outcome 3 will be based on the skills and information from planning processes (Outcome 1) that take into account climate change considerations, as well as the capacity to generate provide and use climate information (Outcome 2) to come up with solutions that address climate risks and vulnerabilities. This will generate knowledge that will be applied in the long term. The implementation of Outcome 3 will follow a participatory process that involves communities as well as local level planning and development institutions in the application of climate-informed planning tools and locally relevant climate data. This structure and approach of the project is a deliberate strategy to ensure that planning capacity and the use of climate information are the basis for climate change interventions, and that there is capacity in the local planning structures to facilitate this process. A provision has been made for special innovation direct investment in community infrastructure and alternative livelihoods creation for Woredas with capacity to include additional site making maximum of 3 sites per woreda.




[1] At Kebele level, “development agents” are responsible for technical advisory services to farmers. At a Woreda-level, “extension officers” oversee the activities of and provide guidance to development agents. The term “extension agents” is used to refer to both levels throughout this document, as their roles often overlap.

 

[2] The partnership between MoANR and Wageningen University to develop downscaled weather and Agricultural advisory support to farmers and pastoralist would be explored further and supported by the project to achieve the objective set out in this component.