Local Governments

Taxonomy Term List

Enhancing climate resilience of rural communities and ecosystems in Ahuachapán Sur, El Salvador

The main project objective is reducing the vulnerability of communities and productive ecosystems in the Municipality of San Francisco Menendez to drought risk, soil erosion, and flash floods due to climate change and climate variability. The project will integrate forest landscape restoration as a climate change adaptation strategy targeted towards increasing forest cover, improving the hydrological cycle, increasing the amount of available water, and regulating surface and groundwater flows, while maintaining and improving water supply and quality. The project landscape approach will ensure that land degradation is reduced (or reversed) and that productivity is maintained and made resilient to climate change impact, thus contributing to better food security and community resilience. By ensuring and enabling institutional and governance environment, the project will generate coordinated and informed actors with the capacity to address appropriate adaptation measures in the medium and long term thus resulting in a genuine local resilience to climate change.

The project will meet its objective by restoring 3,865Ha of forest landscape within San Francisco Menendez, through a landscape-based ecosystem intervention that will focus on the restoration of critical landscapes and enhance its capacity to manage droughts, soil erosion and flash floods; promoting and implementing climate resilient and economically viable productive alternatives in the region that address the economic vulnerability being faced in the region as traditional agricultural systems have become less productive due to climate change; generating climate and hydrological information products in the region to identify and monitor the impact of climate change in the landscape and also the effectiveness of ecosystem based interventions in their management to improve local and national responses; and enhancing local capacity to take concerted action in addressing climate change impact, prioritizing adaptation interventions and mobilizing the financing necessary for their implementation.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-88.395996099475 13.433791341118)
Funding Source: 
Financing Amount: 
US$8.4 million
Project Details: 

National Background

  1. El Salvador has been identified by the International Panel on Climate Change (IPCC) as one of the countries with the highest sensitivity to climate change[1]. According to the Fifth Assessment Report of the IPCC, the country is characterized by a high exposure to geoclimatic threats, resulting from its location and topography, exacerbating climate change induced risk and vulnerability of human settlements and ecosystems[2]. The Global Climate Risk Index for the period between 1997 to 2016, covering both human and economic impacts, ranks El Salvador 16th in the world, emphasizing the country’s high vulnerability to extreme climate events[3]. There is ample evidence of climate change and variability affecting all sectors of society and economy, at different spatial and temporal scales, from intra-seasonal to long-term variability as a result of large-scale cyclical phenomena[4]. A study from The Economic Commission for Latin America and the Caribbean (ECLAC) found that between 1980 to 2008, an average of 1.5 natural disasters per year resulted in nearly 7,000 human casualties, affecting 2.9 million people, and costing US $470 million to the central government (amount that is equivalent to 4.2% of the Gross Domestic Product). The country of El Salvador spends an equivalent to 1.1% of its total GDP with dealing with climate change related impacts and infrastructure every year on average.

 

  1. El Salvador is the most densely populated country in Central America (342 people per km²) with a population of approximately 6.46 million inhabitants, of which 52.9% are women[5]. The country’s territory totals 21,040 km², with a rugged topography (50% of total land mass has slopes of over 15%), highly erodible soils and the lowest per capita availability of freshwater in Central America5. According to the measurement of compound poverty[6], 35.2% of the total Salvadoran households are poor, equivalent to 606,000 homes to approximately 2.6 million people. Similarly, the multidimensional poverty rate in rural areas is 58.5%, and 22.5% in urban areas. Thirty-eight percent of the country’s population resides in rural or non-urban areas, of which 20% are women[7]. In all the departments, other than one, over 50% of rural households are multidimensionally poor and as such are more vulnerable to the effects of climate change (Figure 1). Homes with this condition have the following deprivations: 37% food insecurity; 49% lack of access to drinking water; 83.7% no access to public health.

 

  1. Sixty percent of the national territory is devoted to agriculture, which is the main source of livelihood for the rural population in the country. About 36% of the total country territory is arable land, with corn as the main subsistence crop, followed by rice, beans, oilseeds, and sorghum, and with the cultivation of coffee and sugar cane as major cash crops The effects of climate change, as observed over recent years, have directly affected the productivity across the whole spectrum of the agricultural sector, with significant impacts on smallholder farming[8].  According to the last agricultural census, there are more than 325,000 producers of basic grains who work in land parcels of sizes ranging between 0.7-3 hectares. Not surprisingly, 52.4% of the farmers organize their agricultural activity in parcels averaging 0.7 hectares, with an average corn production of 1.427 kg/ha. This production may satisfy the immediate needs of a family household (requiring only 1,300 kg of corn per year), but is significantly lower than the national average production (2,575 kg/ha). Impact from extreme weather such as the tropical storm Mitch (1998) caused damages and total loss of US $388.1 million, with US $158.3 million (40.8% of the total) impacting the agricultural sector. The 2001, drought reported damages and loss for US $31.4 million and 81% for the farming industry. Hurricane Stan (2005) caused US $355.6 million in damages and loss, US $48.7 million and 13.7% of the total for the agricultural sector. The Tropical Depression Twelve-E (DT 12-E) in 2011 carried a price tag of US $306 million in damages and losses in the agricultural sector. Between 2014 and 2015, losses in agriculture, as a result of severe drought, costed the country more than US $140 million, with greater impact felt on subsistence crops (corn and beans), as well as in the dairy industry which lost more than 10% of its production. The sustained dry spell followed by high temperatures, has also caused severe damage to the health of human populations, to the broader agricultural sector, and the natural environment. Furthermore, the reduction or deficiency in rainfall over the period has also affected the availability and quality of superficial and underground water resources.

 

Extreme weather hazards and climate change in El Salvador

  1. El Salvador is currently impacted by the effects of climate variability and change, with highly variable rainfall patterns, both spatial and temporal, which is leading to an increase in the number of extreme climatic events (i.e. tropical cyclones, floods and droughts). Over time, El Salvador has passed from experiencing one event per decade in the sixties and seventies, two in the eighties, four in the nineties, to eight extreme events in the last decade. This shows a shift from previous decades, when extreme events hitting the country would originate mostly from the Atlantic Ocean, and had its first wave of impacts mitigated by the land mass of neighbouring countries. This is no longer the case, since the frequency and intensity of tropical cyclones originating from both the Atlantic and the Pacific Oceans has increased over the past two decades.

 

  1. Studies from the National Service of Territorial Studies (Servicio Nacional de Estudios Territoriales, SNET) reveal that at least 10% of the country is prone to floods, 20% percent is exposed to landslides, 50% is affected by drought. The poorest segments of the population are particularly hit by natural disasters, as they are more likely to live in hazardous parts of the territory, such as flood plains, river banks, steep slopes, and fragile buildings in densely populated zones.

 

  1. In 2014, the average accumulated rain for July ended as the lowest in the last 44 years[9] on record, and in 2015 the average accumulated rain during the rainy season was the lowest ever recorded, reaching only 63% of what should be expected given normal historic climate conditions (Figure 4). Extended drought periods in the country, have traditionally been followed by high temperatures, hindering progress and functioning of important sectors of the economy, including agriculture, health, water resources, and energy. According to the Food & Agriculture Organization of the United Nations (FAO), approximations from Central America’s main the prima harvest for 2015 showed a decline of 60% in the total maize harvest, and 80% in the total beans harvest due to drier than normal weather conditions.

 

  1. Consecutive dry years, in which the dry spells last for extended periods of time, have become more frequent due to climate change. This has had wide spread effect across different sectors, consequently increasing risk and vulnerability of populations in El Salvador. Most importantly, this causes reduction on the availability of food (also affecting its access and use), due to impacts on income and basic goods availability in certain regions of the country, with serious social and economic impacts in the long-term. Furthermore, extended drought periods in the region has made landscapes more susceptible to soil erosion, floods and landslides, especially in the advent of localized rainfall in excess. Droughts in El Salvador are also known for causing fluctuations in food prices, plant pests epidemic, animal disease propagation, financial and political instability.

 

National Climate Scenarios

  1. The climate change scenarios indicate that in the coming years, El Salvador will experience more intense, and more frequent, extreme events. According to the projected scenarios, the country will consistently face reductions in precipitation and constant increases in temperature (Figure 5). The National Climate Scenarios produced by the Ministry of Environment and Natural Resources (MARN) show that over the course of this century, the average temperatures (maximum and minimum averages) will increase considerably, with the magnitude of the change being most marked for the period 2071-2100.

 

  1. Average and minimum temperature will shift considerably between the periods 2021-2050 and 2071-2100 under all climatic scenarios. This represent changes between 1 °C and 3 °C and up to 4.5 °C towards the end of the century. These projected changes in temperature for El Salvador, are most in line with the changes projected by the IPCC. Temperature increases of such magnitude, will have direct effect on the temperature of the Pacific coast. When breaking and zooming into the time series of projections, the data shows that, in the near future (between 2021-2030 and 2031-2041), all scenarios point out to shifts between 0.7 °C and 1.5 °C, which is higher than what its observed today. The last decade in the period under consideration, presents the greatest changes in temperature with values ​​between 1.5 °C and 2 °C in the country. These projections reveal that, in the future, 90% of the national territory will be subject to average temperature values above 27 °C.

 

  1. All scenarios point to a decrease in precipitation between 10% to 20%, across the country between 2021-2050, with some regions being expected to see a reduction above 20% (under a high emissions scenario). This would represent a reduction of no less than 200 mm per year in precipitation. Comparably, towards 2041-2050 the magnitude of rainfall reduction will remain on the mark between 10% to 20%, similar to the previous period. It is worth noting that projected changes between 2031-2040 can be attributed to already ongoing climate change and variability processes in El Salvador, and that these changes are within the scope of the IPCC projections for the region.

 

  1. The projected scenarios for the period between 2071-2100, show even more drastic changes in precipitation patterns in the country, with values ranging between 20 to 26% under the high emissions pathway. When looking at each decade in detail, for example, between 2071-2080 the changes represent a decrease of 15-25% in rainfall, under a low emissions scenario, followed by 20-25% reduction in rainfall under a high emissions scenario. By the same token, the decade of 2081-2090 will experience reductions between 20% to 30%, with even higher depletion of rainfall under the high emissions scenario. During the last decade of the 21st century between 2091-2100, the projected scenarios reveal a decrease in rainfall ranging between 20% -35% (low emissions scenario) when compared to current observed values. At the century approaches end, the scenarios reveal reduction in precipitation that are considerably more pronounced, intense and drastic if compared to the period between 2021-2050. This represents a reduction of 300 mm a year in precipitation in the country.

 

  1. These scenarios represent a complete range of alternative futures for climate in El Salvador. Taking into account the cascading effects that may accompany the climate change scenarios, the country’s economy, society and nature, finds itself having to deal with greater risk and effective occurrence of natural disasters. Not surprisingly, as a result of current climate variability and change, in the form of higher temperatures, reduced rainfall, erratic local, regional and global climate controls, the country is already and will continue to need to manage increased social, economic and environmental pressures across vastly degraded landscapes.

 

The South Ahuachapán landscape

  1. The South-Ahuachapán area, located in the department of Ahuachapán, includes the municipalities of San Francisco Menendez, Jujutla, Guaymango and San Pedro Puxtla (Figure 9), covering an area of 591.73 Km2, with a population of 98,016 people from which 51% are women, and with the majority of the population (77%) residing in rural areas[10].

 

  1. The MARN estimates the South-Ahuachapán as an area of high vulnerability to climate change. Considering its environmental and social characteristics at the landscape level, this part of the country finds itself highly susceptible to the destructive effects of climate variability together with lacking of necessary resources to adequately prepare, respond and recover from natural disasters. This region, contains a significant amount of the population exposed to frequent meteorological drought, while at the same time it is one of El Salvador’s main regions for the production of staple food items (basic grains), as well as other cash crops (sugarcane, coffee).

 

  1. According to the climate change scenarios produced by the MARN, climate variability and change in the region will become more and more evident. This will be reflected through significant increases in average temperatures, erratic rainfall patterns, and increased frequency and intensity of extreme weather events.
  2. Tree cover accounts for 68% of its total territorial area, distributed as 33% Forest, 29% Shaded coffee and 6% shrubs. Agricultural land accounts for 26% of total area, and it is used for the production of staple grains (maize and beans). The Landscape features strategic natural assets for the country, such as El Imposible National Park, the Apaneca-Ilamatepec Biosphere Reserve, and the RAMSAR site Barra de Santiago comprising an extraordinary biological diversity of ecosystems, species and genes, and their conservation deserve special attention. The primary ecological zones are the humid subtropical forest to the south, very moist subtropical forest, and humid subtropical forest.

 

  1. The area has a complex hydrographic network. Of the 11 hydrographic basins that drain the territory, four of the most important: the rivers La Paz, Banderas, Lempa and Grande in Sonsonate are part of this area. There are 32 rivers in the Barra de Santiago Basin - and the Sub-basins of Cara Sucia and Culiapa. Among the main rivers of the Cara Sucia Sub-basin are El Sacramento, Huiscoyol, El Corozo, Cara Sucia, Mistepe, the Izcanal, Maishtapula, and the Aguachapio rivers. Between the main rivers of the Cuilapa Sub-basin are the Guayapa, Cuilapa, El Naranjo, El Rosario, Cubis, San Antonio, Tihuicha and El Negro rivers. However, a Hydro Analysis of this area carried out in 2007, showed that domestic demand represented 7.41% of total demand, against an irrigation demand of 92.59%, with signs of over-exploitation of the resource in the lower parts of ​​the Cara Sucia Sub-watershed.         

 

  1. Since 1974, the Paz River has abandoned old drainages of the El Aguacate, La Danta and Río Seco channels, causing a process of desiccation and transformation of the wetlands and marshes, with an alteration of the salinity gradients, the reduction of the freshwater flows and the closure of the mangrove swamps of Garita Palmera. This leads to a high susceptibility to flooding in the southern part of the Department. The situation will be further aggravated by the climate change impacts projected to take place in what is already degraded land. Ineffective agricultural and livestock practices have led to high levels of contamination by agrochemicals, which, together with erosion, lead to a deterioration of mangroves with sedimentation and silting of channels, with loss of mangrove hydrodynamic regulation. This situation, threatens and affects artisanal and industrial fishing and local livelihoods. The lack of opportunities leads to migration and weakening of the social fabric in an already vulnerable part of the country.

 

  1. In this region, the mangroves in the lower basin of the river belong to the mangrove ecoregion of the Pacific dry coast (Olson et al., 2001), which extend in patches along the coastal zone of Guatemala and El Salvador. The mangroves and marshes dominate the coasts of estuaries in the coastal plain. The coastal wetlands of Garita Palmera and El Botoncillo are possibly the least known and certainly the most degraded on the coast of El Salvador (MARN - AECI, 2003), and the population that inhabits these ecosystems have livelihoods intimately related to their services. The current conditions of the mangroves in the lower basin of the river are a consequence of the high rate of deforestation and the change in land use throughout the basin, as well as alterations in its hydrological regime, such as decrease of annual flow, flow seasonal shifts, and significant decrease in water budget of River Paz, causing a reduction in the productivity of ecosystems and in their capacity to provide services and benefits to local communities (further contributing to flooding, increased runoff and soil loss).

 

  1. This region is important also for aquifer recharge, specifically for the recharge of the aquifer ESA-01, localized in alluvial materials in south Ahuachapán, in the municipalities of San Francisco Menendez, Jujutla and Acajutla.

 

  1. During the last eight years, this landscape has suffered the adverse impacts of extreme hydro-meteorological events, in some years it experienced Tropical Depressions and Hurricanes, and in other years it suffered meteorological drought with significant damages to infrastructure, agriculture and crops, functioning of ecosystems, and livelihoods. The loss of coverage and inadequate agricultural practices on slopes, have caused a decrease in water regulation capacities with increased runoff, which in turn led to a severe increase in soil erosion rates in the high and middle parts of the basins, an increased risk of landslides and floods; and a decrease in infiltration capacities and aquifer recharge with a decrease in the water supply for different uses. All this has been reflected in large damages to infrastructure and crop loss.

 

  1. The pressure exerted on the forest remnants of the highlands, riparian forests, secondary forests, agroforestry systems and mangroves has also increased the region’s vulnerability to climate change. The reduction of habitat, the loss of ecological connectivity and of critical ecosystem services (i.e. water provision, climate regulation) have caused a chain of processes and negative impacts that increase the vulnerability of this area in the face of more frequent events of heavy rainfall, and prolonged periods of drought. Thus, the loss of natural vegetation cover and the poor land use practices in agriculture, are leading to a continuous decrease in surface and ground water availability, excessive runoff, and a decrease in other water regulation ecosystem services, leading to a significant increase in soil erosion rates. A recent assessment of damages to the agricultural sector in Ahuachapán, pointed out that, due to an extended drought period, the average numbers observed for the harvest of corn and beans (June/July 2015) had a reduction of 94%.

 

  1. Degrading of natural ecosystems, with wide spread effects at the landscape level (including depletion of riparian forests and grasslands) threatens the provision of a wide range of ecosystem services to local communities in the South Ahuachapán. Long and short-term effects of degradation of these ecosystems include:
  1. increased soil erosion as a result of reduced vegetation cover;
  2. reduced infiltration of water in degraded watersheds and catchment areas, thereby resulting in reduced recharge of groundwater and an increased incidence of flooding; 

 

  1. Interventions in the are thus need to focus on helping the landscape to adapt and build resilience to the impacts of climate change, through the protection of the ecosystems and the rehabilitation and conservation of the mosaic of interdependent land uses thus enhancing the landscape’s capacity to manage extreme hydro-meteorological events as well as increased projected temperatures and erratic rainfall patterns. The goods and services generated by healthy or under restoration landscapes, have the potential to mitigate these threats by providing multiple benefits to local communities in the region of South-Ahuachapán, such as the provision of natural resources (food and water)  and regulatory functions, including flood mitigation, water filtration and waste decomposition.

 

Landscape approach to build resilience and adapt to climate change

  1. In 2012, El Salvador developed the National Environmental Policy to help regulate, manage, protect the country’s natural resources, and reverse environmental degradation, while reducing the country’s vulnerability to climate change, which feeds directly into the country’s plans on long-term economic growth and social progress outcomes. A key instrument of the National Environmental Policy is the National Program for the Restoration of Ecosystems and Landscapes (PREP), which is organized in three strategic areas: 1) Restoration, reforestation and inclusive conservation of critical ecosystems such as gallery forests, water recharge areas, slopes, mangroves and other forest ecosystems; 2) The restoration of degraded soils, through the forestation of agricultural systems, the adoption of resilient agroforestry systems and the development of sustainable and climate-resilient and biodiversity-friendly agriculture; 3) Synergistic development of physical infrastructure and natural infrastructure.  Forest landscape restoration is a key part of the country’s Nationally Determined Contribution, and the main strategy to contribute to climate change adaptation, by increasing productivity of landscapes, enhancing the resilience of forest ecosystems, landscapes, agroecosystems, watersheds, and forest‐dependent communities.

 

  1. The PREP comprises immediate and strategic activities, such as the conservation of forest remnants; the restoration of forest ecosystems and agroecosystems, recovering tree coverage in critical sites, working to rehabilitate the landscape; and the maintenance and increase of tree cover in critical areas, particularly in high altitude agroecosystems, and at the watershed level (to control water supply and flow, reducing runoff, landslides and floods). The application of techniques to reduce the speed of the water flow and to increase the capacity of the water retention in the upper sections of the basins and the high zones of the mountain ranges and the protection of the plant cover, have the potential to reduce erosion and the transport of sediment as well as floods. Consequently, it enables to reduce risks associated to extreme hydro-meteorological events. Furthermore, it is expected that the reforestation of the agricultural areas will improve the soil with an increase in organic matter and moisture retention, and therefore, increasing the resistance during water shortage and drought.

 

Identification of priority sites for EBA through restoration in South Ahuachapán 

  1. Information from the PREP was used o  update National Land Use Map, allowing for the identification of key the restoration sites of the country based on the following six criteria: soil conservation and food production; biodiversity and wildlife conservation; protection of ground water and adaptation to drought; adaptation to extreme events and protection against floods and storms; firewood supply and climate regulation.

 

  1. A particular focus was provided to key agroecosystems sites (these account for 60% of the national territory) with the potential land use/cover transitions[11] for restoration also being identified taking into account the different current uses of the soil to allow the recovery of prized ecosystems, through the restoration of their relevant environmental goods and services for adaptation. The potential areas for each transition type comprise a total of 1,001,405 hectares comprising eleven proposed transitions pointing to the high potential for restoration areas in South Ahuachapán.

 

  1. The analysis by MARN has allowed the project to identify the municipality of San Francisco Menendez located in the South Landscape of Ahuachapán, as the target intervention area for restoration investments. The municipality has a territory of 226.13 km2 and a total population of 42,062 of which 30,211 reside in rural areas. The identification of the Municipality of San Francisco Menendez as the area of intervention, was based on an exhaustive analysis of available time series of satellite remote sensing data, together with data and information collected by MARN in-situ.[12]

 

  1. To further characterize the imbalances observed in the region, coming as consequence of intense rainfall and longer dry periods, the prioritization exercise used data from the Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces Dataset (TerraClimate) to better understand the runoff patterns in San Francisco Menendez.[13] The analysis revealed an upward trend in surface runoff in San Francisco Menendez, starting in 2006 and progressing steadily,  affecting negatively agricultural activities and exacerbating the already damaging effects of extended periods of drought, scarce and localized rainfall patterns in the intervention area. The data and analysis revealed that the lower Rio Paz presents a remarkably consistent pattern of low precipitation and high temperatures over time. Such characteristics have been followed by an increase in the number of extreme whether events (such as heavy rainfall and droughts), leading to below average soil moisture, increased surface runoff, and soil loss. This has been pointed out by an increasing number of recent reports by MARN and international agencies such as USAID, FAO, GIZ, which have identified the Municipality of San Francisco Menendez (entirely located in the Central America Dry Corridor) as extremely susceptible to the Effects of CC. The impacts pointed out by MARN and international organizations working in the area, have been immediately felt in the form of changes in water flow patterns (in the Lower Rio Paz), higher than normal temperatures, erratic rainfall, and low fresh water input into the ocean. This has created an imbalance that will only be exacerbated by CC, affecting agriculture, the natural environment, as well as local livelihoods in the project intervention areas.

 

  1. In San Francisco Menendez, the land under exploitation is dominated by cultivation of crops (46%), followed by seasonal grasslands (30%) and permanent grasslands (15%). The local development plan for the municipality has identified 4,569 Ha of critical ecosystems for restoration by 2030 of which 1,569Ha are agroforestry systems, 2,000 Ha tropical forests and 1,000 Ha being mangrove systems. According to the 2007 Census in the agriculture and livestock sector, the land under exploitation is mainly owned by producers (75%) while 18% of land is leased (Figure 13). There are 80 cooperatives of small producers present in San Francisco Menendez, from those 16 are women led cooperatives.

 

  1. San Francisco Menendez municipality is part of the broader South Ahuachapán landscape that includes the municipalities of Jujutla, Guayamango and San Pedro Puxtla. These municipalities are administratively grouped together through the Association of Municipalities of Microregión Sur with the objective of establishing synergies for their development and for environmental management through concerted actions. Actions along these municipalities is also strategic as these also share access to the same aquifers (Figure 12) thus linking them, at a landscape, administrative and hydrological level. Population for this larger region is 98,016 (49,899 women) of which 75,515 people reside in rural areas.



[1] D. L. Hartmann, a. M. G. K. Tank, and M. Rusticucci, “IPCC Fifth Assessment Report, Climatie Change 2013: The Physical Science Basis,” Ipcc AR5, no. January 2014 (2013): 31–39, https://doi.org/10.1017/CBO9781107415324.

[2] IPCC, “Climate Change, Adaptation, and Vulnerability,” Organization & Environment 24, no. March (2014): 1–44, https://doi.org/http://ipcc-wg2.gov/AR5/images/uploads/IPCC_WG2AR5_SPM_A....

[3] Sönke Kreft and David Eckstein, “Global Climate Risk Index 2014,” Germanwatch, 2013, 28, http://germanwatch.org/en/download/8551.pdf.

[4] (Cai et al., 2015; Harger, 1995; Neelin et al., 1998; Takahashi et al., 2011; Torrence and Webster, 1999; Wolter and Timlin, 2011)

[5] Ministry of Economy; General Directorate of Statistics and Census –DIGESTyC; El Salvador: 2014; Estimates and Trends of Municipal Population 2005-2025

[6] STPP and MINEC-DIGESTYC (2015). Multidimensional Measurement of poverty. El Salvador. San Salvador: Technical and Planning Secretariat of the Presidency and the Ministry of Economy, through the General Directorate of Statistics and Census.

Compound Poverty: Takes into account the essential areas for human development and well-being. A total of twenty indicators around five essential well-being dimensions: a) education; b) housing conditions; c) work and social security; d) health, basic services and food security; and e) quality of the habitat.

[7] STPP & MINEC-DIGESTYC, “Medición Multidimensional de La Pobreza. El Salvador.,” San Salvador: Secretaría Técnica y de Planificación de La Presidencia y Ministerio de Economía, a Través de La Dirección General de Estadística y Censos., 2015.

[8] Minerva Campos et al., “Estrategias de Adaptación Al Cambio Climático En Dos Comunidades Rurales de México y El Salvador,” Adaptation Strategies to Climate Change in Two Rural Communities in Mexico and El Salvador, no. 61 (2013): 329–49, http://www.boletinage.com/61/16-CAMPOS.pdf.

[9] For example, accumulated rainfall in the southeast area of the country was less than 10 mm, representing a 95% deficit from average rainfall

[10] Almanaque 262. State of human development in the municipalities of El Salvador, 2009.

[11] Defined as the non-linear land use change process associated with societal and biophysical system changes.

[12] The analysis was conducted using Google Earth Engine, allowing the production of wall-to-wall spatially explicit information at multiple spatial scales. The analysis included Climate models generated by both long-term climate predictions and historical interpolations of surface variables, including historical reanalysis data from NCEP/NCAR, gridded meteorological datasets such as the NLDAS-2, and GridMET, and climate model outputs like the University of Idaho MACAv2-METDATA and the NASA Earth Exchange’s Downscaled Climate Projections. The prioritization also included the analysis of spatially-explicit land surface variables over time, such as: Evapotranspiration/Latent Heat Flux product (8-day composite product produced at 500 meter pixel resolution), providing information on the hydrologic cycle, which has direct and significant influence on agriculture cycles in the region, as well as the amount of solar radiation, atmospheric vapor pressure, temperature, wind, and soil moisture available. The prioritization also included analysis of salinity anomalies using the Hybrid Coordinate Ocean Model, Water Temperature and Salinity (HYCOM) (Revealing that salinity has not been decreasing as result of local meteorological processes over the past several years). The analysis also included Long-Term drough Severity estimations using the Palmer Drought Severity Index (PDSI), which has been effective in effective in determining long-term drought in the intervention area. The PDSI data and analysis considers surface air temperature and a physical water balance models, taking into account the observed effects of increasingly warm temperatures, and high evapotranspiration, leading to systemic imbalances affecting local hydrological cycles (refer back to Figure 13).

[13] This dataset and analysis considers runoff as the excess of liquid water supply (precipitation) used by monthly Evapotranspiration and soil moisture recharge and is derived using a one-dimensional soil water balance model and it correlates well to measured streamflow from a number of watersheds globally.

 

Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1. Ecosystem-based adaptation for enhanced resilience at a territorial level

Component 2. Alternative and adapted livelihoods identified and made viable for resilient livelihoods

Component 3. Regional Climate and Hydrological Monitoring for Enhanced Adaptation Planning

Component 4. Strengthening of inter-institutional coordination and local governance for landscape management in the face of climate variability and change

 

 

 

Project Dates: 
2021 to 2024
Timeline: 
Month-Year: 
June 2021
Description: 
Project Launch
Proj_PIMS_id: 
6238
SDGs: 
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards

Frequent and more intense floods, mudflows, landslides, avalanches and other climate change-related disasters in Uzbekistan are putting lives and livelihoods at risk and slowing progress to reach targets outlined in the Paris Agreement and Sustainable Development Goals.

To address these challenges, the Green Climate Fund-financed “Enhancing Multi-Hazard Early Warning System to Increase Resilience of Uzbekistan Communities to Climate Change Induced Hazards” project will respond to a critical need in Uzbekistan to modernize its early warning system into an impact-based Multi-Hazard Early Warning System (MHEWS ). The MHEWS will improve early warnings on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions, an essential element of the country’s climate risk management framework.

Several climate change-induced hazards (such as floods) have caused significant economic damages and led to the loss of lives. For example, it is estimated that 7.6 million people are vulnerable to flooding in Uzbekistan. The economic impact of flooding due to climate change is estimated to be about US$236 million. These hazards related to heavy rainfall and temperature extremes are either already increasing in frequency and/or intensity or are expected to do so under climate change, particularly over the eastern mountainous regions of Uzbekistan. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards. The improved early warning systems will inform future planning and reduce risks for vulnerable communities, support resilient livelihoods, good health and well-being, and improve food and water security for the people of Uzbekistan.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, and improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.

English
Region/Country: 
Level of Intervention: 
Thematic Area: 
Coordinates: 
POINT (63.720703099213 41.483205853498)
Primary Beneficiaries: 
311 million direct beneficiaries, 2 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$9.9 million
Co-Financing Total: 
US$30.6 million (Uzhydromet and MES)
Project Details: 

The Government of Uzbekistan through its Ministry of Emergency Situations (MES) implements a state program to modernize the early warning system for natural disasters[1]. This GCF project will provide the critical technical and financial resources, access to innovative technologies and expertise for the implementation and scale-up of this national initiative. The GCF-financed project will promote the transformation of climate hazard forecasting and warning from a reactive (ex-post) hazard-based system to one that is proactive (ex-ante), user-oriented and impact-based.

The project puts a strong focus on strengthening the “last mile” delivery of disaster-related communication and interaction with end users, including vulnerable communities. The improved capacity of Regional crisis management centers (RCMCs) and local communities to use and interpret climate risk information into practical early responses will directly benefit at least 11 million people (34% of total population) currently at risk from climate hazards and enhance the community resilience as a whole.

Uzhydromet’s capacity as a WMO Regional Specialized Meteorological Centre (RSMC) will be strengthened, building on the CAHM[2] (World Bank/WMO) project. The proposed GCF investment will develop automated procedures and modelling capacity that can serve as an example for other developing Central Asian countries, as well as being the driver of significant institutional change, catalysing increased efficiency in climate hazard warning generation and dissemination and developing new operational procedures between MES and Uzhydromet.

Climate change has been leading to more frequent and more intense hydrometeorological disasters in Uzbekistan and to a greater exposure to these disasters across the country. Uzbekistan sets climate change adaptation as a priority in its first Nationally Determined Contribution (NDC)[3] under the Paris Agreement. In particular, the NDC clearly highlights the need to establish a Multi-Hazard Early Warning System (MHEWS).

This project will respond to a critical need of Uzbekistan to modernize its early warning system into an impact-based MHEWS (initially focused on floods, mudflows, landslides, avalanches and hydrological drought in the more populous and economically important eastern mountainous regions), an essential element of the country’s climate risk management framework. In the face of increasing climate risks, this MHEWS will serve to enhance climate resilience of 32 million people of Uzbekistan (indirect beneficiaries), including the most vulnerable and poor rural communities living in mountainous areas currently at risk from climate-induced hazards.

Specifically, the project will improve methods and capacities for monitoring, modelling and forecasting climate hazards and risks supported with satellite-based remote sensing, create a central repository and analysis system for hydrometeorological hazard and risk information, improve regulations, coordination and institutional mechanisms for an effective impact-based MHEWS, including the development of forecast-based actions. The project will explore and facilitate the concept of forecast-based-financing (FBF) with the national institutional stakeholders responsible for disaster risk management and financing by developing SOPs and prototype decision-making systems/protocols based on the enhanced impact-based forecasting and warning. As a result, the project will significantly enhance the quality and timeliness of climate and disaster-related information available to decision-makers and the dissemination of such information to the population, as well as develop information and procedures for ex-ante actions.

The GCF grant is required to upgrade the existing hazard forecasting and warning system in Uzbekistan so it can effectively deal with the additional pressure brought about through increases in climate variability and change. This requires investments in both new observing technologies, training of technical staff, demonstration of modern approaches to hazard modelling and prediction, as well as development of awareness and educational materials and communications with communities. Together these activities will demonstrate the potential benefits of the upgraded system and contribute to the transformation of the climate and disaster risk management in the country.




[1] Cabinet Resolution No. 242 of the Republic of Uzbekistan "On further improvement of state system for warning and emergency applications of the Republic of Uzbekistan” from 24 August 2011

[2] Central Asian Hydro-Meteorological project

 

Expected Key Results and Outputs: 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities

The proposed intervention will create a more efficient monitoring network for weather, climate, hydrology and cryosphere, through both upgrading existing (automating) and installing new monitoring equipment (automatic weather stations (AWS), automatic hydrological stations, upper air sounding stations, and strategically placed low cost radars. This equipment and other existing data streams will be integrated into high availability/redundant single databases. Hazard-specific forecasting procedures will be developed and operationalized for climate-induced hazards. Training of Uzhydromet staff to undertake forecasting, operation and maintenance and data QA/QC/archiving procedures will also accompany these activities. Activities follow the GFCS and in this output are designed to address aspects related to: i) observations and monitoring; and ii) research, modelling and prediction. Uzhydromet will be the immediate beneficiary under all activities of Output 1, while their end beneficiaries include all the users of the upgraded hydro-meteorological observation network, modelling and forecasting capacities.

Activity 1.1 Upgrading and modernization of the meteorological and hydrological Observation System. This will include upgrading/automation of 25 meteorological observation stations and equipment (software, workstations etc), modernizing the ground-based infrastructure (telemetry processing, hydrogen generators etc) for 2 upper-air stations (Uzhydromet/GoU will support the establishment of 2 more), installing 2 online X-band doppler radar systems to cover current gaps in mountainous areas, upgrading and technical equipment of 90 hydrological stations , and establishing benchmarks and up to date equipment for instrument calibration (vacuum chambers, mobile laboratory etc). AWS and hydrological stations will be installed/upgraded at existing facilities and premises of key locations in the mountains above hazardous valleys and in the areas of high precipitation/landslides/mudflow risks, not already covered by investments through the CACILM and CAMP4ASB projects, as shown in Figure 46 (page 66) of the FS. Uzhydromet is strongly engaged with the WMO and maintains its standards and compatibility with existing systems. In particular it requires that goods and service comply with WMO 2003 Guidelines on Climate Observation Networks and Systems (TD No. 1185) and WMO Guide to Meteorological Instruments and Methods of Observation (the CIMO Guide No. 8, 2014 edition / 2017 update). These requirements will be taken into account during project implementation, and demonstrated compatibility with existing systems is part of any procurement (ITB/RFQ) tender documents under UNDP processes. All equipment will report data to central servers at Uzhydromet and will conform to WMO standards, including reporting to the Global Climate Observing System (GCOS), Global Basic Observing Network (GBON) and Global Telecommunication System (GTS). The project will also assist the government to identify long-term requirements and to enable budgeting and planning for the maintenance of all observing systems.

Activity 1.2 Upgrading Uzhydromet’s capacity to store, process and develop hazard products, as well as to communicate hydrometeorological data to regional divisions. This is a climate services information system (as described in GFCS) and involves the establishment of an operations centre, ICT servers and networking equipment to integrate data streams (hydrometeorological and satellite-based observations) and automate processes and analyses (including hazard forecasts). Software and processing routines will enable data and maps to be exported in common formats for sharing with partners and importing into the MES risk management system (see activity 2.1 below). A local cloud-based solution will be implemented to store and manage data that will benefit from offsite backups and easier access for the MES risk management system. Specifically this activity will: i) Integrate hydrometeorological data (from both automatic and manually operated stations) into a single database as a basis for developing products based on all available observed data. Automatically transmitted data from different providers/manufacturers will be integrated and undergo quality control/assurance within a single database in real time and will be available for interrogation via geo-visualization software. This activity will also: i) Expand the hydrological drought early warning system for Amu Darya (developed by the UNDP/AF project) to the Syr Darya and Zeravshon rivers. All historical streamflow and flood data for the two rivers will be collected and forecast models, with data ingestion and data processing routines, will be derived;  ii) Develop automatic procedures for calculating avalanche risk in real time. Software and code will be developed to automatically update avalanche hazard maps based on snow accumulation from satellites (and AWS) and established procedures for estimating avalanche extent; iii) Develop code and procedures for automatically calculating mudflow risk maps based on precipitation observations and forecasts for 2-3 days lead time; iv) Develop a landslide risk model for Eastern Uzbekistan based on geophysical and geotechnical characteristics, including subsurface water and extreme rainfall. The skill of all developed forecast systems will be assessed using retroactive forecasts and used to assess their utility for forecast based actions in activity 2.1 and 2.2.

Activity 1.3 Re-training and advanced training of Uzhydromet staff on monitoring and forecasting technologies and procedures (training of MES staff is covered in output 2 below). International experts will train weather forecasters to work with new products of the KOSMO model (with a resolution of 13 km and 2 km). Refresher courses and advanced training will be provided for new software and equipment, including the introduction of new methods for the analysis and prediction of hydrometeorologically important variables and climate hazards. The project will facilitate organization of on-the-job trainings, engagement with universities, courses and seminars with the involvement of foreign specialists. Training of IT specialists of Uzhydromet will be conducted for work with the computer center and operation of the KOSMO model, the UNIMAS, MITRA information reception and transmission system, workstation software (for weather forecasters, agrometeorologists, GIS-METEO, etc.) and EU Copernicus programme on satellite data, all of which will be used for impact-based forecasting where needed. Trainings on AWS installation, general user training and technical support will be provided. These increased capacities will also assist Uzhydromet in fulfilling its regional role as a WMO RMSC, in accordance with the GFCS capacity development, and help improve their capacity for regional cooperation.


Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness

The proposed intervention will integrate and develop ICT systems to use the hydro-meteorological hazards predicted in output 1, and combine these with vulnerability data to identify risks and provide information for planning and mitigating their impacts. It will improve the efficiency of the current early warning system by automating the sharing and production of risk-related data, as well as the communication of warnings. The project will also develop methodologies for and support hazard and risk mapping and risk zoning for key climate-induced hazards (floods, landslides, mudflows, droughts and  avalanche). Specifically it will introduce an advanced, impact-based information management system for combining data on socio-economics (population, livelihoods, poverty indicators), infrastructure (roads, utilities, buildings, bridges etc) and the natural environment (landcover, vegetation, soils etc) in order to operationally assess the risks associated with each hazard forecast. This information will be transmitted and shared with RCMCs in key hazard-prone districts in Uzbekistan so that regional teams have the most up to date information available for planning their operations. Building on the existing mobile-based public dissemination platforms, the project will develop geographically specific risk based warnings tailored to the areas affected by each hazard (e.g. mudflows, avalanches, landslides and flooding). Based on the user interaction guideline of GFCS, inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will inform the design and dissemination of warnings and alerts to communities at risk.  MES and its RCMCs will be the immediate beneficiaries under all activities of Output 2, while their end beneficiaries include all the users of the Multi-Hazard Early Warning System.

Activity 2.1 Developing and installing a modernised and efficient system for assessing climate risks based on dynamic information on both hazards and vulnerabilities, including socio-economic risk models for decision making and prioritization of resilience building long-term/future investments. This would enable establishing an impact-based MHEWS, where hazard forecasting is linked to the risk and exposure information (socio-economic risk model).  This involves installing both hardware and software to enable an advanced, impact-based information management system to be built, which will combine data on current vulnerabilities (e.g. indicators of poverty, education, health, housing etc), public and private assets (including infrastructure, roads, railways, housing, mines, airports, hospitals, schools etc), the environment (crops, lakes, rivers, tourism areas etc) and hazard impacts (input from Output 1) to operationally assess the risks associated with each hazard forecast. Based on evaluated risks and the skill of each impact-based forecast, a set of feasible ex-ante actions will be identified for different lead times. This activity will also develop software and standard operating procedures to automatically ingest hydrological and meteorological observations, weather and seasonal forecasts, and derived drought/avalanche/mudflow/landslide forecasts from Uzhydromet (through activity 1.2) into the system to be combined with available vulnerability data. Traning to MES staff will be delivered on risk assessment, operations and maintenance of the systems. The system will also import long-term climate change scenarios to be used for forward planning and evaluation of future risks.

Activity 2.2 Developing and introducing technical guidance, institutional and coordination frameworks to increase the efficiency of: i) data collection and archiving (activities 1.1 and 1.2); ii) hazard mapping and modelling (activity 1.2); iii) risk assessment (activity 2.1); iv) impact-based warning and forecast-based actions (activity 3.2); and v) dissemination of information to RCMCs (activity 2.3). These protocols are also required to ensure that new climate information sources (e.g. AWS, AWLS, radar and satellite observations – activity 1.1) are translated into products that are useful for decision making and investment by MES and Uzhydromet (based on feedback obtained through activities 3.1 and 3.3). Thus, under this activity the project will explore and facilitate promotion of forecast-based-financing (FBF) by developing draft SOPs and prototype FBF protocols/decision-making systems.  This activity will include development of SOPs (both for ingesting and sharing data, as well as for forecast based actions to be undertaken when specific risk-related triggers/thresholds are reached), a national to regional EWS protocol, and communication protocols to accompany introduction of the new technologies. Guidance and procedures will be developed to support the application of socio-economic risk models and enhanced risk zoning in development planning and decision-making (activity 2.1). Corresponding training to MES staff will be delivered.

Activity 2.3 Designing and implementing a system for information dissemination to RCMCs and area specific mobile alerts including an information visualization system for RCMCs with software. This involves setting up information visualisation and analysis systems (video walls, telecommunication systems, servers and ICT storage) at 7 RCMS, to enable them to visualise the maps and impact forecast information provided through the risk analysis and warning system (activity 2.1) and combine it with local (regionally available) information on current vulnerabilities and field-based information. This will enable them to better target advice and direct regional response teams. This activity will further develop (improving the existing MES dissemination system) area-specific mobile and SMS based warnings for mudflows, avalanches, landslides and flooding. This will reduce the chance of false alarms sent to those not at risk, as well as improve the content based on information from the improved MES risk and impact-based forecast system (activity 2.1 and 2.2). Inputs from consulations with key stakeholders and end-users (activities 3.1 and 3.3) will be used to design the dissemination system, following the co-design and co-production user interaction guideline of GFCS.

Output 3: Strengthened climate services and disaster communication to end users

The proposed intervention will strengthen the effectiveness of delivering climate information services and disaster warnings to users in Uzbekistan at two levels. On the overall national level, the project will initiate the establishment of the National Framework of Climate Services as a mechanism to systematically bring together producers and users of hydrometeorological and climate information and to ensure that information and services reach their end recipients both in the various sectors of the government and the society and at the different geographic levels down to local communities. Disaster-related information and services being the specific focus of the project, it will work with the various public and private stakeholders to reorient the existing financial / economic model behind the provision of such services to make it more cost-efficient and sustainable in the long-term, i.a. using private investment and partnership opportunities on the domestic and the international markets. Finally, on the warning dissemination and communication aspect, updated communication technolgoies will be utilised to support real-time risk evaluation by Regional disaster managemen agencies (RCMCs) and first responders and ensure ‘last-mile’ delivery of early warning risk information to the communities at risk and population at large. In collaboration with  Red Crescent Society and other community-level NGOs, RCMC will organize trainings and annual community forums to help communities at risk better interpret, understand and react to those warnings, as well as facilitate forecast-based actions and responses. Uzhydromet (and, in the long run, other parts of the Government of Uzbekistan, as well as other providers and users of climate services) will be the beneficiaries under Activity 3.1, as the NFCS provides a platform where the various service providers and end-users are engaged in the co-designing, testing and co-production to improve the content and delivery of products and services. Uzhydromet and MES (and Uzbekistan’s Government in the long run) will be the beneficiaries of Activity 3.2, as the development and promotion of a sustainable business model for disaster-related information and services in Uzbekistan will provide additional operational funding to the two institutions which currently to a large extent rely on government budgets. MES and its RCMCs as well as the communities in the 15 targeted districts as well as Uzbekistan’s population at large will be the beneficiaries under Activity 3.3.

Activity 3.1  Establishing National Framework for Climate Services for Uzbekistan

The Global Framework for Climate Services (GFCS), promoted and facilitated by the World Meteorological Organization in cooperation with GFCS partner organisations, is a framework that envisions better risk management and more efficient adaptation to climate variability and change through improvements in the quality, delivery and use of climate-related information in planning, policy and practice. GFCS, i.a. endorsed by the GCF Climate Services Strategy, focuses on developing and delivering information services in agriculture and food security, disaster risk reduction, energy, health and water, and organises its work around observations and monitoring; climate services information systems; research, modelling and pre- diction; user interface platforms; and capacity development. A strong focus of GFCS is on a multi-stakeholder approach to the definition and the actual delivery of services, thus bringing users and co-producers of climate and hydrometeorological information together and to the centre of the design and production process as opposed to more traditional supply-driven approaches. The establishment of the NFCS would typically involve:

i) an assessment of gaps, needs and user perspectives (i.a. through interviews) with respect to the current and desirable climate services;

ii) based on this assessment, the drafting of NFCS Uzbekistan concept and action plan;

iii) extensive consultations regarding the concept with the various sectors, users and co-producers of climate services; and

iv) reaching a broad agreement and Governmental endorsement for NFCS implementation.

Following an accepted WMO blueprint for the conceptualising and establishment of a NFCS, the project will undertake a baseline assessment of climate services in Uzbekistan, followed by multi-stakeholder consultations and the participatory development of the country's NFCS concept and Action Plan to be endorsed both by stakeholders and at the high executive level, ready for implementation once supplementary NFCS-earmarked funds become available as a follow-up to the project.

As part of this activity, a platform will be set up to engage end users in the design and testing of new disaster-related climate information services and products. Similarly, a National Climate Outlook Forum will be established and supported as one mechanism to help shape and deliver climate services with longer time horizon, i.a. with a particular focus on disasters such as hydrological droughts. A connection will then established between the Forum and WMO’s Regional Climate Fora operating in Europe (NEACOF) as well as Asia (FOCRAII).  Both the NFCS user dialogue platform and the National Climate Outlook Forum will (as well as the NFCS process at large) will be managed by Uzhydromet.

Activity 3.2  Designing sustainable business model for disaster-related information and services

While it may not be realistic to expect any significant level of private financing during project implementation given the existing public service management model and the time required for transition, there is long-term potential for private sector investment in climate information services and for expanded service provision to private sector based on enhanced hydrometeorological and climate information in Uzbekistan, including those related to natural disasters and early warning. Linked to the NFCS process above, the project will conduct a comprehensive analysis and discussion of long-term sustainable financing options for disaster-related services in Uzbekistan beyond current state-funding model, in particular drawing on blended finance through dedicated national funds and public-private partnership opportunities.  This will include seeking financing, from both public and private sources, for forecast based (ex-ante) actions identified in activities 2.1 and 2.2. Based on the analysis and consultations, a sustainable value chain-based business model for disaster-related information will be developed and agreed with the key stakeholders, and the necessary legal and organisation changes will be outlined and planned on the national (adjustment of legislation) and the inter-institutional levels (Uzhydromet, Ministry of Emergency Situations, users of the services, private investors).

Activity 3.3 Strengthening disaster warning dissemination and communication with end users

The project will significantly strengthen interaction with the end users with the aim to communicate and facilitate proactive responses to disaster information and warnings in Uzbekistan. Within the 15 RCMCs, outdoor communication boards[1] will be set up in identified communities at highest risk to alert and inform the population in real time about threats or emergencies, following which, through cooperation between MES RCMCs and the Red Crescent Society, communities will be trained to interpret and use information on climate hazards and early warnings. Printed visual information (leaflets) will be provided to RCMCs and Uzbekistan’s communities on climate hazards and associated early warnings. With expected increase of user interaction level, regional staff of MES RCMCs will be further trained in the effective use of this information to suppport community interactions (crowd sourcing and survey data) and formulate forecast-based actions following the guidelines developed in Activity 2.2. Similarly, easy-to-understand and visual information will be channelled to mass media through existing agreements between them and MES / Uzhydromet, as well as to national NGOs. Finally, this activity will also complement the prior Activity 2.3 in the development of region-specific (as opposed to the currently used national-wide) broadcasting of early warnings, with the use of other modern communication channels such as social media and electronic messenger subscription groups. In addition, the project will establish a platform for organizing annual community forums on community-based EWS engaging target communities and representatives of vulnerable groups to exchange information, lessons learned, successes and opportunities. Through such platforms regular competitions will be organized engaging both youth and the most active community representative to advocate for structural and non-structure mesures and ensure their inclusiveness.  


[1] These are physical boards used to relay warnings and messages, to be installed/set up by MES in targeted districts (including in hazard-prone areas with limited mobile receptions or not immediately reachable by a Regional Crisis Management Center). Boards will be installed in popular public places used by communities or on regular commuter transport routes.


 



 

Contacts: 
UNDP
Nataly Olofinskaya
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Upgraded hydro-meteorological observation network, modelling and forecasting capacities
Output 2: Establish a functional Multi-Hazard Early Warning System based on innovative impact modelling, risk analyses, effective regional communication and community awareness
Output 3: Strengthened climate services and disaster communication to end users

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 13 - Climate Action

Monrovia Metropolitan Climate Resilience Project

Liberia’s capital city Monrovia is extremely vulnerable to sea-level rise and the increased frequency of high-intensity storms. These climate change-related impacts are contributing to coastal erosion and shoreline retreat, putting lives and livelihoods at risk, and affecting efforts by the Government of Liberia to reach the targets outlined in the Paris Agreement and Sustainable Development Goals.

Compounding these issues, sea-level rise and urban encroachment into the Mesurado Wetland in the center of Monrovia threatens the sustainability the ecosystem services and fisheries in the region.

To address these challenges, the Green Climate Fund-financed “Monrovia Metropolitan Climate Resilience Project” will enhance coastal protection, foster improved coastal management and present local communities with diversified climate-resilient livelihoods. In this way, the project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will directly benefit a total of approximately 250,000 people through coastal defense, enhanced livelihoods, and improved protection of mangrove ecosystems. In addition, the project will indirectly benefit approximately 1 million people through the adoption of a transformative, climate risk-informed Integrated Coastal Zone Management approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-10.749755961229 6.3051065918459)
Primary Beneficiaries: 
250,000 direct beneficiaries, 1 million indirect beneficiaries
Funding Source: 
Financing Amount: 
US$17.2 million (Green Climate Fund)
Co-Financing Total: 
US$8.4 million (Government of Liberia)
Project Details: 

Liberia’s capital city, Monrovia[1], is extremely vulnerable to the climate change impacts of sea-level rise (SLR) and the increasing frequency of high-intensity storms, both of which contribute to coastal erosion and shoreline retreat. SLR is a significant contributor to accelerated coastal erosion, and along with the increasing intensity of offshore storms and waves, exacerbates coastal erosion, the impacts of which result in significant damage to buildings and infrastructure in Monrovia’s coastal zone. Additionally, SLR is threatening the sustainability of ecosystem services provided by mangroves in the Mesurado Wetland[2] at the centre of the Monrovia Metropolitan Area (MMA), which is further exacerbated by urban encroachment into, and over-exploitation of the mangroves. These changes negatively impact the habitat for economically important fish species and the loss of these nursery areas will have a considerable impact on the fishery-based livelihoods of approximately 55,000 Monrovians, 46% of whom are women.

The most vulnerable part of the MMA coast is West Point, an impoverished and densely-populated informal settlement situated on a narrow spit between the coast and the Mesurado Wetland, with dwellings built up to the shoreline. In the last decade[3], coastal erosion has caused the shoreline to regress by 30 m, leading to the loss of 670 dwellings and threatening public spaces and boat launching sites that are critical to fishery-based livelihoods. Without intervention — and with the added impact of climate change — coastal erosion is expected to cause further shoreline regression of 190 m by 2100. This is equivalent to an additional 110% more than the coastal retreat expected under a non-climate change or baseline scenario[4].

To adapt to the severe impacts of climate change on Monrovia’s coast, it is necessary to change the current approach to addressing the impacts of climate change from a focus on short-term solutions to long-term integrated and participatory planning that involves the public sector, private sector and communities at all levels of governance. The project is requesting GCF support to address barriers to effective climate change adaptation in the coastal zone of Monrovia, and Liberia more generally, through interventions in three inter-related focus areas: i) coastal protection; ii) coastal management; and iii) diversified climate-resilient livelihoods. In this way, the proposed project will build the long-term climate resilience of coastal communities in Liberia by both addressing immediate adaptation priorities and creating an enabling environment for upscaling coastal adaptation initiatives to other parts of Monrovia and Liberia.

The project will address one of the most urgent adaptation needs in Monrovia by constructing a rock revetment to protect West Point against coastal erosion and storms. The revetment was selected as the preferred solution, because while a ‘soft solution’ in the form of beach nourishment with an associated groyne was considered technically feasible, the sustainability of this option would be limited, because the regular maintenance required was not feasible in the local context[5]. From an infrastructural perspective, the project will protect and build the climate resilience of approximately 10,800 people in West Point and avoid damages of up to USD 47 million to the individual and communal property of West Point residents as well as securing launch sites for fishing boats which will have a positive impact on the fisheries sector. The construction of this coastal protection infrastructure will form part of a strategic, cohesive coastal adaptation strategy using an Integrated Coastal Zone Management (ICZM) approach.

The paradigm shift necessary for adopting an evidence-based and participatory ICZM approach across Liberia will be facilitated by the proposed project through initiatives to strengthen the technical and institutional capacity of the government and communities to adapt to the rapidly changing coastal landscape and to undertake long-term, climate-responsive planning on the coast. Based on quantitative, defensible scientific data in coastal management and planning, the proposed project will develop a national-scale high-resolution multi-criteria vulnerability map and design a national ICZM Plan (ICZMP) for Liberia in consultation with all relevant stakeholders, including the private sector. By fostering partnerships among government institutions and between the Government of Liberia (GoL), private sector actors, research institutions and communities, the project will improve coordination on coastal management and create an enabling environment for ongoing coastal adaptation beyond the project area and after the project implementation period.

The project will increase local adaptive capacity by strengthening gender- and climate-sensitive livelihoods and protecting mangroves in the Mesurado Wetland within Monrovia. Specifically, adaptative capacity in Monrovia will be increased by: i) safeguarding ecosystem services provided by mangroves and increasing the resilience of these ecosystems to climate change, through community co-management agreements between government and communities; ii) improving community knowledge on climate change impacts and adaptation practices; and iii) strengthening climate-sensitive livelihoods and supporting the uptake of climate-resilient livelihoods. This is an important element of the integrated approach because while the development of ICZMP will improve coastal management at an institutional level, limited institutional capacity in Liberia means that capacitating communities to engage positive adaptation strategies is critical to ensure an increase in their long-term climate resilience. The latter two activities will be based at the innovation and education centre — to be established in West Point. In addition to being the focal point for climate-resilient livelihood development, the innovation and education centre will act as a hub for awareness-raising and other community-led actions being implemented under the project[6]. An exit strategy and O&M plan (Annex 21) will ensure that the proposed project activities will be sustained in the long-term[7].

These investments by the GCF and the Government of Liberia (GoL) will catalyse a paradigm shift in the management of Monrovia’s coastal zone towards an integrated, transformative and proactive approach that addresses current and anticipated climate change risks and which mixes both infrastructure (where necessary) and coastal ecosystems in adaptation efforts. This will directly benefit a total of ~250,000 people in the communities of West Point through coastal defence and enhanced livelihoods; and through enhanced livelihoods and improved protection of mangrove ecosystems in the communities of Topoe Village; Plonkor and Fiamah; and Nipay Town and Jacob’s Town. In addition, the project will indirectly benefit approximately one million[8] people through the adoption of a transformative, climate risk-informed ICZM approach for Liberia, with the first phase of implementation focused on the Monrovia Metropolitan Area (MMA). The combination of direct and indirect beneficiaries under this project will ultimately confer adaptation benefits on one quarter of the total population of Liberia.




[1] In this proposal, ‘Monrovia’ and the ‘Monrovian Metropolitan Area’ (MMA) are used interchangeably to refer to the jurisdictional or administrative entity of the MMA.

[2] the estuary of the Mesurado River

[3] 2008 to 2018

[4] See Annex 2.B (Vulnerability Sub-assessment) for Economic and Financial Analysis of Monrovia Metropolitan Area, and specifically West Point.

[5] Stabilising or ‘fixing’ the shoreline by means of a rock revetment is the preferred solution to coastal erosion at West Point by both the Government of Libera and affected communities. This approach also represents the most socially sensitive design because it requires low-to-no maintenance while still accommodating boat launching and landing. A rubble mound revetment with rock armour, which is able to withstand extreme wave conditions and storm events, is proposed. The Engineering Sub-assessment Report (Annex 2.C) showed that the northern portion of the proposed revetment is a less dynamic wave environment, and the conceptual design for this portion of the intervention site consequently proposes lighter rock armour. The ‘toe’ of the structure will consist of a resistant geotextile and will be anchored in the existing beach sediment to a level of 5m below mean sea-level to account for future deepening of the area directly in front of the revetment. A six-metre wide promenade, for access to the shoreline and recreation activities, is proposed between the revetment and existing dwellings at West Point. Two boat launching and landing sites are proposed as part of the preferred option at the southern end and centre of the revetment, respectively. These launch and landing sites will be provided in addition to the open beach area to the north of the proposed revetment, where fishing boats are already launching and landing. Further details on the stakeholder engagement process that led to this decision is available in Annex 2.A Feasibility Study, Section 10.2 Analysis of coastal defence options.

[6] Recognising the risks of the COVID-19 pandemic, all project activities will operate strictly within government mandated regulations and best practices. All government directives, such as lockdowns and mandatory quarantine will be adhered to, as will any restrictions on travel, organisation of events or sizes of meetings and workshops.

[7] Further information on the exit strategy and sustainability of the proposed project can be found in Section B.6.

[8] Direct benefits will accrue at the site-specific scale, whereas indirect benefits will accrue at the municipal scale — i.e. the population of MMA, which is estimated at one million people.

 

Expected Key Results and Outputs: 

Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.

Activity 1.1: Prepare construction plan and finalise technical design specifications for coastal defence structure at West Point.

Activity 1.2: Construct coastal defence structure to protect West Point against climate change-induced coastal erosion.
 

Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.

Activity 2.1: Develop an Integrated Coastal Zone Management Plan for Liberia.

Activity 2.2: Capacitate the Cross-Sectoral Working Group to mainstream ICZM into relevant government sectors through a Training-of-Trainers approach.

Activity 2.3: Strengthen the asset base and technical capacity of the ICZMU for the collection of spatial and biophysical coastal information to support the implementation of the ICZMP.

Activity 2.4: Strengthen the existing Environmental Knowledge Management System (EKMS) to act as a platform for awareness-raising and sharing of climate risk-informed ICZM approach.

Activity 2.5: Conduct an awareness-raising campaign for communities in focus areas on climate change impacts and adaptation practices.


Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

Activity 3.1: Establish a community education and innovation centre to function as a community knowledge generation and learning hub, a repository on climate change adaptation practices and host community activities under Output 3.

Activity 3.2: Establish community-led co-management agreement to ease anthropogenic pressure on mangroves in the MMA.

Activity 3.3: Conduct annual assessments to evaluate the project-induced changes in mangrove degradation, community perceptions and awareness of climate change impacts, adaptation options and mangrove ecosystems throughout the project implementation period.

Activity 3.4: Establish small-scale manufacturing facilities and develop training material to capacitate community members to manufacture and sell cookstoves to support alternative climate-resilient livelihoods.

Activity 3.5: Purchase and install low-maintenance eco-friendly cold storage facilities near fish processing sites to reduce pressure on mangroves and increase market efficiency

Contacts: 
UNDP
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 
Output 1: Protection of coastal communities and infrastructure at West Point against erosion caused by sea-level rise and increasingly frequent high-intensity storms.
Output 2: Institutional capacity building and policy support for the implementation of Integrated Coastal Zone Management (ICZM) across Liberia.
Output 3: Protecting mangroves and strengthening gender- and climate-sensitive livelihoods to build local climate resilience in Monrovia.

 

Project Dates: 
2021 to 2027
Timeline: 
Month-Year: 
March 2021
Description: 
GCF Board Approval
SDGs: 
SDG 9 - Industry, Innovation and Infrastructure
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action

Ecosystem-based Adaptation (EbA) for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal

The proposed “Ecosystem-based adaptation for resilient natural resources and agro-pastoral communities in the Ferlo Biosphere Reserve and Plateau of Thies” project supports the conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the Ferlo Biosphere Reserve and Plateau of Thies in Senegal. Ecosystem-based adaptation approaches will sustainably increase the resilience of agropastoral populations in the project areas, by providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens and eco-tourism).

The project will reach a total of 310,000 direct beneficiaries (half of whom are women), with a focus on land managers, local authorities, local elected officials, agropastoralists, farmers, local entreprenuers and small and medium enterprises, local organizations and NGOs. The project will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change.

In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. The Ferlo Biosphere Reserve is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented. The project is currently in the PIF stage.

 

 

 

 

 

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (-14.660888780215 14.42049332649)
Primary Beneficiaries: 
310,000 direct beneficiaries
Financing Amount: 
US$8.9 million
Co-Financing Total: 
US$26.4 million
Project Details: 

Impacts of climate change

The Republic of Senegal (hereafter Senegal) is a coastal Least Developed Country (LDC) in West Africa, where agriculture accounts for more than 70% of the workforce. Agropastoral communities are particularly vulnerable to the impacts of climate change due to their dependence on natural resources for food and livelihoods. The extreme poverty rate in Senegal is reported at 35.7% (2015 data), and multi-dimensional poverty at 46.7% (2013 data) and is concentrated in the Northern dry desert landscapes used by pastoralists. While its Human Development Index (HDI) value has shown a favourable trend – increasing from 0.367 in 1990 to 0.514 in 2019, Senegal currently still ranks low at 166th among 189 countries.

The frequency and intensity of extreme weather events, in particular droughts, heavy rains, periods of high or low temperatures has been observed and is predicted to increase due to climate change. A current rise in temperatures by +1°C has been recorded, with forecasts for 2020-2029 of 1 to 1.5°C and 3 to 4.5°C for 2090-2099, which would generate situations of severe thermal stress that could seriously jeopardize plant (increased evapotranspiration) and animal productivity. These climate changes are translated into the increasing occurrence of dry years (in 2002, 2007, 2011 and 2014), further exacerbated by the increased evapotranspiration caused by higher temperature.

In parallel, maladaptive practices are adopted by agropastoral communities and other natural resource users (such as overgrazing and deforestation), in particular as was initiated following the extreme adverse impacts of the Sahelian droughts of the 70s and 80s on traditional livelihoods. These practices tend to exacerbate the impacts of climate change, further damaging the ecosystems they depend on, and having far reaching consequences for other stakeholders in both urban and rural settings. The interrelation of climate and anthropogenic impacts are reflected by the widespread degradation with 64% of degraded arable land, of which 74% results from erosion and the rest from salinization. The annual cost of land degradation in Senegal is estimated at USD $ 996 million, including deterioration in food availability, and reduction of soil fertility, carbon sequestration capacity, wood production, and groundwater recharge. Anecdotally, social conflict between migrant herders and sedentary farmers is occurring as both expand their use areas to compensate for climate impacts that considerably aggravate the main drivers of degradation and loss of productive land.

The climate change-induced increased rainfall variability, translated into more frequent dry years and intense rainfalls, combined with anthropogenic factors (i.e. forest clearing around the city, bush fires and overgrazing, rapidly growing urbanization, extensive mining) are leading to land degradation, loss of biological diversity, reduction of agricultural production areas, loss of ecological breeding sites (many animal species have seen their habitats disrupted) as well as social instability. In turn, these climate and anthropogenic impacts are reducing the adaptive services of critical ecosystems, such as water supply and quality regulation or the moderation of extreme climate events (more details on the project targeted areas are available below).

COVID-19

In addition, COVID-19 severely impacted most vulnerable people and communities, that are already under stress as a result of the climate crisis and global biodiversity losses. Since March 2020, the local governments in Senegal have banned large markets (loumas) selling livestock, cutting off agropastoralists’ key source of income. In addition to the direct impact of COVID-19 on Senegal’s economy in terms of illness and deaths (reportedly 13,655 and 284 as of September 1st, 2020) and government-imposed restrictions, Senegal is also dependent on remittances from abroad and is therefore exposed to worldwide job losses and a global recession. In 2019, Senegal received an estimated US$2.52 billion in remittances, representing 10% of the country’s GDP. These are likely to shrink dramatically in the short term and highlights the vulnerability of the country to future global emergencies. Additionally, land mismanagement, habitat loss, overexploitation of wildlife, and human-induced climate change have created pathways for infectious diseases to transmit from wildlife to humans.

In this context, the Government of Senegal, through the Agence Sénégalaise de la Reforestation et de la Grande Muraille Verte (ASRGM), identified two project sites (the Ferlo Biosphere Reserve (FBR) in the North and Thies in the East of the country) considered a priority in terms of climate vulnerability, environmental degradation and high socio-economic importance, as well as the opportunities to address these vulnerabilities through ecosystem restoration and regeneration. In addition, the implementation of EbA practices in both landscapes (urban and rural) will provide lessons learned and best practices to be replicated at a larger scale and introduced into NAP priorities. Indeed, the FBR is a rural, biodiverse zone, and Thies is in and around a large urban population center. This will enable the project to build a strong knowledge base for future scale-up of Ecosystem-based Adaptation (EbA) across both urban and rural landscapes.

The Ferlo Biosphere Reserve (FBR)

The FBR was selected to represent the rural landscape zone in this project, as identified as a priority by the Government of Senegal, due to the climate change vulnerability of its communities, its economically important livestock industry and its high biodiversity and due to its location within the Great Green Wall corridor.

The FBR is located in Northern Senegal and covers an area of 2,058,216 ha, split into three zones of which (i) 242,564 ha is wildlife reserve for conservation and protection of the biodiversity of endemic and threatened species, (ii) 1,156,633 ha is a buffer zone, with ecologically important habitats and (iii) the remainder are transition or cooperation zones, where natural resources can be harvested and used towards sustainable development, following a set of regulations. It is home to 120 herbaceous species in 69 genera in 23 families; 51 woody species in 35 genera in 19 families; 37 animal species and a large bird population. The FBR was officially recognized by UNESCO in 2012, following a decade of work by UNDP, IUCN and other key stakeholders to establish the reserve. The FBR is located in the area of Senegal where the Great Green Wall (a pan-African initiative to plant a wall of trees from Dakar to Djibouti as a tool to combat desertification) is being implemented..  In addition to its very rich biodiversity, the wider Ferlo Basin is of strategic importance in Senegal, producing 42% of the cattle supplying Dakar; within the FBR 90% of the 60,000 inhabitants are involved in pastoralism. The FBR is central to the mobility strategies of pastoralists in their search for fodder resources for their herds. Their pastoral activity is characterized by a large herd, large forage resources and good milk production during the winter. Subsistence farming is the second most important activity, and generally involves rain-fed household agriculture and livestock farming, with little diversification. The harvest of timber and non-timber resources is also important for the local rural economy.

The FBR is already subject to an ongoing process of desertification caused by more frequent climate change-induced rainfall deficient years. Over the period 1960-2018, average annual rainfall was only 411 mm in Linguère and 383 mm in Matam, and while average rainfall has increased since the late 1990s compared to the previous decades, data shows significant variability with more frequent dry years.

Studies have shown fodder availability for livestock (biomass) is directly correlated with rainfall in the Sahel, and data from the 2005-2015 period shows an incremental decline in biomass production in the Ferlo region. Bush fires (and therefore decreased fodder availability) have exacerbated the impact of biomass loss, which predominately occur in Ferlo-South. Furthermore, some herbaceous and woody species with high forage value for livestock are threatened by maladaptive practices including deforestation and competition over land uses that hinders the mobility (and therefore resilience) of herds: between 1965 and 2019 increase in land use were +112% for housing and +47% agriculture. Rainfall variation also has a direct effect on milk production. For example, the volumes of milk collected by Laiterie du Berger (LDB) dropped by 33% in 2014, following another exceptionally rainfall deficient year.

The City of Thies and surrounding area

The City of Thies was selected to represent the urban landscape zone in this project, providing a parallel perspective on EbA next to the rural zone of FBR. It was identified as a priority by the Government of Senegal  due to the climate change vulnerability of its large urban population, in particular to the severe impacts of flooding, the link between exacerbation of the climate impacts and the pastoral activities outside the city, and the opportunity that EbA offers to address observed and forecasted climate impacts.).  

The City of Thies is located in the Region of Thies, in the Western part of the country, approximately 70 km east of Dakar. It is Senegal’s third largest city and oversees seven municipalities (Kayar, Khombole, Pout, Fandene, Mont Rolland, Notto-Diobass and Keur Moussa) with an estimated population of 496,740 inhabitants (in 2020).

Geographically, the city’s dominant feature is the Plateau of Thies, running across its Western edge with an elevation of approximately 130 m. The Plateau of Thies extends beyond the boundaries of the city, and straddles the administrative regions of Thies and Dakar, covering an area of more than 4,000 km². It has an important ecosystem function in terms of water supply, as many rivers and wetlands of importance have their source on the Plateau, including the Somone River, Lake Tanma, the Fandene Valley, the Diobass Valley, and much of the water consumed in and around Dakar comes from the Plateau. Once an extensive green ecosystem, it is now degraded, though still offers many opportunities in agriculture, pasture, forestry and mining activities.

Project overview

The problem this LDCF project seeks to address is the increasing vulnerability of the rural populations in the FBR, and in the area of influence around the City of Thies (hereafter referred to as “Thies”), to the increasing climate variability and the associated risks of annual droughts and floods caused by climate change. More specifically, the FBR population includes rural agropastoralists, whose livelihoods are particularly vulnerable to climate change, due to their dependence on reliable rainfalls for fodder supply and rainfed agriculture. In contrast, the urban population of the City of Thies is heavily impacted by flooding, which disrupts transportation and local commerce. Additionally, the population under the wider area of influence of the City of Thies includes agropastoralists and other natural resources users, which are vulnerable to the changes in rainfall patterns, and whose maladaptive practices may directly impact the flooding in the city. The vulnerabilities of these livelihoods have been significantly exacerbated by the degrading of the ecosystems as a result of climate change and human-induced impacts. In particular, the loss of forest cover to respond to changes in land use have had adverse consequences on the capacity of the ecosystem to provide services such as rainwater supply and quality regulations as well as the moderation of extreme events, critical to address the climate-induced increased occurence of dry years and heavy rainfalls. Urgent adaptive practices, (i.e. forest clearing for agriculture or fuelwood production, use of chemicals, bushfires, overgrazing etc.) adopted by local communities were observed to have further threatened these ecosystems, showcasing a vicious cycle of climate vulnerability.

An underlying root cause of maladaptive practices is poverty (up to 45% of inhabitants in some areas of the FBR[1]) that prevents targeted communities to implement longer-term and more protective responses to climate shocks and changes. In addition, current development interventions from the government and technical and financial partners, often fail to associate the introduced adaptive practices to improved livelihoods and revenues, reinforcing the disconnect between sustainable adaptive practices and livelihood enhancement.

The preferred solution is the adoption of an EbA approach through conservation, sustainable management and restoration of the forests and savanna grassland ecosystems in the FBR and in Thies. EbA will sustainably increase the resilience of agropastoral populations in the project areas, by (i) providing climate-resilient green infrastructure that enhances soil water storage, fodder availability and water for livestock; and (ii) developing alternative livelihoods which value is derived from the conservation and maintenance of these local forest and savannah ecosystems (e.g. timber and non-timber forest products, native climate-adapted vegetable gardens, eco-tourism). In addition, introduced climate-resilient green infrastructure (i.e. well-managed forests, natural earth berms, weirs, basins) will provide physical barriers against climate change-induced increased erosion and extreme weather events, particularly flooding. 

However, the adoption of an EbA strategy in the FBR and Thies has been hindered due to the following barriers:

·  Barrier#1: Data on the economic value of functional ecosystems and natural resources are limited and regional public sector institutions do not have sufficient technical capacity to implement EbA interventions. Empirical knowledge and experience about the environmental and economic benefits of an EbA is not available to support the decision-making at the regional and local level and the funds allocated to the management of these resources in national budgets and the private sector are insufficient to enable large-scale investment in an EbA program;

·      Barrier#2: Past interventions in the project areas adopted a siloed approach that did not link restoration and conservation activities with economic incentives for local populations. While the Government of Senegal, with the support of technical and financial partners, implemented restoration and conservation activities over the last three decades (including managed reforestation, establishing no-go areas etc.), there was a lack of coordination between actors and stakeholders. Restoration and conversion activities were not associated with evident economic value to those depending on the resource area, therefore the activities were not offering clear incentives for their sustainable maintenance. In addition, small producers and other users of natural resources have a limited knowledge of the climate change drivers/threats and the benefits of restoration and conservation;

·        Barrier#3: The communities have limited financial resources which they use to respond to immediate climate threats (floods and droughts) and are unwilling or unable to take financial risks to invest in or adopt alternative resilient practices. Adoption of new EbA strategies are not an investment priority for agropastoralists, small producers and other users of natural resources. They also lack access to financial services such as insurance, which could help address the risk that an extreme climate event can result in the loss of the investment;

·        Barrier#4: Lack of an enabling environment for mobilizing private sector investment in EbA interventions, projects and programs for resilient natural assets. There has been limited investment from international and national private sector in natural resources-based enterprises, as there has not been a systematic analysis of the EbA opportunities and subsequently little promotion by competent national institutions.

The funded LDCF project will complement the existing baseline by promoting long term planning on climate changes and facilitating budgeting and establishment of innovative financing mechanisms to support climate change governance at communes’ levels

The alternative scenario is that the main barriers to adoption of EbA in the FBR and Thies will be addressed, leading to a  shift from unsustainable natural resource management practices and climate-vulnerable livelihoods to a sustainable, green economy based on an EbA approach with sound resource management. This will lead to increased resilience of livelihoods for agropastoralists and reduced flooding in the City of Thies.

This will be achieved by anchoring livelihoods in the maintenance of ecosystem services through restoration and conservation activities in the FBR and Thies. This EbA approach – and the delivery of associated goods and services – responds to the increasing climate variability and associated risks of droughts and floods caused by climate change. EbA is increasingly recognized as a highly cost-effective, low-risk approach to climate change adaptation that builds the resilience of communities and ecosystems in the long term.

To achieve these objectives, the project will support the development and implementation of local EbA strategies in the two project zones through (i) the capacity building and strategy development for the management, governance and development of forests and pastures; (ii) the restoration of arid and semi-arid lands and degraded ecosystems; (iii) the development and market access of economically viable Small and Medium Enterprises (SMEs) based on the sound use of natural resources and (iv) dissemination of results, aiming to scale-up the adoption of EbA in Senegal.

*References available in project documents.

Expected Key Results and Outputs: 

Component 1: Developing regional and local governance for climate resilience through EbA

Embedding EbA approaches in the regional and local governance creates an enabling environment that will help secure climate resilient-livelihoods in the FBR and Thies. This requires significant capacity building of key stakeholders to understand the economic value of functional ecosystems and natural resources and strengthening of institutional and regulatory frameworks. While EbA has been recognized as a priority for adaptation interventions in Senegal, limited understanding of the concept and opportunities for local application has resulted in a very restricted adoption of these approaches. At the same time, the accelerating and uncontrolled degradation of critical ecosystems in Thies and the FBR is leading to an exponential loss of the adaptive benefits of these ecosystems. Biodiverse ecosystems provide future adaptive capacity and economic resilience, however the maintenance and restoration of ecosystems has not been embedded in the regional and local strategies designed to adapt to the impacts of climate change (i.e. more intense and less regular rainfalls, increased temperatures or more frequent dry years) which ultimately leads to the increasing climate vulnerability of the communities. Over the recent years, a number of initiatives were developed to introduce climate change concerns into policies and regulatory frameworks and protective measures for critical ecosystems were designed and enforced, but links between improved adaptation and healthy ecosystems failed to be established or systematized in the FBR and Thies.

By introducing EbA concerns into regional and local governance priorities, as informed by the assessments to be conducted under this component, and the lessons learned from outcome 2, the approach under Component 1 will reduce the impacts of climate change-induced heavy rainfalls and dry years exacerbated by land degradation, and as such contribute to the project objective. The activities under this component will also be informed by the results of ongoing interventions such as the Great Green Wall initiative, and lessons learned from the recently closed GEG-LDCF project “Strengthening land & ecosystem management under conditions of climate change in the Niayes and Casamance regions (PRGTE)” as well as the studies supported through the GEF-LDCF ‘Senegal National Action Plan’ project.

An assessment of the strengths and weaknesses of the FBR and the Plateau of Thies governing bodies  (output 1.1.1) – including stakeholders in Silvipastoral Reserves and Pastoral Units (UPs), forests, Wildlife Reserves and Community Natural Reserves (RNCs) – will be conducted to better understand the barriers to the introduction of climate change adaptation in rural and urban settings, in particular EbA practices, into planning and budgeting. As part of the PPG stage, more in-depth analysis of the gaps, root causes and opportunities will be undertaken to guide the assessment. In addition, existing local committees will be reinvigorated, strengthened and where appropriate re-structured to enable climate-resilient governance and participatory consultation processes for better decision-making (output 1.1.2).

Based on the assessments conducted under output 1.1.1, training sessions will be organized (output 1.1.3), targeting local land-management bodies and key stakeholders (land managers, local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs) in the two project areas, including and in coordination with those involved in the five baseline projects. The training will focus on building an in-depth understanding of the existing and potential climate change adaptive capacity provided by biodiversity and ecosystem services in the project zones, the potential economic value of climate-resilient livelihoods linked to these ecosystem services, as well as the importance of integrating community and cultural buy-in to the development of green infrastructure and alternative livelihoods. 

A multi-stakeholder committee of technical experts will be set up (output 1.1.4) , including experts from various institutions and national and international networks to advise and support local land management organisations in mainstreaming the EbA approach into local adaptation policies and strategies, as well as into the baseline projects. It will also support the development of key indicators for the assessment of climate vulnerabilities at local level and will strengthen local capacities to implement standardized monitoring protocols. Support for observation and dissemination of climate data will enable science-based management decisions (output 1.1.5). This will include the procurement of equipment and measuring instruments to strengthen the early warning system of the Agence Nationale de l'Aviation Civile et de la Météorologie (ANACIM) in the target project areas.

Based on the different assessments and capacity building, and following a participatory approach, land use and management plans will be reviewed and updated to incorporate EbA approaches (output 1.1.6). More specifically, the EbA actions will be based on (i) extensive consultations with stakeholders at the regional and local levels, (ii) climate change vulnerability assessments of the biodiversity, ecosystems and local communities (socio-economic vulnerability) including the surrounding gazetted forests, as well as green spaces within the city, (iii) climate data (i.e. rainfall, temperature and other weather data) made available to stakeholders, using data provided by national institutions such as ANACIM and (iv) the Market Analysis and Development (MA&D) framework results set out in Component 3. These local resilience strategies will include activities to build the resilience of livelihoods, as linked to the ecosystem services provided through restoration and conservation of the ecosystems and biodiversity. These will be developed, adopted and implemented with the continuous engagement of local communities in the sustainable management of natural resources.

These activities above all involve a degree of stakeholder engagement and meetings. If the COVID-19 pandemic is still impacting project activities at the time of execution, then alternatives to in-person meetings will be explored, including introduction of technology as well as an up-front focus on capacity building of local leadership.

Outcome 1.1 Stakeholders' capacities in planning and implementing EbA to maintain and/or create climate-resilient natural capital are strengthened.

Output 1.1.1. Functional analysis of the key institutions to formulate and enforce EbA policies conducted;

Output 1.1.2. The participatory governance bodies of the FBR and the Plateau of Thies are restructured/revitalized and strengthened for better coordination of decision-making in response to climate change risks;

Output 1.1.3. Stakeholder training programs are conducted to instill the skills and knowledge for climate-resilient decision-making;

Output 1.1.4. A technical expert committee is set up to advise on the mainstreaming of EbA into local land management strategies;

Output 1.1.5. The EWS under the ANACIM is equipped to strengthen the observation and dissemination of climate data in the project areas

Output 1.1.6. Land use and management plans are reviewed and updated on the basis of participatory consultations to mainstream the EbA approach within regional and local regulations, policies and systems of decision-making

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

By implementing restoration and conservation in the FBR and Thies, the climate resilience of natural assets and ecosystem services will be ensured. This component will be implemented in coordination with the creation of the enabling environment under component 1, to provide empirical knowledge, drawn from experience in the project’s targeted restoration natural ecosystems and productive areas. Experience under component 2 will inform and strengthen land use and management plans as well as the training programmes for local and regional stakeholders. This accumulated knowledge will respond to barrier #1, which identified a lack of data on the economic value of functional ecosystems and natural resources. In turn, Component 1 is expected to facilitate the replication of practices beyond the specific project sites and ensure the monitoring and advisory capacity of key stakeholders, avoiding the reintroduction or continuation of malpractices.

Currently EbA is quite nascent in Senegal, with some projects supporting the restoration of forests, watersheds, etc. as well as other practices associated with EbA. However, these initiatives rarely refer to EbA, and focus more on the broader protective benefits of these interventions, consequently failing to integrate climate change adaptation aspects. This is the case for the “Great Green Wall” initiative, which is led by ASRGM and includes the FBR: it aims to strengthen the capacities of local communities to help boost investments in land restoration and created employment opportunities or ‘green’ jobs but does not specifically address ecosystem based adaptation approaches. Similarly, the project “Management of the ecosystems of the Plateau of Thies” (which will end in 2021) has focused on water management and erosion, without linking to EbA or adapted livelihoods. While in the short-term the benefits appear to be comparable, the lack of understanding of the climate-change driven impacts on livelihoods and natural landscapes can be problematic and restrictive in the longer term. Therefore, as the project implements EbA practices, an emphasis on climate change awareness needs to be made.

This component will support the direct restoration of forest and rangelands over 5,000 ha to ensure these natural landscapes and productive areas are made more resilient to the expected increasing adverse impacts of climate change. An additional 245,000 ha of land in the Wildlife Reserve of Ferlo Nord and the Wildlife Reserve of Ferlo Sud, and the protected Forest of Thies will be put under improved sustainable management to maintain adaptive ecosystem services in the context of climate change. This will include (i) reforestation,  re-vegetation and assisted natural regeneration (ANR) of arid and semi-arid lands and degraded ecosystems with climate resilient plant species that provide goods for consumption and/or marketing; (ii) restoration of soil and vegetation cover, to preserve adaptive ecosystem services and (iii) sustainable land management measures engaging local communities, including with the adoption of climate-resilient crop varieties, demarcating multi-stage production plots by defensive quickset hedges, the use of organic fertilizers, sustainable NTFP harvesting practices, methods for improved processing, packaging, storage and marketing practices for transformed products. The role of IUCN, as both a GEF agency for this project and an expert in conservation, will be key to ensure social or environmental safeguards risks are controlled and are not triggered during the implementation of restoration activities, especially in the FBR. In addition, by concentrating restoration activities only in the “transition zone” of the FBR, instead of the “conservation areas” or the “buffer areas”, safeguards risks will be minimized. The restoration activities in the FBR will also directly contribute to the GGWI, as it is located in the same zone and both are led by ASRGM.

Restoration and conservation activities will take into consideration the potential for improved access to water resources by pastoralists as a result of forest and rangeland restoration, taking into account extreme weather events and rainfall variability. This is expected to include installation of infrastructure using essentially natural materials such as for bunds, embankments, weirs, earth dams and other water management structures (output 2.1.3).

Improved access to water resources (output 2.1.2) will form a key part of the EbA strategy in both project areas as it is expected to reduce the reliance of farmers on increasingly unreliable rainfalls as a result of climate change. Indeed, during the droughts in the 70s and 80s in Senegal, poor and unreliable access to water was observed to lead to increased deforestation to compensate for the reduced productivity of existing croplands. Safe access to water is therefore critical for the protection of forests and other highly productive ecosystems and will be included in the assessments and strategies formulated in Component 1.

An anti-erosion scheme for the area of the Plateau of Thies that affects the City of Thies will be developed and implemented (output 2.1.4). This includes restoring the surrounding native forest ecosystems, as well as other water management measures to reduce erosion, gullying and flooding exacerbated by rainfall variability and extreme weather events as a result of climate change, and in turn reduce the vulnerability of the population in the city of Thies.

Finally, this component will support the restoration of a green belt by replanting khaya senegalensis and other endemic trees alongside roads and in public green spaces (output 2.1.5.) for drainage control and the reduction in hydrological disaster risks, thus reducing flooding from extreme weather events in parts of the City of Thies, and decreasing the population’s vulnerability to these climate change impacts. In particular, this output could be conducted in partnership with the phase 2 of the “Program for the Modernization of Cities (PROMOVILLES)” that intends to support the construction of roads across Senegal, including around Thies, to improve the connectivity to poorly connected areas.

In the context of COVID-19, experience to date of other restoration and planting programmes which took place during the first stages of the pandemic have shown that it is still reasonable to undertake these: research suggests that the risk of infection is lower outside, and when measures such as mask-wearing and hand-washing take place. Therefore, it is expected that these activities could still be implemented, though may be delayed in the case of a full lockdown or if significant numbers of workers become ill.

Outcome 2.1 Agropastoralists' livelihoods, natural ecosystems and productive landscapes in project sites are more resilient to climate change through the adoption of EbA practices.

Output 2.1.1. Degraded agropastoral rangelands (including pastoral routes) are regenerated

Output 2.1.2. Degraded FBR agropastoral ecosystems are restored using nature-based solutions;

Output 2.1.3. Green infrastructure (i.e. bunds, embankments, weirs, earth dams) will be installed to sustainably improve access to water resources for local producers

Output 2.1.4. EbA measures are implemented on the Plateau of Thies to reduce flooding in the city of Thies.

Output 2.1.5. A programme to restore a climate-resilient green belt is implemented in the commune of Thies

Component 3: Investment in climate-resilient value chains

Through the creation and strengthening of viable SMEs that rely on biodiversity and ecosystem services, this component seeks to establish climate-resilient value chains. Currently, local communities do not have the resources to move away from their traditional livelihoods to adopt more climate resilient and protective EbA practices (barrier#3). In addition, as noted above, there is limited documented and disseminated EbA practices in the project areas and in Senegal more broadly. This lack of evidence limits the incentives for local populations to invest in restoration and conservation activities in order to improve their livelihoods in the long-term (barrier#2). This component, together with the governance incentives established under component 1 (policies, support from existing structures) and the lessons learned capitalized and disseminated under component 4, will promote private sector investment in relevant value chains (outcome 3.1) and support local entrepreneurs and SMEs to produce goods and services based on the sustainable use of natural resources (outcome 3.2).

More specifically, target value chains will include agricultural production (field crops, market gardening, arboriculture, fodder crops), forestry (timber and non-timber forestry products), and other economic activities as will be further detailed out during the feasibility studies of the PPG phase. At this point, significant potential has been identified for the development of forest value chains using species such as: Balanites aegyptiaca, Acacia Senegal, Adansonia digitata, Ziziphus mauritiana and Boscia senegalensis (ndiandam). By including the dual focus on private sector investment and support for SME development, this component will ensure market demand and economic viability for these climate-resilient value chains is embedded in the approach. This component will also build on experiences and lessons learned from multiple ongoing initiatives such as “The Agricultural Development and Rural Entrepreneurship Support Program” and the second phase of the “The Emergency Community Development Program (PUDC)”. There will be ongoing coordination with the GEF-LDCF project led by UNDP “Promoting innovative finance and community-based adaptation in communes surrounding community natural reserves (PFNAC)”, intervening in the Ferlo, which is detailed below in output 3.2.3.

Under this component, and to respond to the gaps and contribute to the initiatives presented above, a private sector platform will be set up to better coordinate value-chain activities promoting EbA (output 3.1.1), with the objective of identifying existing and new business opportunities and facilitating market linkages for nature-based products that provide adaptive benefits. Following the MA&D framework, opportunities will be identified by (i) assessing the existing situation, (ii) identifying products, markets and means of marketing and (iii) planning for sustainable development.[1] IUCN, as both a GEF agency for this project and an expert in conservation, will advise on the identification of opportunities that are compatible with the protection of the FBR. As for the component 2, all economic activities supported in the FBR are expected to take place in the ‘transition zone’ of the reserve, where natural resources can be harvested following precise standards and regulations already defined and enforced. Regional, national and international private sector players will be engaged through the platform, with the objective of coordinating value chain activities through identification of investment opportunities in material sources (livestock, forestry products, food, pharmaceutical and cosmetic ingredients), improvements in existing supply chains (reduction in post-harvest losses, aggregation and bulk storage, new / improved processing facilities, cooling chain improvements), or the investment in improved agricultural practices leading to increased yields.

In addition, a strategy will be developed to catalyze private sector investments in natural resource SMEs (output 3.1.2). This will include the organisation of forums for private sector stakeholder to exchange ideas and discuss common interests and potential opportunities. A publicly accessible database will also be developed to compile, organize and share identified opportunities and benefits from investment in the sustainable use of natural resources in the two project areas. This platform will both be used to lead discussions during forums and be updated based on the results of these encounters.   The approach may need to be adapted to online forums, if COVID-19 measures prevent large meetings.

Local entrepreneurs, community organizations and SMEs, in particular women- and youth-led businesses, will also be directly targeted under this component with the set-up of business incubation schemes (i.e. structured support programmes that recruit and support participants) to develop and commercialize products based on the sustainable use of natural resources (output 3.2.1). The incubation schemes will serve as a platform to support local entrepreneurs and SMEs to adopt innovative practices, strengthen their managerial, entrepreneurial, and business management skills, education on saving, support in drafting business plans, and identifying potential national, international and multilateral financing mechanisms to support investments in EbA and on the sustainable use of natural resources. SMEs supported by these activities will be subject to a risk assessment to ensure environmental and social safeguards are met. This is expected to be delivered by teams located in the field, and in the context of COVID-19 team members may have to limit movements between regions (especially between Thies and the FBR), and as part of the PPG phase, options will be reviewed for how to set-up the incubation programme to reduce the risk of delay if key personnel cannot travel or are infected.  The development of the nature-based businesses will further have to take into account the impact COVID-19 had on market demand and seek opportunities that are both climate and pandemic resilient.

Finally, the project will equip local SMEs with infrastructure and resilient materials for the adoption of climate-adaptive activities (establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) as well as relevant agriculture and forestry equipment that support EbA (output 3.2.2).

The adoption of new adaptive practices and alternative climate-resilient livelihoods will be incentivized through financial services (output 3.2.3) such as micro-credit and insurance products, to reduce climate-related financial risks, e.g. crop failure due to extreme weather events. Innovative financing may include for example development of financial products specific to climate-resilient SMEs, provision of both short and long term (micro) finance, flexible payment terms linked to cash flow, risk-based credit scoring and ICT data capture, alternative collateral and guarantee options, group lending, financing via downstream buyers, and risk sharing between Multi-lateral Finance Institutions (MFIs) and  national banks. institutions. The GEF-LDCF project led by UNDP PFNAC, intervening in the Ferlo, is in the process of setting up innovative and sustainable finance mechanisms, and is working to improve the capacity of local credit and saving mutuals to finance adaptation projects, both of which have strong potential to directly benefit the SMEs supported under this EbA project.  These activities will depend on coordination with the UNDP project as well as the development of partnerships with the National Agricultural Insurance Company of Senegal (CNAAS) and other national, multilateral and international financiers. Furthermore, access to pricing information, marketing and commercial transactions of nature-based products will be facilitated through mobile phones, in a partnership with SONATEL (the leading telecommunications company in Senegal)

Outcome 3.1. Private sector investment in value-chains producing goods and services based on the sustainable use of natural resources in a climate change context. 

Output 3.1.1. A private sector platform is set up to better coordinate value-chain activities that promote EbA;

Output 3.1.2. Stakeholder forums are organised to catalyse private and public sector investments towards the creation of resilient natural capital;

Outcome 3.2. Local entrepreneurs and SMEs produce goods and services based on the sustainable use of natural resources

Output 3.2.1. The managerial and entreprenarial capacity of local entrepreneurs, in particular women and youth, are supported to develop and commercialize products based on the sustainable use of natural resources, taking into account climate change

Output 3.2.2. SMEs based on the sustainable use of natural resources are provided with  equipment (i.e. for the establishment of nurseries, village multi-purpose gardens, fodder reserves and integrated model farms) and agriculture and forestry inputs.

Output 3.2.3.  SMEs based on the sustainable use of natural resources are provided with training to access financing opportunities to promote the adoption of resilient practices that protect and conserve targeted ecosystems

Component 4: Knowledge management, and monitoring and evaluation

This component seeks to secure the long-term adoption of climate-resilient approaches within the two project zones, as well as laying the foundation for scaling up EbA in Senegal. This is achieved through use of the M&E data and lessons learned from the first three components to develop a strategy for scale-up. This knowledge will be particularly relevant to inform planning and budgeting at the local, regional and national levels and for the continuous capacity building of stakeholders to support the scale-up beyond the life of the project. While this component is preparing the exit strategy of the project by capitalizing the knowledge acquired in the three first outputs, the activities will be carried-out all along the project implementation. More specifically, the following outputs will enable the replication and upscaling of EbA practices at the local and national level:

ASRGM, the city of Thies, UNDP, IUCN and technical partners will provide training and assistance to the project team and local and regional actors to develop a Monitoring and Evaluation (M&E) plan, including a set of indicators, data collection and processing protocols to categorize, document, report and promote lessons learned at national and international levels (output 4.1.1). The M&E mechanism will put communities at the heart of participatory research processes.

In addition, a communication strategy will be developed to collect, analyze, compile and disseminate the theoretical concepts of EbA (including from outside the project areas and Senegal) as well as practical results of project activities to relevant national, regional and local stakeholders (output 4.1.2.). The strategy is expected to build an institutional memory on the opportunities for EbA to enhance the climate change resilience of biodiversity and the livelihoods of local communities in the two project areas, amongst targeted stakeholders including the local authorities, local elected officials, pastoralists, farmers, local organizations and NGOs and managers of the Wildlife Reserves, Community Natural Reserves (RNCs), Silvipastoral Reserves and Pastoral Units (UPs) and forests of the FBR and Plateau of Thies.

An online platform will be developed as a repository of project results, training, tools and initiatives for experimentation and demonstration of pilot actions, and the results of the project will be disseminated at local, national and sub-regional levels through a number of existing networks and forums. At the end of the project, a national forum, gathering all technical and financial partners as well as the actors involved, will be organized. Building on the results from the forum and discussions , a guidebook/manual will be produced to disseminate the achievements, difficulties, lessons learned and good practices for the implementation of EbA in the project areas, to facilitate the replication of the results (output 4.1.3). If the COVID-19 pandemic is still impacting the project activities at the time of execution, then an alternative approach to a national forum will be developed, which could include several smaller regional meetings restricted in size (in case of travel restrictions between meetings), broadcasting presentations on TV or through meeting software or other approaches that reduce travel between areas and close contact.

A strategy for scaling up EbA approaches and developing natural resource-based SMEs will also be developed, including long-term financing options (output 4.1.4). This strategy will include approaches for developing climate-resilient natural resource-based SMEs, using the M&E results and lessons learned from implementation of the project, and will set out key recommendations for mainstreaming the approach in other regions in Senegal.

Outcome 4.1 Relevant local and national stakeholders incorporate climate-resilient EbA approaches into their land management activities, drawing on the experience from the FBR and Thies.

Output 4.1.1. An M&E plan, including a set of indicators, and data collection and processing protocols, is developed and implemented;

Output 4.1.2. A communication strategy aimed at the relevant local and national stakeholders is developed and implemented

Output 4.1.3. A summary and dissemination document (report, manual or guide) of the project outcomes, lessons learned and good practices is produced and disseminated;

Output 4.1.4. A strategy for scaling up the EbA approached and developing natural resource-based SMEs, including long-term financing options, is developed and the implementation of key recommendations is supported.

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing regional and local governance for climate resilience through EbA

Component 2: Restoration and conservation management to increase resilience of natural assets and ecosystem services

Component 3: Investment in climate-resilient value chains

Component 4: Knowledge management, and monitoring and evaluation

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 13 - Climate Action
SDG 15 - Life On Land

Landscape restoration for increased resilience in urban and peri-urban areas of Bujumbura in Burundi

The proposed "Landscape restoration for increased resilience in urban and peri-urban areas of Bujumbura in Burundi" project will strengthen integrated watershed management and flood management of the Ntahangwa river connected to Bujumbura to ensure the resilience of both upstream highland communities and downstream lowland communities living in urban areas. The proposed GEF Least Developed Countries Fund-financed project will include a comprehensive planning and management approach making use of climate information available in the country together with specific investments in landscape restoration, flood management measures and resilient livelihoods support. Landscape restoration in areas connected to Bujumbura will help restore flood-related ecosystem protection for both highland upstream communities and lowland urban communities with adaptive solutions ranging from tree planting to watershed protection and reinforcement of riverbank structures. The project is currently in the PIF stage.

At least 120,000 people from the two Bujumbura Provinces, Bujumbura Mairie and Bujumbura Rural, or about 8% of the total estimated population in these two provinces will directly benefit from the project (half of project beneficiaries are women). The project will restore 3,000 ha of degraded areas through tree planting, an additional 1,000 km of anti-erosion ditches and terraces and 1.5 km of flood control infrastructures along the Ntahangwa river in Bujumbura itself. The watershed area is estimated between 12,829 hectares, the project aims to ensure that 10,200 ha, or 80% of the watershed's estimated area, are put under improved management. 

To complement the restoration efforts, livelihood activities are needed to reduce the vulnerability of populations by promoting green entrepreneurship and providing better access to markets (initial main sectors targeted are agriculture and agro-industry as well as the charcoal sector) connecting urban communities to peri-urban communities in the watershed. The charcoal sector’s reliance on trees makes it a prime sector to target through a climate-resilient value chain approach. The agro-business sector will benefit from increasing the value of agricultural products and creating new investment opportunities. The urban focus of this project opens new doors to tap into the nascent startup ecosystems of Bujumbura while providing support for youth entrepreneurship and employment opportunities. Resilient livelihood options and green entrepreneurship are important strategies to rebuild Burundi’s economy as part of its post-COVID-19 recovery efforts.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (29.539672772821 -3.3803614343783)
Primary Beneficiaries: 
120,000 direct beneficiaries
Financing Amount: 
US$8.2 million
Co-Financing Total: 
US$16 million
Project Details: 

Impacts of climate change

Burundi is a small landlocked country of 11 million people. Agriculture is its primary economic sector, employing nearly 80% of its inhabitants who live from subsistence farming. The country is densely populated with high population growth. Bujumbura is Burundi’s biggest city and until February 2019, the capital city before it moved to Gitega. Bujumbura remains the main economic centre of the country and concentrate services and all of the business opportunities. Burundi’s landscape presents large swath of mountainous areas with elevations ranging from 770 m up to 2,670 m, on the eastern part of the country, the terrain drops to a flat plateau.

Burundi is subject to cyclical geophysical phenomenon like El Niño that are causing extreme climatic situations, strengthening the country’s vulnerability in different sectors, including infrastrutures development, transport, housing schemes and urban planning. This increased exposure to the impacts of climate change, together with the high poverty rate – 67% of the population living under the poverty threshold - puts the economy of Burundi as a whole in a very vulnerable and fragile situation. Burundi ranks as one of the countries most vulnerable to climate disruptions, ranking 171 out of 181 in the ND-GAIN index for climate vulnerability. The country is the 14th most vulnerable country and the 16th least ready country to combat the expected impact of climate change.

Current trends have shown an overall decrease in precipitation creating shorter wet seasons and a prolonged dry season. An increase in mean temperature of 0.7-0.9°C has been observed since 1930. Climate-induced natural hazards have become more frequent in the past decades with an increase in flood and drought as well as storm surges and landslides. Severe droughts frequently affect Burundi and account for a third of all natural hazards occurring in the country and torrential rains have caused major flooding issues around Lake Tanganyika, including Bujumbura. Between 1999 and 2007, the combined losses from severe flood (2006, 2007) and drought (1999, 2000, 2005) episodes were estimated by the government at 5% of the country’s GDP. Severe flooding and landslide have become a common yearly occurrence due to heavier rains than usual during the wet seasons. The country has reported important damages to crops, soil and infrastructure together with the increased presence of pests and disease that affect food crops and livestock.

Between 2013 and August 2020, the International Organization for Migration recorded 131,336 internally displaced people (IDPs), 83% of them as a result of natural disasters. The major part of these displacements occurred in the provinces of Bujumbura Mairie and Bujumbura Rural where 60,207 IDPs are on records. In January 2014, torrential rains caused rivers throughout the city of Bujumbura to come out of their bed. The flooding affected 220,000 people, 40% of Bujumbura’s population. 70 people were reported dead, 4 missing and 182 injured. Physical damage included 2,000 damaged or destroyed houses, the destruction of teaching materials at 7 flooded schools, lost merchandise at 500 stalls in 1 market, several bridges destroyed, 2 main roads cut, and 5000 ha of agricultural land degraded. A month later, in February 2014, floods and landslides in Bujumbura caused 64 deaths, destroyed 940 homes and rendered nearly 12,500 people homeless. Similar events causing deaths and massive destruction have been reported by the United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA) in 2019-2020. In April 2020, floods in Bujumbura Rural displaced 27,972 people and destroyed or damaged 6,010 houses. UN OCHA reported thousands of hectares of crops ready for harvest destroyed as well as an increased trend in prices for basic food commodities. Further increase are expected as traders try to preserve their stocks in anticipation of poor harvests.

Regional climate models using both a low and high emission scenarios (RCP 4.5 and RCP 8.5 respectively) indicate that the average annual temperature in the country could increase by 1.7-2.1°C by 2060 and 2.2-4.2°C by 2100 (mean change compared to the average for the 1970–1999). The highest increase is projected to occur during the dry season, which could lead to longer heat waves and more severe drought episodes. Climate models indicate an increase in mean annual precipitation of 5.7%-7.7% by 2060 and 8.6-13.2% by 2100 compared to 1970-1999. Furthermore, most of the regional climate models show an increase in precipitation during the main wet season (November-February) and all the models agree on a positive trend for the months of November and December and dryer conditions the months before the onset of the rainy season.

These changes and variability will result in challenges to agricultural productivity, food security and livelihoods, and a likely increase in the occurrence of climate disasters already observed. While evapo-transpiration will increase due to higher temperatures, the surplus of water from the precipitations is likely to increase the risk of extreme rainfalls, flash floods and landslides. A vulnerability analysis of Burundi showed that the area surrounding Bujumbura is particulary sensitive to erosion due to its mountainous landscape and soil profile, a situation that is likely to continue or worsen over time with climate change. On the other hand, the vulnerability analysis shows that drought is and will continue to remain an issue in the eastern and southern part of the country.

Infrastructure investments are concentrated in Bujumbura, making the city particularly prone to damage during flooding due to its geographical situation in lowlands surrounded by mountains prone to erosion and landslides. In order to address these issues, the Government of Burundi, through the National Platform of Prevention and Management of Disaster Risks in partnership with UN Agencies has prepared a “Flood contingency plan”. However, the existence of the Contigency Plan in absence of technical and financial resources has not brought significant changes to populations who suffer greatly from those disasters. In Bujumbura, city residents in the Nyakabiga, Kigobe, Mutanga and Mugoboka quartiers were forced to abandon their houses after they collapsed due to erosion and landslides. Other public infrastructures and private households are on the brink of collapse along the bank of the river Ntahangwa, putting lives directly at risk. The Ntahangwa watershed covers several districts east of Bujumbura and features steep hills prone to landslide and erosion, which then end up affecting densely populated areas of Bujumbura further downstream. Populations in the Ntahangwa watershed (outside Bujumbura itself) rely mostly on subsistence agriculture and agro-forestry on hills for their livelihoods and are highly vulnerable to the impact of climate change.

In addition, the country faces aggravating factors, in particular the socio-political crisis that leads to population movements, creating vulnerable groups and a polarization of the population in general. It is also important to highlight the situation of women, who, despite the efforts identified over the last years with regards to political and economic aspects, are still facing inequalities in terms of rights - in particular access to private property. Youth represents a key part of Burundi’s workforce, but opportunities for employment, including those with university degrees, is lacking and fails to fully tap into their potential. The Government has made youth employment a priority and a key pillar of their social protection policy.

COVID-19

Burundi reported its first case of COVID-19 in March 2020. As of the end of 27 October 2020, the country had 558 cases with one official death only. Burundi closed its borders in March 2020, but a comprehensive response to COVID-19 only started in July 2020 when the newly sworn president of Burundi, Évariste Ndayishimiye, declared the virus as “the worst enemy of Burundi” while announcing preventive measures against the disease inclu­ding mass screening, barrier gestures and economic incentives to reduce food prices. Similar to other African countries, the evolution of the pandemic has not seen the same dramatic progress as has been observed in Asia, Europe or America, but a response is required to maintain essential health services and avoid the spread of the virus beyond the capacity of Burundi’s fragile health system. The majority of confirmed cases were reported in the Bujumbura province.

COVID-19 is expected to impact agricultural production capacities and livelihoods, which could exacerbate food insecurity and limit the resilience capacities of the most vulnerable populations. The crisis has negative effects on food accessibility and price increases have already been observed (e.g. the price of maize is 37-61 percent higher compared to the same time last year). Food prices declined significantly between January and May, falling to their lowest level in seventeen months, but September 2020 marked the fourth consecutive monthly increase in the FAO Food Price Index. Border closure and quarantine requirements have led to a slow-down in trade and a disruption of cross-border markets affecting vulnerable households relying on casual labour and trade with the Democratic Republic of Congo. The COVID-19 crisis is impacting Burundi’s economic recovery. Some of the most affected sectors include services, hospitality and commercial services (transportation, travel, insurance) as well as agriculture, largely due to travel restrictions, a decline in international trade, waning demand for exports, and supply-chain disruptions.

Burundi has limited fiscal, monetary and financial buffers to cope with the current crisis. The GDP of Burundi had slightly risen to 1.8% in 2019 thanks to higher agricultural yields, but is poised to fall to 0.3% for 2020. As a result, public debt is expected to increase to 63.7 percent of the GDP in 2020 from 58.5 percent in 2019 due to reduced revenues and higher spending on health. Assuming the pandemic brought under control, the outlook could be positive in 2021 and 2022 with a significant rebound of growth supported by increased activity in all sectors.

The COVID-19 recovery efforts present opportunities for Burundi to use ecosystem-based adaptation and green economy principles to create jobs, strengthen agricultural value chains and supply chains from urban and rural areas and rebuild Burundi’s economy while addressing climate vulnerabilities and drivers of land degradation.

Project overview

The LDCF-financed project aims to address the vulnerability of urban and peri-urban communities of Bujumbura and the Ntahangwa watershed to the increased frequency of floods, storm runoffs and landslides projected by climate models. These natural hazards are destroying households and infrastructures of urban communities of Bujumbura along the bank of the Ntahangwa river and threaten the livelihoods and resilience of highland communities living in the upstream part of the watershed. Erosion is a key factor increasing the vulnerability of highland communities to adapt and solutions to increase their resilience have the potential to reduce the impact felt by lowland communities downstream. Floods and storms directly affect the capacity of the watershed’s ecosystem to buffer the impact of climate change, which is made worst by the degradation and deforestation of hills by communities. Despite investments in watershed restoration in the past, there is no planning and management tool at the watershed-level to ensure the long-term resilience of communities. Climate information can support those processes; however, the government lacks the capacity to analyse and make use of data and information for decision-making.

The long-term solution is to strengthen integrated watershed management and flood management of the Ntahangwa river connected to Bujumbura to ensure the resilience of both upstream highland communities and downstream lowland communities living in urban areas. The solution will include a comprehensive planning and management approach making use of climate information available in the country together with specific investments in landscape restoration, flood management measures and resilient livelihoods support. Landscape restoration in areas connected to Bujumbura will help restore flood-related ecosystem protection for both highland upstream communities and lowland urban communities with adaptive solution ranging from tree planting to watershed protection and reinforcement of riverbanks structures. To complement the restoration efforts, livelihood activities are needed to reduce the vulnerability of populations by promoting green entrepreneurship and providing better access to markets (at this stage, the main sectors targeted are agriculture and agro-industry as well as the charcoal sector) connecting urban communities to peri-urban communities in the watershed. The charcoal sector’s reliance on trees makes it a prime sector to target through a climate-resilient value chain approach. The agro-business sector will benefit from increasing the value of agricultural products and creating new investment opportunities. The urban focus of this project opens new doors to tap into the nascent startup ecosystems of Bujumbura while providing support for youth entrepreneurship and employment opportunities. Resilient livelihood options and green entrepreneurship are important strategies to rebuild Burundi’s economy as part of its post-COVID-19 recovery efforts.

Barriers

Several barriers to this solution have been identified, they will need to be addressed by the LDCF project in order for the project to achieve its results.

Barrier 1: Limited institutional and technical capacity for mapping and analysis of climate risks for resilient integrated watershed management (including flood management). While a climate information system for early warnings has been established in Burundi, operators are receiving training to operationalize the system, but their capacities to make use of data and information beyond early warning (e.g. planning and management) are and will remain limited without dedicated resources. Those capacity gaps need to be addressed before national authorities can analyse trends and develop models to understand flood and erosion risks and support policy and planning processes that can ensure a resilient integrated watershed management of the Ntahangwa river. The development of community development plans (PCDC) has been an important tool to ensure community engagement in shaping programming and investment priorities. However, the absence of an overarching strategic planning process at the watershed level leads to fragmentation and difficulties in developing and measuring the overall impact of interventions across the watershed and broader productive landscape.

Barrier 2: Limited capacities, knowledge and technologies for Ecosystem-based Adaptation. Local authorities do not have the knowledge and expertise to manage climate risks appropriately at their level, even when management measures are identified in a local development plan. Preventive measures are therefore not prioritized and the response to climate-related disasters has remained reactive. This results in significant damage and losses (human, material), which reduces productivity and leads to negative externalities and maladaptation. Communities of the watershed have limited exposure to ecosystem-based adaptation solutions that can improve the resilience of watersheds and restore ecosystem services for flood and erosion protection. They lack the capacity to implement EbA interventions and are not incentivized for doing so. While funding for local development is scarce, human resources are abundant and communities all over the nation willingly give time and effort to benefit their own community. This approach referred to as “labour intensive public work” does not focus on climate resilience, but could be leveraged for the implementation of climate-resilient initiatives with the right incentives.   

Barrier 3: Limited livelihood options and entrepreneurship support for climate resilience, in particular for vulnerable and under-represented populations such as women and the youth. Competing needs and interests make it difficult for vulnerable populations to factor in climate risks in their decisions. The lack of resilient alternative livelihood options means they often are forced to continue with maladapted practices despite experiencing increasing negative impacts from climate change every season. Deforestation and unsustainable agricultural practices worsen the slopes’ stability and compound the problems as climate change impacts worsens. Alternative options to reduce those pressures are extremely limited or not realistic due to lack of market access. While highland upstream areas become more prone to landslide and erosion during intense rainfall, they also worsen the situation of communities in the lowland downstream areas who face increasing risks of flood, flash floods and landslides. For the Ntahangwa watershed, demand for food and agricultural products is driven by urban population in Bujumbura while some of their needs are met by rural communities upstream. Despite this obvious link, there is a disconnect between the activities to meet urban demand and their impact on ecosystem services that protect them against flood and there is no win-win mechanisms to use market levers to encourage a shift to resilient livelihood options that meet urban demands while reducing pressure on ecosystem services that also benefit urban populations. In general, lack of market access is a barrier making those livelihood options difficult to implement as tools and mitigating strategies to overcome those barriers are limited/inexistent. Support for small business creation by the government is limited, even more for the implementation of innovative technological solutions deemed risky.

 

Expected Key Results and Outputs: 

Component 1: Developing technical capacities for climate-induced flood and erosion risks mapping and their use to inform climate-resilient integrated watershed management and other planning processes.

The Ntahangwa river connected to Bujumbura is a strategic asset that provides opportunities for productive sectors (e.g. agriculture, fisheries) but is also prone to climate risks and causes important damage due to erosion and landslides during wet seasons. Investments in parts of the Ntahangwa watershed have been made in the past, but they are insufficient to yield their intended results as they are scattered and not chosen based on an overall understanding of the watershed hydrologic processes and ecosystem services. A comprehensive integrated approach to land and water resources management of the Ntahangwa watershed is required to ensure long-term flood and erosion control and increased resilience of the communities in the watershed, including in areas at high risk of flood in densely populated areas of Bujumbura.

Under this component 1, capacities to analyse climate data and develop climate risk models will be enhanced to support climate-resilient integrated planning at the watershed level and inform communal development plans and flood-resilient urban development plans. The outcome under this component will address the first barrier to the long-term solutions identified in section 1. Interventions will cover the urban, peri-urban and rural settings, as they need to be considered together to understand the needs, priorities and constraints of populations in each of those areas to identify opportunities and synergies at the level of the watershed and attribute relevant role and responsibilities accordingly. For example, urban populations downstream need rural communities upstream to prevent soil erosion and reduce surface runoff causing flash floods. Rural communities need urban and peri-urban communities to access markets to sell their products.

Outcome1: Enhanced capacity for climate risk modelling and integrated planning in the Ntahangwa watershed and Bujumbura town

Under the LDCF project “Community based climate change related disaster risk management”, a community-based climate information system was developed to collect hydrological information and disseminate early warning information. 30 hydrometeorological stations were installed, with information collected centrally by the Geographic Institute of Burundi (IGEBU) and already covering the Ntahangwa watershed. As of 2021, the early-warning system should be operational, fully managed and funded by the government. Capacities and resources to make use of climate information will remains nonetheless limited and prevent use for planning and decision-making. Outcome 1 will build government capacities to expand the use of the climate information to better understand ecosystem health and their capacity to deliver benefits in terms of resilience under the current human, environmental and climate-related pressures. Modeling capacities also need to be enhanced to develop hydrological models to determine climate risks, more specifically flood and erosion risks, in the Ntahangwa watershed based on current climatic trends and future climate change scenarios. Those are pre-requisites for the development of an evidence-based, climate-resilient, integrated watershed management plan for the Ntahangwa river, as they will guide planning and decision-making processes.

Target areas for the World Bank-funded “Landscape Restoration and Resilience Project”, which constitute part of the baseline for land restoration and erosion control activities, were chosen in relation to their location in the Isare commune, but not primarily for their link to the Ntahangwa river. The resilient integrated watershed management plan will provide an understanding of the key areas in the watershed for the provision of ecosystem services for flood and erosion control and propose a watershed rehabilitation plan for those areas. The determination of priority areas will also confirm the critical gaps in the areas of treatment in the Ntahangwa watershed. Integrated watershed planning is an exercise requiring cross-sectoral cooperation and intense stakeholders’ consultation and participation, involving vulnerable and under-represented groups of people, such as women, youth, and indigenous people (n.b. indigenous Batwas are known to be present in the Ntahangwa watershed). The watershed planning exercise will make use of the climate information systems and climate-sensitive risk maps and evaluate adaptation solutions based on their geographical situation in the watershed. This should be complemented by ecosystem valuations to determine the economic value of ecocystem services provided by the watershed areas. Training will be provided to increase the capacity of relevant provincial and communal government officials, decision-makers and planners. The training will help them identify cost-beneficial ecosystem-based adaptation opportunities (rural as well as urban) and flood protection measures that address the climate threats facing the watershed.

The resilient integrated watershed planning exercise will be used to inform the preparation or revision of existing urban development plans in Bujumbura and communal local development plans in rural communes of the watershed. Those plans are the main tools to translate watershed-level planning into concrete field intervention on the ground while supporting long-term sustainability of the project activities and as a result long-term climate resilience.

Outcome 1 will support the other outcomes by creating the necessary basis upon which this LDCF project can conduct ecosystem restoration, flood protection and livelihood development activities to increase the resilience of communities in the watershed (in rural, urban and peri-urban areas). The evidence-based framework for planning and investment decisions will help ensure the sustainability and scalability of the project. Improvements to the climate information system will also help with collection of data and information that make monitoring and evaluation of the project’s impact easier to measure quantitively.

Outputs under Outcome 1 are listed below:

  • Output 1.1: The community-based climate information system supported and improved to monitor changes in key ecological determinants of ecosystem health and resilience in the Ntahangwa watershed.
  • Output 1.2: Training program implemented to enable the use of hydrological and climate models to map out climate-sensitive flood and erosion risks in the Ntahangwa watershed.
  • Output 1.3: A resilient integrated watershed management plan prepared to guide the development and rehabilitation of the Ntahangwa watershed in areas critical for the provision of ecosystem services for flood and erosion control.
  • Output 1.4: Flood and erosion risks maps developed for use in climate-resilient planning (urban development and investment in Bujumbura,  local development plans in communes of the Ntahangwa watershed).

 

Component 2: Landscape restoration and flood management measures to protect communities in the Ntahangwa watershed and Bujumbura from flood and erosion risks.

The area surrounding Bujumbura is the most prone to erosion and landslides, a situation which will increase over time according to climate projections[1]. Component 2 will build on the evidence base and the climate-resilient integrated watershed management plan provided in Component 1 to implement ecosystem-based adaptation (EbA) interventions and flood protection measures in strategic locations across the Ntahangwa watershed. The EbA interventions will restore or maintain ecosystem services for flood and erosion control while protective measures against flood will help stabilize critical riverbanks in at-risk populated areas of Bujumbura. This component represents the bulk of the investments proposed by this LDCF project and will complement and strengthen other investments made in landscape restoration, afforestation and resilience-building activities in parts of the Ntahangwa watershed (See Section 2 on Associated baseline projects).

Outcome 2: Ecosystems services for flood and erosion protection restored and flood protection measures implemented to improve the resilience of communities in the Ntahangwa watershed and in Bujumbura.

Under this outcome, the project will promote ecosystem-based adaptation techniques in the highland upstream areas of the Ntahangwa watershed. The specific measures include landscape restoration techniques and community-based anti-erosion measures. Landscape restoration techniques will focus on planting trees and creating quickset hedges to stabilize hills in the watershed and will be complemented by anti-erosion contour trenches and terraces. Those techniques are meant to reduce soil erosion, increase soil moisture and reduce surface water runoff, therefore improving ecosystem services provided by the watershed and its streams. During intense rainfall, contour trenches channel water runoff and reduce erosion and crop losses due to flooding. By increasing soil moisture, they also provide added protection against drought and heat waves on crops. These EbA techniques increase land productivity and food security. They bring additional economic benefits to communities as most of the hills in the watershed are used for agricultural production.

The landscape restoration efforts will be implemented directly with the local communities in each of the targeted hills in selected communes of the Ntahangwa watershed. Local authorities and local communities will enforce a ban on tree cutting and maintain anti-erosion trenches as part of their community work (half a day per week is dedicated to community work) under a labor-intensive public works (LIPW) scheme. Those EbA techniques are appropriate for a LIPW approach as they are low-tech and easy to implement and maintain with little capital. The LIPW approach has been applied successfully in Burundi for many years and is one of the approaches used to implement activities of the local development plans (e.g. Plan Communal de Développement Communautaire (PCDC)).

The risk mapping and modelling exercise undertaken under Outcome 1 and the watershed rehabilitation plan will help prioritize the hills and communes of the watershed based on their vulnerability to erosion and landslide and their contribution to the ecological status of the river and streams. This prioritization will also consider current and previous investments in the watershed to avoid overlaps and duplication as well as ensure that other interventions in contribute to addressing the climate threats facing the watershed. In total, the project will plant 3,000 ha of specific trees and herbaceous/shrubby quickset hedges in critical degraded areas as well as establish 1,000 km of contour trenches and radical terraces. 

Additional protection from flood will be provided through investment in protective infrastructures in lowland downstream areas, more specifically at-risk populated areas of Bujumbura close to the river. While Bujumbura is less prone to erosion, floods have devastating impacts on the city and the rivers flowing through it, including the Ntahangwa river where critical infrastructures such as schools, churches and habitation are directly at risk of collapsing. Climate change projections indicate that this situation will worsen over time, with increased variability between seasons and increased rainfall causing will increase the frequency of flash flood and landslides. Initial investments in flood protection measures was conducted along the river as part of the previous LDCF intervention. Those measures were considered a success by beneficiaries and the government. The risk mapping exercise under Component 1 will be used to determine the physical location and protective infrastructures options for implementation at a fine-scale level. This work involves civil engineering techniques to reinforce the sides of the river chanel with gabions and terraced surfaces. A social and environmental impact assessment will be undertaken before work on the riverbank can start.

These interventions will be supported by tools and technologies to increase communication and knowledge management at the community level to ensure better responses and handling when climate-related disasters occur. These will aim to create awareness and promote targeted interventions to shift response behaviours to improve climate resilience. South-South cooperation and exchanges of experience and lessons learned on EbA solutions for landscape restoration and urban-based flood protection measures will also be explored during the PPG. These activities will promote the sustainability and scalability of the project, in particular for their application in other rivers and watersheds connected to Bujumbura and Lake Tanganyika.

Outputs under Outcome 2 are listed below:

  • Output 2.1: Restoration measures of vulnerable hilltops of the Ntahangwa watershed connected to Bujumbura completed through the methods of tree planting and quickset hedges;
  • Output 2.2: Establishment of community-based anti-erosion measures, such as ditches and radical terraces, in vulnerable hills critical for the ecosystem health and resilience of the Ntahangwa watershed;
  • Output 2.3: Flood control measures built along the Ntahangwa river channel in areas of Bujumbura where public and private infrastructures are at imminent risk of landslide during extreme climate events;
  • Output 2.4: Knowledge and guidance material on (i) landscape restoration, and (ii) flood management and protective infrastructures prepared and disseminated within Burundi and via South-South exchanges.

 

Component 3: Livelihoods options and green entrepreneurship to increase resilience of the urban, peri-urban and rural communities in the Ntahangwa watershed.

Component 3 aims to support and strengthen the watershed restoration activities under Component 2 by inducing a shift away from unsustainable and vulnerable practices and livelihoods. Livelihoods enhancements and diversification activities proposed under this component will provide incentives to ensure participation and ownership of the project activities by beneficiaries and improve the long-term sustainability of the project results after it ends. The Ntahangwa river is strategic due to its geographic situation connecting highland areas highly sensitive to climate with major strategic assets for Burundi, the city of Bujumbura and Lake Tanganyika. While the connection between the urban, peri-urban and rural communities of the Ntahangwa watershed has been ignored or overlooked, the project will identify and build on the synergies between those communities to deliver win-win adaptation solutions benefiting populations of the watershed, no matter their location or situation. This component also provides specific entry points to support women, young people and indigeneous people with concrete resilience-building solutions or opportunities and tailored support and incentives. Although rural areas have higher poverty rates, the COVID-19 has had immediate and severe impact in urban areas due to the high dependance of the urban poor on informal and non-wage income streams which easily succumb to crises due to low capacity to adapt to sudden changes in market conditions. The livelihood options and green entrepreneurship opportunities proposed under this component build climate resilience while creating green jobs and contributing to building back better as part of the COVID-19 recovery efforts.

Outcome 3: Community livelihood is improved with sustainable adaptation measures contributing to urban, peri-urban and rural resilience.

This outcome introduces adaptation measures promoting resilient livelihoods options and green entrepreneurship opportunities building on synergistic opportunities between populations in urban, peri-urban and rural areas of the watershed and resulting in increased resilience to climate change for populations in the watershed. The options and strategies will be informed by a climate-sensitive market analysis looking at demand levers that could be used to trigger climate-resilient offerings reducing land degradation in the watershed. The market analysis will look at relevant value chains and supply chains to make recommendations on the feasibility and cost-effectiveness of climate-resilient strategies, both on-farm and off-farm. Relevant value chains and supply chains would include agricultural and food products, crops and farming inputs, livestock, fisheries, and non-timber forest products (NTFP). The market analysis will assess economic impacts and market barriers and will include mitigating strategies to address these barriers. The market analysis will be gender-sensitive and aim to provide specific strategies and options for vulnerable and under-represented groups. Food supply systems are key sources of livelihoods and income generating opportunities and can be instrumental in strengthening positive rural-urban linkages. The market analysis will consider COVID-19-related constraints on value chains and supply chains to identify resilience building solutions also contributing to a more robust recovery from COVID-19. The results of the market analysis will be used to inform urban and local development plans supported as part of Outcome 1.

Based on the results of the market analysis, the project will support 5 to 8 Ecosystem-based Adaptation solutions providing resilient livelihoods options that are also compatible with watershed resilience. Those solutions could include, but not limited to, family orchard, food processing and preservation, beekeeping, use of NTFP. Family orchard is a promising EbA solutions that could be used in the Ntahangwa watershed to develop small-scale cultivation systems optimizing the use of space and family labour to produce vegetables, herbs and fruits for both domestic consumption and supplemental income. Family orchard can be implemented in a variety of configurations in both rural and urban settings. Using crop diversification, families can produce food year-round and distribute losses due to climate-induced events. The technique contributes to food security and resilience, it can be complemented by other techniques for increased resilience and autonomy, such as water harvesting techniques, composting and seed management[2]. The project will explore food processing and preservation techniques for agricultural and NTFP products to create added value, reduce post-harvest losses, access new markets and diversify income opportunities, increasing general resilience to climate as a result. While this strategy can be applied to small producers, it could also apply to small agro-business enterprise development.

Under outcome 3, the project aims to foster innovation by supporting green entrepreneurship for urban/peri-urban adaptation. The project will provide investment and support for startup creation, capacity building and skill training, access to improved technologies, mentorship and networking. Green entrepreneurship will aim to tap into the potential of Burundi’s burgeoning startup community to come up with innovative solutions for urban and peri-urban resilience. This activity will provide employment opportunities and connect with young people and women, including those with higher education who often fail to find opportunities matching their career ambitions and expectations. For this activity, UNDP will partner with national, regional and global technological hubs, startup incubators and accelerators to connect startups and entrepreneurs with relevant actors and support. Through green entrepreneurship, the project will contribute to building a more resilient, greener economy in Burundi, which UNDP is promoting as a key recovery strategy post-COVID-19. In times of restricted mobility due to the pandemic, digital solutions are emerging as essential to keep businesses active and ensure safety and security. Where possible, the project will use innovative digital tools to make green businesses easier, more inclusive and more capable of sustaining services during crisis.

UNDP initiated discussions to partner with Impact Hub Bujumbura, a local technology hub supporting Burundi’s startup ecosystem to tackle the Sustainable Development Goals via entrepreneurial and innovative solutions. To generate ideas and interest, the project will support Impact Hub Bujumbura with the organization of the first Climathon in Burundi, Climathon x Bujumbura. Climathon is hackathon programme organized globally under the auspice of Climate-KIC to translate climate action solutions into tangible projects for climate positive businesses and start-ups and addressing local policy changes. Climathon x Bujumbura will gather the startup community to come up with innovative solutions for adaptation and urban resilience. The project, with support from UNDP, will seek to connect startup and entrepreneurs with resources and actors in Burundi, including funding (e.g. UNDP Acceleration Lab, Climate-KIC Accelerator).

Lessons learned from the GEF-LDCF project “Community based climate change related disaster risk management” will be used to guide and inform some of those activities for green entrepreneurship. Such activities include a pilot initiative for briquette production from recycled waste for cooking that is ready for upscaling. Charcoal production is an important driver of deforestation and land degradation in Burundi and the production of briquettes from organic waste contributes to reducing the reliance on wood for charcoal production. The pilot initiative supported by UNDP has created an additional source of income for over 20 young people, men and women, who have learnt the skills needed to prepare the briquettes from waste and build improved cooking stoves. The initiative is generating revenues and has identified areas to improve production bottlenecks for further expansion (e.g. shaping of briquettes with a motorized engine instead of manual work). The market analysis will provide solutions and de-risking incentives to upscale this initiative and will support the establishment of additional briquette production units with, among others, skill training and marketing training, improved production equipments and access to finance.

To facilitate investments and entrepreneurship, the project includes a specific activity on access to micro-finance for smallholder farmers and small-scale entrepreneurs, with a specific focus on women and youth entrepreneurs. This will include capacity building in financial literacy to give beneficiaries a better understanding of credit and business models applicable to their livelihood activities. The project will establish partnerships with banks and micro-finance institutions to develop credit products at affordable interest rates and accessible by vulnerable groups. During the PPG, de-risking measures to incentivize micro-finance institutions and banks will be explored. Strategies to facilitate positive impact on women and other vulnerable groups will form the basis for tailoring policies, practices and products that better address gender equality and promote women’s empowerment. The project will train MFI’s staff member on gender analysis and help them incorporate empowerment indicators (e.g. proportion of women in the loan portfolio) into their client monitoring and assessment processes and help them adjust their financial services to respond to diverse client needs (e.g. adapting loan amounts and repayment schedules for women). The project will build on and strengthen women’s network and conduct marketing campaigns to influence people’s attitudes on women’s status and employment to facilitate community approval of women’s projects and build women’s self-confidence.

As in Outcome 2, Outcome 3 will promote communication and knowledge management, and explore mechanisms to share experience and lessons learned and promote sustainability and scalability of the project’s livelihood options for EbA and green entrepreneurship initiatives.

  • Output 3.1: Market analysis conducted, including; i) identifying demand levers that could to drive a shift to sustainable resilient practices in  the watershed (considering opportunities from/between urban/peri-urban/rural settings); ii) analysing relevant supply chains for climate-resilient agricultural and food products, crops and farming inputs, livestock and fisheries, and non-timber forest products; iii) assessing economic impacts and market barriers; and iv) drafting mitigating strategies to address these barriers.
  • Output 3.2: Ecosystem-based Adaptation solutions providing resilient livelihoods options compatible with watershed resilience are supported (e.g.: family orchard, food processing and preservation, beekeeping, use of NTFP…);
  • Output 3.3: Startup creation facilitated through the provision of technical support (training, mentoring) and finance (to invest in resilient practices and technologies);
  • Output 3.4: Development of micro-finance products (micro-credit) with Micro-Finance Institutions to support small business development, with a focus on women and youth entrepreneurs.
  • Output 3.5: Knowledge and guidance material on (i) resilient livelihood options and (ii) and green entrepreneurship and startup creation leveraging urban, peri-urban and rural win-win opportunities for climate resilience prepared and disseminated within Burundi and via South-South exchanges.



[1] Analyse intégrée de la Vulnérabilité au Burundi. GIZ, December 2014.

[2] Microfinance for Ecosystem-based Adaptation: Options, costs and benefits, UNEP, 2013.

 

Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing technical capacities for climate-induced flood and erosion risks mapping and their use to inform climate-resilient integrated watershed management and other planning processes;

Component 2: Implementing landscape restoration and flood management approaches to restore ecosystem services against flood and erosion in the Ntahangwa watershed in and around Bujumbura;

Component 3: Livelihoods options and green entrepreneurship to increase resilience of the urban, peri-urban and rural communities in the Ntahangwa watershed.

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
October 2020
Description: 
PIF Approval
Proj_PIMS_id: 
5879
SDGs: 
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action

Community-Based Climate-Responsive Livelihoods and Forestry in Afghanistan

Around 71 percent of Afghans live in rural areas, with nearly 90 percent of this population generating the majority of their household income from agriculture-related activities.

In addition to crop and livestock supported livelihoods, many rural households depend on other ecosystem goods and services for their daily needs, for example water, food, timber, firewood and medicinal plants.

The availability of these resources is challenged by unsustainable use and growing demand related to rapid population growth. Climate change is compounding the challenges: more frequent and prolonged droughts, erratic precipitation (including snowfall and rainfall), and inconsistent temperatures are directly affecting the lives and livelihoods of households, with poorer families particularly vulnerable.

Focused on Ghazni, Samangan, Kunar and Paktia provinces, the proposed project will take a multi-faceted approach addressing sustainable land management and restoration while strengthening the capacities of government and communities to respond to climate change.

English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The project will target a total of 80,000 direct and indirect beneficiaries (20,000 per each province), of which 50% are women.
Financing Amount: 
GEF-Least Developed Countries Fund: US$8,982,420
Co-Financing Total: 
Co-financing of $14 million (In-Kind) from the Ministry of Agriculture, Irrigation and Livestock – Afghanistan | US$5 million (In-Kind) from ADB | + $1 million (grant) from UNDP
Project Details: 

Climate change scenarios for Afghanistan (Landell Mills, 2016) suggest temperature increases of 1.4-4.0°C by the 2060s (from 1970-1999 averages), and a corresponding decrease in rainfall and more irregular precipitation patterns.

According to Afghanistan’s National Adaptation Programme of Action (NAPA), the worsening climatic conditions in Afghanistan will continue to impact negatively upon socio-economic development, creating multiple impacts for given sectors. Sectors such as agriculture and water resources are likely to be severely impacted by changes in climate.

Increasing temperatures and warmer winters have begun to accelerate the natural melting cycle of snow and ice that accumulate on mountains – a major source of water in Afghanistan.

Elevated temperatures are causing earlier than normal seasonal melt, resulting in an increased flow of water to river basins before it is needed. The temperature change is also reducing the water holding capacity of frozen reservoirs. Furthermore, higher rates of evaporation and evapotranspiration are not allowing the already scant rainfall to fully compensate the water cycle. This has further exacerbated water scarcity.

Seasonal precipitation patterns are also changing, with drier conditions predicted for most of Afghanistan. Southern provinces will be especially affected (Savage et al. 2009).  

Timing of the rainfall is also causing a problem. Rainfall events starting earlier than normal in the winter season are causing faster snowmelt and reduced snowfall.

Together, these factors reduce the amount of accumulated snow and ice lying on the mountains.

Furthermore, shorter bursts of intensified rainfall have increased incidence of flooding with overflowing riverbanks and sheet flow damaging crops and the overall resilience of agricultural sector. On the other end of the spectrum, Afghanistan is also likely to experience worsening droughts. These climate related challenges have and will continue to impact precipitation, water storage and flow.

Floods and other extreme weather events are causing damage to economic assets as well as homes and community buildings.

Droughts are resulting in losses suffered by farmers through reduced crop yields as well as to pastoralists through livestock deaths from insufficient supplies of water, forage on pastures and supplementary fodder.

In its design and implementation, the project addresses the following key barriers to climate change adaptation:

Barrier 1: Existing development plans and actions at community level do not sufficiently take into consideration and address impacts of climate change on current and future livelihood needs. This is caused by a lack of specific capacity at national and subnational level to support communities with specific advice on how to assess climate change risk and vulnerabilities and address these at local level planning. Communities and their representative bodies also lack awareness about ongoing and projected climate change and its impact on their particular livelihoods. Also risks and resource limitations, which are not related to climate change, are not always understood at all levels; and subsequently they cannot be addressed. This is connected with an insufficient understanding within the communities of the risks affecting their current and future livelihoods, including gender- and age-specific risks. As a result, climate change-related risks and issues are not sufficiently addressed by area-specific solutions for adaptation and risk mitigation in community as well as sub-national and national planning.

Barrier 2: Limited knowledge of climate-resilient water infrastructure design and climate-related livelihood support (technical capacity barrier): Entities at national and sub-national levels have insufficient institutional and human resource capacities related to water infrastructure design and climate-related livelihoods support. Given that the main adverse impact of climate change in Afghanistan is increased rainfall variability and overall aridity, the inability to master climate-resilient water harvest techniques and manage infrastructure contributes significantly to Afghanistan’s vulnerability.

Barrier 3: Limited availability and use of information on adaptation options (Information and coordination barrier): At the community level, there are a limited number of adaptation examples to provide demonstrable evidence of the benefits of improving climate resilience. At the same time, there is limited information about alternative livelihood options, rights and entitlements, new agricultural methods, and credit programs that have worked to reduce the vulnerability to climate change.

Barrier 4: Limited capacity in the forest department, lack of forest inventories, geo-spatial data and mapping are preventing adequate management of forest ecosystems. The predicted impact of projected climate change on forests and rangelands as well as the adaptation potential of these ecosystems are insufficiently assessed. This causes a lack of climate smart forest management, an unregulated and unsustainable exploitation of forests by local people and outsiders, leading to forest and rangeland degradation, which is accelerated by climate change and therefore limits their ecosystem services for vulnerable local communities.

Expected Key Results and Outputs: 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Output 1.1 Gender-sensitive climate change risk and vulnerability assessments introduced to identify and integrate gender responsive risk reduction solutions into community and sub-national climate change adaptation planning and budgeting

Output 1.2 All targeted communities are trained to assess climate risks, plan for and implement adaptation measures

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Output 2.1 Scalable approaches for restoration of lands affected by climate change driven desertification and/ or erosion introduced in pilot areas.

Output 2.2 Small-scale rural water infrastructure and new water technologies introduced at community level.

Output 2.3 Climate resilient and diverse livelihoods established through introduction of technologies, training of local women and men and assistance in understanding of and access to markets and payment instruments.

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Output 3.1 Provincial forest maps and information management system established and maintained

Output 3.2 Provincial climate-smart forest management plans developed

Output 3.3 Community based forestry established and contributing to climate change resilient forest management

Component 4: Knowledge management and M&E

Output 4.1 A local level participatory M&E System for monitoring of community-based interventions on the ground designed.

Output 4.2. Improved adaptive management through enhanced information and knowledge sharing and effective M&E System

Monitoring & Evaluation: 

Under Component 4, the project will establish a local-level participatory M&E system for monitoring community-based interventions on the ground, while improving adaptive management through enhanced information and knowledge-sharing.

A national resource center for Sustainable Land Management and Sustainable Forest Management will be established.

A local-level, participatory M&E system for monitoring of Sustainable Land Management and Sustainable Forest Management will be designed.

Participatory M&E of rangeland and forest conditions – including biodiversity conservation and carbon sequestration – will be undertaken.

Best-practice guidelines on rangeland and forest restoration and management will be developed and disseminated.

Lessons learned on Sustainable Land Management and Sustainable Forest Management practices in Nuristan, Kunar, Badghis, Uruzgan, Ghazni and Bamyan provinces will be collated and disseminated nationwide.

Annual monitoring and reporting, as well as independent mid-term review of the project and terminal evaluation, will be conducted in line with UNDP and Global Environment Facility requirements.

Contacts: 
UNDP
Karma Lodey Rapten
Regional Technical Specialist, Climate Change Adaptation
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1:  Capacities of national and sub-national governments and communities are strengthened to address climate change impacts.

Component 2: Restoration of degraded land and climate-resilient livelihood interventions

Component 3: Natural forests sustainably managed and new forest areas established by reforestation

Component 4: Knowledge management and M&E

 

Project Dates: 
2021 to 2026
Timeline: 
Month-Year: 
Nov 2020
Description: 
PIF and Project Preparation Grant approved by GEF
Proj_PIMS_id: 
6406
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Improving Adaptive Capacity and Risk Management of Rural Communities in Mongolia

With an observed temperature increase of 2.1°C over the past 70 years , Mongolia is among the countries most impacted by climate change. Increased temperatures, coupled with decreased precipitation, have resulted in a drying trend impacting pastures and water sources, and shifting natural zones. Changes have also been observed related to the frequency and intensity of extreme events, including disasters brought about by dzud (summer drought followed by harsh winters), drought, snow and dust storms, flash floods and both cold and heat waves.

Responses to climate impacts by herders have not been informed by climate information or by the potential impact of those responses on land and water resources. Unsustainable herding practices and livestock numbers are further stressing increasingly fragile ecosystems and related ecosystem services.

Livestock productivity and quality has been declining in the changing landscape due to drought conditions, heat stress, harsh winters and unsustainable practices, resulting also in reductions in outputs for subsistence and important income sources. Studies indicate that livestock sector production decreased by 26 percent compared to that of the 1980s, along with its contribution to the country’s economy.

Herder households make up one third of the population in Mongolia, approximately 160,000 households or 90 percent of the agriculture sector. Around 85 percent of all provincial economies in are agriculture-based.  While herder households are the most exposed to climate risks, their scale and thus potential impact also means that tailored interventions can support transformational change towards more climate-informed and sustainable herder practices, benefitting the sector, the economy and the environment.

Led by the Ministry of Environment and Tourism, with the Ministry of Agriculture and Light Industry as a key partner, this 7-year project project, seeks to strengthen the resilience of resource-dependent herder communities in four aimags (provinces) vulnerable to climate change: Khovd, Zavkhan, Dornod and Sukhbaatar, thus covering steppe, desert steppe, mountain, mountain steppe and forest steppe zones. 

With funding from the Green Climate Fund, the UNDP-supported project focuses on three complementary outputs:

  • Integrating climate information into land and water use planning at the national and sub-national levels
  • Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management
  • Building herder capacity to access markets for sustainably sourced, climate-resilient livestock products

 

It is expected to contribute to several Sustainable Development Goals: SDG1 No Poverty, SDG12 Responsible Consumption and Production, SDG13 Climate Action, SDG15 Life on Land and SDG17 Partnerships for the Goals.

English
Photos: 
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (105.11718747398 46.867702730128)
Primary Beneficiaries: 
The direct beneficiaries of the project will be 26,000 herder households (130,000 people) in the four target aimags. As Output 1 national policy, indirect beneficiaries include all 160,000 herder households (800,000 people). The project will directly benefit 4.5% of the Mongolian population and indirectly 26%.
Funding Source: 
Financing Amount: 
US$23,101,276 GCF grant
Co-Financing Total: 
Co-financing of US$56,200,000 from the Government of Mongolia including $20,000,000 from the Ministry of Environment and Tourism | $3,000,000 from the National Emergency Management Agency | + $33,200,000 Ministry of Food, Agriculture and Light Industry
Project Details: 

With the objective of strengthening the resilience of resource-dependent herder communities in four aimags vulnerable to climate change, this project seeks an integrated approach to address climate change impacts on herder livelihoods and on the natural resources on which they rely. 

This requires strengthening capacity to generate climate models for longer term climate resilient planning, while reconciling the ambitious economic development goals of livestock sector with the limits of increasingly fragile land and water sources due to climate change.

To do this, the project complements significant investment from the Government of Mongolia related to the livestock sector and natural resources management, while addressing key barriers through strengthening the computing and capacity needs for long term climate-informed planning, investments in water access points, and support to the policy transformations needed to remove incentives for maladaptive herder practices.  

The project will strengthen capacity of the National Agency for Meteorology and Environmental Monitoring (NAMEM) to collect and analyze the data necessary for climate-informed planning. 

This will include investments to computing equipment and data storage, as well as technical training to enable climate-informed and risk-informed livestock planning.  Support will also be provided to integrate climate change into aimag and soum level development plans to ensure that local planning considers climate change in regards to carrying capacity of land resources and guidance to herders on Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans

The project will apply Ecosystem-based Adaptation (EbA) measures to protect land and natural water resources, while also establishing or rehabilitating water wells for livestock.

Using community-based resources management, herders will coordinate on rotational pastures and sustainable use of water resources, as well as establishing means of maintaining EbA results and water well investments.  This will relieve pressure on rivers, streams and ponds as well as on over-utilized pastures which are increasingly fragile due to climate change.

Support to haymaking and pasture reserves, and related storage, will ensure livestock are better able to survive increasingly harsh winters, and losses to subsistence herders are reduced. Stronger and healthier animals are not only able to survive the harsh climatic events (i.e. dzud) but also are less likely to be affected by outbreak of infectious diseases. 

The project will also support the planned policy transformations under the National Mongolian Livestock Programme, by ensuring that changes are informed by climate risk. 

Analytical products will be developed to inform related programmes, such as government investments in livestock commodities development and dzud relief programmes to ensure that support does not inadvertently incentivize growing livestock numbers against land and water resources which are increasingly drying due to climate change. 

The project will also identify public-private-community partnerships for sustainably-sourced, climate-resilient livestock products; and in association with this, support the establishment and training of Herder Producer Organizations (or cooperatives) with support to include general business and market specific training in production, post-harvest processing, post-harvest value addition and on-site storage specific to the commodity value chain.

For more project details, please refer to the project Funding Proposal.

Expected Key Results and Outputs: 

Output 1: Integrate climate information into land and water use planning at the national and sub-national levels

Activity 1.1. Enhance technical capacity for long-term climate resilient development planning, and medium-term response planning capacity

Activity 1.2. Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans (incl. Integrated River Basin Management Plans (IRBMP))

Activity 1.3. Analytical products to support policy and regulatory transformation promoting sustainable land and water management and resilient herder livelihoods

Output 2: Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management

Activity 2.1. Enhance cooperation among herders on sustainable use and stewardship of shared land and water resources (formalized through Resource User Agreements)

Activity 2.2. Reforestation of critical catchment areas to protect water resources and ecosystem services

Activity 2.3. Establish haymaking and pasture reserve areas, and emergency fodder storage facilities to reduce volatility to livelihoods related to climate change induced extreme events

Activity 2.4. Improve water access through protection of natural springs, construction of new water wells, rehabilitation of existing wells and water harvesting measures

Output 3:  Build herder capacity to access markets for sustainably sourced, climate-resilient livestock products

Activity 3.1. Identify public-private-community partnership for sustainably sourced climate resilient livestock products

Activity 3.2. Establishment and training of Herder Producer Organizations (or cooperatives)   

Activity 3.3. Improve traceability for sustainably sourced, climate resilient livestock products

Activity 3.4. Generation and dissemination of knowledge products to support private-sector engagement and herder enfranchisement in climate-resilient and sustainable production in Mongolia

 

Monitoring & Evaluation: 

UNDP will perform monitoring, evaluation and reporting throughout the reporting period, in compliance with the UNDP POPP, the UNDP Evaluation Policy.

The primary responsibility for day-today project monitoring and implementation rests with the Project Manager.  UNDP’s Country Office will support the Project Manager as needed, including through annual supervision missions.

Key reports include annual performance reports (APR) for each year of project implementation; an independent mid-term review (MTR); and an independent terminal evaluation (TE) no later than three months prior to operational closure of the project.

An impact evaluation (within the project duration) will also be designed and conducted under Output 3, to assess project interventions. Results will be documented and used to inform implementation, as well as further programming. The evaluation will also contribute to the evidence base related to interventions to address climate challenges on land and water resources and climate-sensitive herder households. 

The final project APR along with the terminal evaluation report and corresponding management response will serve as the final project report package and will be made available to the public on UNDP’s Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure in order to support ex-post evaluations.

Contacts: 
UNDP
Mariana Simões
Regional Technical Specialist for Climate Change Adaptation, UNDP
UNDP
Bunchingiv Bazartseren
Programme Analyst, Climate Change, UNDP Mongolia
Climate-Related Hazards Addressed: 
Location: 
Programme Meetings and Workshops: 

Inception workshop 2021, TBC

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Integrate climate information into land and water use planning at the national and sub-national levels

Activity 1.1. Enhance technical capacity for long-term climate resilient development planning, and medium-term response planning capacity

Activity 1.2. Integration of climate change and climate-informed carrying capacity into aimag and soum level development plans (incl. Integrated River Basin Management Plans (IRBMP))

Activity 1.3. Analytical products to support policy and regulatory transformation promoting sustainable land and water management and resilient herder livelihoods

Output 2: Scaling up climate-resilient water and soil management practices for enhanced small scale herder resource management

Activity 2.1. Enhance cooperation among herders on sustainable use and stewardship of shared land and water resources (formalized through Resource User Agreements)

Activity 2.2. Reforestation of critical catchment areas to protect water resources and ecosystem services

Activity 2.3. Establish haymaking and pasture reserve areas, and emergency fodder storage facilities to reduce volatility to livelihoods related to climate change induced extreme events

Activity 2.4. Improve water access through protection of natural springs, construction of new water wells, rehabilitation of existing wells and water harvesting measures

Output 3:  Build herder capacity to access markets for sustainably sourced, climate-resilient livestock products

Activity 3.1. Identify public-private-community partnership for sustainably sourced climate resilient livestock products

Activity 3.2. Establishment and training of Herder Producer Organizations (or cooperatives)   

Activity 3.3. Improve traceability for sustainably sourced, climate resilient livestock products

Activity 3.4. Generation and dissemination of knowledge products to support private-sector engagement and herder enfranchisement in climate-resilient and sustainable production in Mongolia

Project Dates: 
2021 to 2028
Timeline: 
Month-Year: 
November 2020
Description: 
GCF Board approval
Proj_PIMS_id: 
5873
SDGs: 
SDG 1 - No Poverty
SDG 12 - Responsible Consumption and Production
SDG 13 - Climate Action
SDG 15 - Life On Land
SDG 17 - Partnerships for the Goals

Integrated Water Resource Management and Ecosystem-based Adaptation in the Xe Bang Hieng river basin and Luang Prabang city, Lao PDR

Lao PDR is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

Increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase with climate change.

Led by the Government of Lao PDR with support from the UN Development Programme, this proposed 4-year project will increase the resilience of communities in two particularly vulnerable areas – Xe Bang Hieng river basin in Savannakhet Province and the city of Luang Prabang – through:

  • Strengthened national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction;
  • Ecosystem-based Adaptation (EbA) interventions with supporting protective infrastructure and enhanced livelihood options;
  • Community engagement and awareness-raising around climate change and adaptation opportunities, as well as knowledge-sharing within and outside Lao PDR; and
  • The introduction of community-based water resource and ecological monitoring systems in the Xe Bang Hieng river basin.
English
Region/Country: 
Level of Intervention: 
Primary Beneficiaries: 
The proposed project will directly benefit 492,462 people (including 247,991 women) by increasing the climate resilience of communities in nine districts in Savannakhet Province, as well as the city of Luang Prabang, through facilitating the adoption of ICM at the provincial and national level and urban EbA at the local level. Government ministries at central and provincial levels will also benefit from capacity-building; development of relevant plans; technical support; coordination; and mobilisation of human and financial resources.
Financing Amount: 
GEF-Least Developed Countries Fund: US$6,000,000
Co-Financing Total: 
Government of Lao PDR: $19,500,000 (in-kind) | UNDP: $300,000 (in-kind) + $200,000 (grant)
Project Details: 

General context

The Lao People’s Democratic Republic is a landlocked Least Developed Country in Southeast Asia. It has a population of ~7.1 million people and lies in the lower basin of the Mekong River, which forms most of the country’s western border with Thailand.

Its GDP has grown at more than 6% per year for most of the last two decades and reached ~US$ 18 billion in 2018 (~US$ 2,500 per capita). Much of this economic growth has been dependent on natural resources, which has placed increasing pressure on the environment. Agriculture accounts for ~30% of the country’s GDP and supports the livelihoods of 70–80% of the population.

Impacts of climate change

The country is vulnerable to severe flooding, often associated with tropical storms and typhoons, as well as to drought.

In 2018, for example, floods across the country resulted in ~US$ 370 million (~2% of GDP) in loss and damage, with agriculture and transport the two most affected sectors.  Floods in 2019 — the worst in 4 decades — affected 45 districts and ~768,000 people country-wide floods, resulting in US$162 million in costs.

An increase in the frequency of these climate hazards, including floods and droughts, has been observed since the 1960s, as well as an increase in the average area affected by a single flood.

Following the floods, the Government identified several priorities for responding to flood risk in the country, including:

  1. Improving flood and climate monitoring and early warning systems;
  2. Public awareness raising to respond to disasters and climate change;
  3. Building resilience at community level; iv) improved risk and vulnerability mapping; and
  4. Strengthening the capacity of government at the provincial, district and community level for better climate change-induced disaster response.

 

In addition, average increases in temperature of up to 0.05°C per year were observed in the period between 1970 and 2010. These trends are expected to continue, with long-term climate modelling projecting: i) an increase in temperature between 1.4°C and 4.3°C by 2100; ii) an increase in the number of days classified as “Hot”; iii) an increase of 10–30% in mean annual rainfall, particularly in the southern and eastern parts of the country and concentrated in the wet season (June to September); iv) an increase in the number of days with more than 50 mm of rain; v) a 30–60% increase in the amount of rain falling on very wet days; and vi) changing rainfall seasonality resulting in a longer dry season.

The increases in temperature and the length of the dry season are expected to increase the severity of droughts and increase water stress, particularly in cultivated areas. The frequency and intensity of floods are also likely to increase as a result of the projected increase in extreme rainfall events — associated with changes iv) and v) described above.

About the project under development

The proposed project focuses on strengthening integrated catchment management (ICM) and integrated urban flood management within the Xe Bang Hieng river basin in Savannakhet Province – a major rice-producing area and particularly important for the country’s food security, as well as one of the areas in the country which is most vulnerable to droughts and experienced severe flooding in 2017, 2018 and 2019 – and the city of Luang Prabang – one of the cities in Lao PDR which is most vulnerable to flooding, as well as being an important cultural heritage site – for increased climate resilience of rural and urban communities.

The approach will ensure that water resources and flood risks are managed in an integrated manner, considering the spatial interlinkages and dependencies between land use, ecosystem health and underlying causes of vulnerability to climate change.

The protection and restoration of important ecosystems will be undertaken to improve the provision of ecosystem goods and services and reduce the risk of droughts, floods and their impacts on local communities, thereby increasing their resilience to the impacts of climate change.

Improved hydrological and climate risk modelling and information systems will inform flood management as well as adaptation planning in the Xe Bang Hieng river basin and Luang Prabang. This information will be made accessible to national and provincial decision-makers as well as local stakeholders who will be trained to use it.

Using the ICM and integrated urban flood management approaches and based on integrated adaptation planning, on-the-ground interventions to improve water resource management and reduce vulnerability to floods and droughts will be undertaken, including ecosystem-based adaptation (EbA).

These interventions will be complemented by capacity development and awareness raising as well as support for rural communities to adopt climate-resilient livelihood strategies and climate-smart agricultural practices.

Addressing gender equality

The proposed project will promote gender equality, women’s rights and the empowerment of women in several ways.

First, the proposed activities have been designed taking into account that in Lao PDR: i) women’s household roles should be considered in any interventions concerning natural resource management, land-use planning and decision-making; ii) conservation incentives differ for men and women; iii) gendered division of labour needs to be understood prior to the introduction of any livelihood interventions; and iv) women need to have access to, and control over, ecosystem goods and services.

Second, an understanding of gender mainstreaming in relevant sectors and associated ministries will be developed, and gaps in gender equality will be identified and addressed in all aspects of project design.

Third, women (and other vulnerable groups) will be actively involved in identifying environmentally sustainable activities and interventions that will support them in safeguarding natural resources and promoting their economic development, with specific strategies being developed to target and include female-headed households. To ensure that the project activities are both gender-responsive and designed in a gender-sensitive manner, a gender action plan will be developed during the project preparation phase.

Expected Key Results and Outputs: 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

 

Monitoring & Evaluation: 

The overall monitoring and evaluation of the proposed project will be overseen by the Department of Planning under the Ministry of Planning and Investments, which carries out M&E for all planning processes in the country.

Contacts: 
Ms. Keti Chachibaia
Regional Technical Advisor for Climate Change Adaptation, UNDP
Climate-Related Hazards Addressed: 
Location: 
Project Status: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Component 1: Developing national and provincial capacities for Integrated Catchment Management and integrated urban Ecosystem-based Adaptation for climate risk reduction

Outcome 1.1: Enhanced capacity for climate risk modelling and integrated planning in the Xe Bang Hieng river basin and Luang Prabang urban area

Output 1.1.1: Central and Provincial training program implemented to enable climate risk-informed water management practices in target urban and rural areas

Output 1.1.2: Current and future zones of the Xe Bang Hieng River catchment at risk of climate change-induced flooding and drought mapped, based on hydrological models produced and protective infrastructure optioneering conducted

Output 1.1.3. Economic valuation of urban ecosystem services in Luang Prabang and protective options conducted.

Outcome 1.2: Alignment of policy frameworks and plans for land and risk management to support long-term climate resilience

Output 1.2.1: Fine-scale climate-resilient development and land-use plans drafted and validated for Luang Prabang and in the headwater and lowland areas of the Xe Bang Hieng and Xe Champone rivers.

Output 1.2.2: Current Xe Bang Hieng river basin hydrological monitoring network — including village weather stations — assessed and updated to improve efficiency.

Output 1.2.3: Early-warning systems and emergency procedures of vulnerable Xe Bang Hieng catchment communities (identified under Output 1.1.2) reviewed and revised

Component 2: Ecosystem-based Adaptation (EbA) interventions, with supporting protective infrastructure, and livelihood enhancement

Outcome 2.1: Ecosystems restored and protected to improve climate resilience in headwater areas through conservation zone management

Output 2.1.1:  Xe Bang Hieng headwater conservation zones restored to ensure ecological integrity is improved for delivery of ecosystem services

Output 2.1.2: Headwater conservation zone management supported to improve resilience to climate change

Outcome 2.2: EbA interventions supported/complemented with innovative tools, technologies and protective infrastructure

Output 2.2.1: Protective infrastructure constructed to reduce flood (cascading weirs and drainage channels) and drought (reservoir networks and rainwater harvesting) risk

Output 2.2.2: Implementation and distribution of communication and knowledge management tools and technologies (e.g. mobile phone apps, community radio) to increase climate resilience of agricultural communities to floods and droughts

Outcome 2.3: Climate-resilient and alternative livelihoods in headwater and lowland communities, supported through Community Conservation Agreements

Output 2.3.1: Market analysis conducted, including; i) analysing supply chains for climate-resilient crops, livestock, and farming inputs; ii) assessing economic impacts and market barriers; and iii) drafting mitigating strategies to address these barriers.

Output 2.3.2: Community Conservation Agreements process undertaken to encourage climate-resilient agriculture, fisheries, and forestry/forest-driven livelihoods and practices

Output 2.3.3: Diversified activities and opportunities introduced through Community Conservation Agreements (developed under Output 2.3.2) in agriculture (livestock and crops, including vegetable farming) as well as fisheries, non-timber forest products (NTFP), and other off-farm livelihoods.

Component 3: Knowledge management and monitoring, evaluation and learning 

Outcome 3.1: Increased awareness of climate change impacts and adaptation opportunities in target rural and urban communities

Output 3.1.1: Training and awareness raising provided to Xe Bang Hieng and Xe Champone headwater and lowland communities on: i) climate change impacts on agricultural production and socio-economic conditions; and ii) community-based adaptation opportunities and strategies (e.g. water resources management, agroforestry, conservation agriculture, alternatives to swiddening ) and their benefits

Output 3.1.2: Project lessons shared within Lao PDR and via South-South exchanges on  strengthening climate resilience with regards to: i) catchment management; ii) flash flood management; and iii) EbA.

Output 3.1.2: Awareness-raising campaign conducted in Luang Prabang for communities and the private sector on urban EbA and flood management.

Outcome 3.2: Community-based water resource and ecological monitoring systems in place

Output 3.2.1: Community-based monitoring systems developed and implemented to measure changes in key ecological determinants of ecosystem health and resilience in the Xe Bang Hieng river basin

Project Dates: 
2020
Proj_PIMS_id: 
6547
SDGs: 
SDG 1 - No Poverty
SDG 2 - Zero Hunger
SDG 5 - Gender Equality
SDG 8 - Decent Work and Economic Growth
SDG 11 - Sustainable Cities and Communities
SDG 13 - Climate Action
SDG 15 - Life On Land

Enhancing the resilience of vulnerable coastal communities in Sinoe County of Liberia

Liberia faces severe development challenges. Climate change, coastal erosion, rising seas and degraded ecosystems are exacerbating risks for communities living on Liberia's coast, derailing efforts to reach the Sustainable Development Goals and reach targets outlined in the country's Nationally Determined Contribution to the Paris Agreement.

Nearly 58 percent of Liberia’s 4 million people live within 40 miles of the coast, putting extensive pressure on coastal ecosystems for food, land, mineral extraction and other resources. This has resulted in habitat loss and degradation. Liberia is a least developed country that has recently emerged from an extended period of civil war. An estimated 64 percent of Liberians live below the poverty line, with 1.3 million living in extreme poverty. Food insecurity affects 41 percent of the population and chronic malnutrition is high. The country has also been afflicted by the outbreak of the Ebola Virus disease and COVID-19 pandemic. The economy, though recovering, is still unable to generate the large-scale employment opportunities essential for absorbing a large pool of unemployed and underemployed young men and women, and the majority of the country’s population is directly dependent on natural resources for their livelihoods.

The 'Enhancing the resilience of vulnerable coastal communities in Sinoe County of Liberia' project builds on previous and ongoing climate resilience projects to localize climate change adaptation actions. The project supports the resilience of 80,000 beneficiaries in coastal communities and will protect, restore and rehabilitate 20,000 hectares of degraded coastal habitats. In developing small, micro, and medium enterprises, the project supports business development and training programmes for 70,000 beneficiaries, with targeted approaches for women and youth. The project also targets 30,000 beneficiaries who will benefit from integrated farming systems, fisheries and compressed stabilized 'earth blocks' and their value chains. 

The project works toward transformational change by moving away from a 'business-as-usual' model to an integrated approach that combines nature-based interventions, hard infrastructure, gender-responsive approaches, capacity, policy, knowledge and information and observational management systems. It enhances coastal resilience to storms, coastal erosion and flooding risks while supporting a range of ecosystem service benefits to support livelihood security and overall climate resilience. These supports will benefit other coastal counties around the country in sea and river defense risk management as well as support for climate adaptation livelihood opportunities.

In building livelihoods and working toward the Sustainable Development Goals, the project enhances entrepreneurial initiatives that build climate resilience, especially those in other value chains such as fisheries and fuelwood, to open up opportunities for women's involvement. At the local level, new technologies in combination with traditional technologies are promoted through the project to ensure that productivity and sustainability of livelihoods are maintained. These adaptation actions and associated technologies or practices will build on the natural resilience and innovativeness of Liberian communities to build their self-reliance and capacity to continue the adaptive process iteratively. Adaptation strategies such as coastal ecosystem-based adaptation solutions, participatory sea and river defense planning approaches, climate-smart integrated farming systems, coastal protected area establishment and diversification of livelihood options will be delivered in combination.

English
Region/Country: 
Coordinates: 
POINT (-9.0856933792992 5.1270550738052)
Financing Amount: 
US$8,932,420
Co-Financing Total: 
US$53,700,000
Project Details: 

The Republic of Liberia has a 565-km-long coastline and claims an economic zone of 13 nautical miles and a territorial zone of 370 km. About 90 percent of the coastline consists of a narrow sand beach 20-25 meters wide, reaching 60-80 meters in some parts of southeastern Liberia, interspersed with lagoons. The coastal area consists of swamp-related vegetation, including mangroves forests and reeds that extend up to 25 miles inland. Mangroves provide important breeding and nursery areas for many West African marine species of fish, crab, shrimp and mollusks and hence deforestation of mangroves is having a direct impact on fish stock.

The country is faced with continued severe development challenges. Nearly 58 percent of Liberia’s 4 million people live within 40 miles of the coast, which puts extensive pressure on coastal ecosystems for food, land, mineral extraction and other resources, resulting in habitat loss and degradation. Populations continue to grow, and new infrastructure (e.g. roads and housing), while desperately needed, will only add additional pressure and increase ecosystem degradation.

Liberia is a least developed country that has recently emerged from an extended period of civil war. It has struggled through two civil wars, one from 1989-1996 and the second from 1999-2003. An estimated 64 percent of Liberians live below the poverty line, of whom 1.3 million live in extreme poverty. Food insecurity affects 41 percent of the population and chronic malnutrition is high. Many people were displaced from their homes during the war and have only recently returned. The war had a devastating impact on the country’s health and education systems and a large portion of the population is illiterate. The country has also been afflicted by the outbreak of the Ebola Virus disease. The economy, though recovering, is still unable to generate the large-scale employment opportunities essential for absorbing a large pool of unemployed and underemployed young men and women. The majority of the country’s population is directly dependent on natural resources for their livelihoods.

Climate projections show a slight increase of total precipitation and a longer Sahelian rainy season (2–3 days per decade) with drier phases within.  In a “business as usual” world, most countries in West Africa will have to cope with less predictable rainy seasons, generalized torrid, arid and semi-arid conditions, longer dry spells and more intense extreme precipitations resulting in flash floods. Such conditions can produce significant stresses on agricultural activities, water resources management, ecosystem services, urban areas planning and coastal processes. Liberia is vulnerable to the impacts of climate variability and change, such as warmer temperatures, changes in precipitation patterns, particularly, increases in the frequency of extreme rainfall events. These climate change impacts present challenges to the country’s socio-economic development. The best estimate of the impact of future climate conditions on temperature is provided by the overall ensemble mean of 16 climate models across 3 emission scenarios which suggests that Monrovia will warm by 1.92°C by 2050 and 2.65°C by 2080 during the dry season (1.61°C by 2050 and 2.60°C by 2080 during the wet season). Regardless of emission scenario, the Atmosphere-Ocean Global Climate Models (AOGCMs) are quite consistent in predicting warmer conditions throughout all of Liberia. Projected precipitation changes in Monrovia range from 36 percent decreases to 21 percent increases in wet season rainfall. The overall ensemble prediction across emission scenarios gives a slight increase in wet season rainfall of 1.54 percent by 2050 and 1.92 percent by 2080. The increased rainfall appears to occur mostly during the early months of the rainy season, beginning in the southeast in May and extending west along the coast in June and July, implying more intense rainfall events (Stanturf et al. 2013). General trends of projected temperature and precipitation changes for 2050 and 2080 are into direction for a warmer and wetter climate in most of the country and especially in the coastal zone.

About 90 percent of Liberia’s coastline consists of a narrow sand beach 20-30 meters wide, reaching 60-80 meters in some parts of eastern Liberia. Climate projections under Representative Concentration Pathway (RCP) 8.5 predict a sea-level rise (SLR) of 75 cm by 2100 along Liberia’s coast, as well as an increase in the frequency of high-intensity storms resulting in an increased offshore significant wave height. The combined effect of these climate impacts will rapidly increase the rate of beach and coastal erosion, storm surge inundation and coastal/fluvial flooding in Sinoe County, threatening local populations and coastal infrastructure. The climate at Sinoe County is similar to most of southern Liberia, which is strongly influenced by the coastal zone, which gives rise to wet and dry seasons. The long wet season usually runs from April to October and the dry season from October to April when ±90 percent of the rainfall occurs. Climate change will impact vulnerable coastal communities in Liberia through: i) degradation of the mangrove ecosystems on which their livelihoods and food security depend ; and ii) inundation of vital infrastructure such as boat-launch sites, dwellings and socio-economic spaces and amenities such as fish markets.

The coastal hazards in Liberia can be generalized by change in two major aspects: change in water level and change in land area. The change in water level can be due to sea/wave action, local tidal variations, current patterns, flooding from rivers and/or combination of those. The change in land area can be due to erosion (or accretion) in the coastal area. These factors lead to a situation where the coastal area is prone to hazards like flooding and erosion. The coast is exposed and dominated, throughout the year, by consistent patterns of long period low to moderate energy swell waves originating from storms a long distance away in the Atlantic Ocean. Therefore, swell waves, with longer periods, can pack a lot more energy than locally generated waves.

About 17 percent of the coastal area is built-up area, under plantation or under some sort of agriculture - all three categories specifically having extremely low resilience. Similarly, great proportion, about 62 percent, of the coastal area is under some type of economically and biodiversity valuable forests and mangroves (with highly valuable ecosystem services) and thus raising the overall vulnerability of the coastal region to a medium range.

Liberia experiences continuous hazard danger coastal area with unfavourable geomorphology and exposure to unobstructed forces of Atlantic Ocean swell waves. Each of the coastal counties has a history of recurring natural hazards. Coastal districts towns are often exposed to flooding and erosion has already swept large number of houses through the years and along the entire coast of Liberia. Along with reviewing Liberia’s disaster profile, understanding the management of risks at national and county level turn out to be obligatory. Recent natural climatic events in Liberia and the increased frequency and magnitude of hazards such as floods and sea erosion have given the impetus for a National Disaster Risk Management Policy for Liberia (2012). This impetus is also driven by a need to reduce the risks related to these hazards as a result of high vulnerability from over fourteen years of war, poverty and low human and physical capacity. Additionally, the risk of economic, social and environmental losses is high, also given the high pressure on resources in areas with a high concentration of population. The coastal areas of Liberia are therefore particularly vulnerable to climate change and its effect on the coast is now becoming clearly evident. This vulnerability is increased where communities are located close to river flood hazard areas (river mouths, swamp areas or wetlands) in light of increasing precipitation predictions for the country coupled with poor land drainage strategies.

Almost 90 percent of the national population is living at risk of flooding from the sea, river system, swampland and clogged drains. In fact, as stated within the National Disaster Risk Management Policy (2012), in 2007, floods affected over 22,000 people in Liberia with the majority or those affected living in the coastal zone or close to the mouths of rivers (estuary areas). More recently, and according to National Disaster Management Agency (NDMA), 2019 floods are reportedly affecting 8,000 people in three coastal counties (including Sinoe County) which increased to 60, 000 people in July 2019.

One of the most serious threats to the coastline and marine environment are solid waste, beach sand mining (unregulated sand mining is causing slight embayment of the shoreline due to localized recession) and beach erosion (causing shoreline recession in some cities such as Greenville in Sinoe County). The continuing pressures of high population densities, poor resource extraction techniques and rapid economic development in or near pristine and vulnerable areas, are further degrading natural coastal infrastructure. Added to these threats are climatic pressures, which have emerged as significant and real risks to the integrity and productivity of these coastal ecosystems. Given that many of the ecosystem services that coastal communities rely on also help them to adapt to climate change, it is important to promote resilient coastal ecosystems to reduce climate stresses, especially in countries with high biodiversity and ample vegetation options. There are currently no alternatives on offer to use other sources of sand (except for beach sand) to help the construction industry for coastal communities and to improve farming strategies that diversify crop rotation production, planting regimes and diversity of crop are offered.

Sinoe is one of Liberia's 15 counties, and has been identified as one of the coastal counties most affected by climate change, and thus an adaptation priority for government. Sinoe, unlike many other counties in Liberia, is undergoing significant social, economic and environmental changes. Palm oil and logging operations are increasing in the area. Wages and labour is considerably low in many villages of Sinoe County with some contribution from government civil service, artisanal mining and harvesting of redundant oil palm.

Liberia’s National Biodiversity Strategy and Action Plan, articulates that Greenville, in particular, is experiencing coastal erosion due to uncontrolled exploitation of the natural resources and other human activities. These pressures are being exacerbated by climate change and in particular the increasing risk of increasing rainfall precipitation coupled with poor land management practices.

Project overview

Building on previous and on-going projects, particularly the GCF-funded project “Advance the NAPs process for medium term investment planning in climate-sensitive sectors (i.e. agriculture, energy, waste management, forestry and health) and coastal areas in Liberia” this project will localize climate change adaptation action and policy at the level in coastal counties, with a specific focus on Sinoe County. The project proposed is designed to move away from the “business-as-usual” model of adapting to climate change towards one that is more integrated, with a focus on Sinoe County for a combination of nature-based interventions, hard infrastructure,  capacity, policy, knowledge and information and observational management systems that will benefit other coastal counties around the country on sea and river defense risk management and supporting climate adaptation livelihood opportunities.

This change is needed as up to now, coastal erosion and flood risk in Liberia has been mostly addressed through the use of standard civil engineering measures (i.e. rockfill revetments and small structures made with timber and old tires). These have worked to a large extent, with effectiveness related to the quality of design and construction. 

A new approach is now however required to resolve these new integrated problems associated with climate change. A combination of tools and approaches are presented within this LDCF-financed project, combining “hybrid” intervention measures (a combination of nature-based, hard and non-structural interventions) with improved policy and regulatory setting, gender responsive livelihood opportunity setting and enhanced capacity development, training and outreach actions to help enhance coastal resilience to storm, coastal erosion and flooding risks whilst supporting a range of ecosystem service benefits. These tools shall be used in combination with landscape management and monitoring systems that provide the environmental and social benefits required to support livelihood security and build climate resilience.

The project will apply integration and innovation approaches to better address climate change risks through sea and river defense management in Liberia. It will also use data generated from, and implement the outcomes of the GCF-funded readiness project which is under implementation in Liberia. The GCF-finaced project will provide critical data on Liberia’s coastal climate risks, hazards and vulnerability as well as adaptation options for different coastal counties. The initiation and implementation of innovative adaptation solutions through sea and river defense planning, adoption of private sector new alternative business models linked to infrastructure techniques for integrated farming practices coupled with encouragement for community entrepreneurship will be considered in the project to reduce climate vulnerability and build resilience. Importantly, the approach shall seek to open the space for other entrepreneurial initiatives that build climate resilience, especially those in other value chains such as fisheries, fuelwood, which will open up opportunities for women’s involvement.

The project will focus on coastal communities within Sinoe County to support integrated coastal adaptation practices for a number of coastal settlements within the County though with the capacity for the project outcomes to benefit other coastal counties in Liberia, while building institutional capacities and policy mainstreaming for Integrated Coastal Zone Management across all coastal counties. The project will therefore seek to empower communities and institutions to better plan and implement coastal adaptation interventions in a deliberate and proactive manner, reducing reliance on the Government of Liberia (GoL) to help provide already scarce resources for climate change adaptation solutions. Building community self-reliance and by providing a community planning focus (with new livelihood alternatives) will enable them to tailor adaptation tools and technologies to their specific needs. It will also build the capacities of the administrations of other coastal counties to design and implement integrated coastal adaptation plans.

At the local level, new technologies in combination with traditional technologies will be promoted to ensure that productivity and sustainability of livelihoods are maintained. These adaptation actions and associated technologies or practices will build on the natural resilience and innovativeness of Liberian communities to build their self-reliance and capacity to continue the adaptive process iteratively. Such adaptation strategies such as coastal ecosystem based adaptation solutions, participatory sea and river defense planning approaches, climate-smart integrated farming systems, coastal protected area establishment and diversification of livelihood options are all in combination critical elements for a long-term adaptation solution in the context of risks and vulnerabilities of Sinoe County. The project shall also seek to learn and upscale some of the well-tested practices that are being undertaken to support community benefit-sharing mechanisms (CBSM) in forest ecosystems for the Production-Protection Approach project of IDH in Sinoe county (2017) which is based on best practices of operational CBSM in Liberia.

Finally, of major concern is the apparent lack of strategic delivery of a sustainable and strategic sea and river defense risk management approach policy to address these concerns. Coastal protection and sea defense structures are currently not planned with regard to their purpose, their outcome and importantly, their long term maintenance costs. Despite the professional efforts of the Ministry of Mines and Energy (MoME) and the Environment Protection Agency (EPA) to address the problems being faced, the approach to shore protection (at present) is reactionary and not anticipatory without long term national planning mechanisms in place.

The preferred solution to the above-mentioned climate hazards is to build long term resilience in coastal Liberia through an integrated approach that involves integration of climate change risks into planning and budgeting, diversifying livelihoods in coastal counties, adopting and financing climate resilient business practices and protecting communities and assets affected by climate hazards such as coastal erosion and flooding. Given the extent of the Liberian coastal zone, an ideal solution would be to create county level and national frameworks that enable and promote investments by a wide variety of actors in the public and private sectors while attending to the immediate needs of the most vulnerable communities.

Given the prioritization of Sinoe county among the different counties, the preferred solution is to: i) protect highly exposed and vulnerable areas of Sinoe County coastline from accelerated coastal erosion, flooding and SLR through the establishment of low impact “hybrid” solutions that embrace the importance of both coastal, estuarine and fluvial systems and associated communities; ii) implement climate-responsive planning through adopting an integrated planning approach in Liberia’s coastal counties; and iii) secure the livelihoods of vulnerable communities who rely on the coastal and riverine areas through the provision of livelihood alternatives that enable them to adapt to climate change and build their resilience (including resource efficient enterprises and technologies such as Compressed Earth Block Stabilisation (CSEB), value chain enhancements,) and through the more effective use of farmlands (Integrated Farming Systems). Due to the complexity of the coastal system (ecological and socio-economic linkages) continuous monitoring, involving affected stakeholders, including local communities, of the short and long term climatic, socio-economic and environmental changes taking place to inform planning is also part of the preferred solution. These will be accomplished by working with public and private sector actors in business and finance (including SMMEs).

Expected Key Results and Outputs: 

Outcome 1: Capacity of all coastal counties’ planning institutions to assess climate change risks and to consider into County Development Agendas strengthened

1.1: County level ICZM Plans prepared for all coastal counties to address climate hazard risks on infrastructure, livelihoods, health, and enable adaptation planning and monitoring, protection and maintenance of sea/river defense.

1.2: Identified climate-related risks and adaptation priorities are incorporated into Coastal County Development Agendas, and incorporated into county and national planning and budgeting processes.

1.3: Cross-sectoral climate change information and risk focal points and working groups established and trained for all coastal counties.

Outcome 2: Innovative technologies to support coastal adaptation introduced, including response planning and communication mechanisms

2.1: Coastal flood and erosion early warning and risk management systems supported to provide climate information, products and services that meet the needs of end-users.

2.2: County level knowledge hubs to collect and disseminate lessons learned on sea and river defense information to support ICZM supported in all coastal counties, based on Sinoe pilot.

2.3: Community Action Plans developed and implemented in all districts of Sinoe County (informed by adaptation options developed under NAPs project, encouraging coastal communities to adopt new practices and adopt new livelihood opportunities to embrace new adaptation to sea level rise risks).

2.4: Guidance manuals for integrated coastal adaptation practices developed and disseminated to all coastal and riverine counties.

Outcome 3: Reduced vulnerability of Sinoe County coastal communities to climate-induced sea level rise impacts through hybrid solutions (nature-based and engineering)

3.1: Viable solutions to address climate vulnerabilities in Sinoe County developed and designed using multi-criteria and processes for identifying, prioritizing and planning adaptation and resilience solutions, in consultation with local stakeholders.

3.2: Coastal and catchment level adaptation solutions implemented to improve resilience of communities to the impacts of climate change in Sinoe County, targeting 80,000 beneficiaries and 20,000 hectares

3.3: Best practices on adaptation solutions documented and disseminated to other coastal counties for adoption and scaling up including through the engagement of private sector.

Outcome 4: Gender-responsive options for climate-resilient income and livelihood diversification introduced to climate-vulnerable communities in coastal counties

4.1: Business identification, development and management training programmes designed and delivered to communities and Small Micro and Medium Enterprises in coastal counties targeting youths and women’s groups targeting 70,000 beneficiaries.

4.2: Integrated Farming Systems, Fisheries and Compressed Stabilized Earth Blocks and their value chains – opportunities for coastal communities are created and implemented targeting 30,000 beneficiaries.

4.3: Access to finance and technologies to develop livelihood and income diversification enterprises of coastal livelihoods and resources facilitated in collaboration with national and county financial institutions.

Contacts: 
Muyeye Chambwera
Regional Technical Advisor
Climate-Related Hazards Addressed: 
Location: 
Display Photo: 
Expected Key Results and Outputs (Summary): 

Outcome 1: Capacity of all coastal counties’ planning institutions to assess climate change risks and to consider into County Development Agendas strengthened

Outcome 2: Innovative technologies to support coastal adaptation introduced, including response planning and communication mechanisms

Outcome 3: Reduced vulnerability of Sinoe County coastal communities to climate-induced sea level rise impacts through hybrid solutions (nature-based and engineering)

Outcome 4: Gender-responsive options for climate-resilient income and livelihood diversification introduced to climate-vulnerable communities in coastal counties

Project Dates: 
2020 to 2027
Timeline: 
Month-Year: 
June 2020
Description: 
PIF Approval
Proj_PIMS_id: 
6470
SDGs: 
SDG 1 - No Poverty
SDG 13 - Climate Action
SDG 14 - Life Below Water
SDG 15 - Life On Land

Strengthening the resilience of smallholder agriculture to climate change-induced water insecurity in the Central Highlands and South-Central Coast regions of Vietnam

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability. Every year the country is affected by a range of hydro-meteorological and climatological hazards, from droughts and forest fires to storms, floods and extreme temperatures.

Small-scale farmers with plots of less than one hectare, who are dependent on one or two rain-fed crops per year, are the most vulnerable to changes in water availability and its effect on agricultural productivity.

This project (2020 - 2026) will empower smallholder farmers in five provinces of the Central Highlands and South-Central Coast regions of Vietnam (Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa) – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

English
Region/Country: 
Level of Intervention: 
Coordinates: 
POINT (105.68847653638 21.135745258119)
Primary Beneficiaries: 
222,412 direct beneficiaries and 335,252 indirect beneficiaries
Funding Source: 
Financing Amount: 
Green Climate Fund: US$ 30,205,367
Co-Financing Total: 
Asian Development Bank: $99,590,000 (loan under WEIDAP project); Government of Viet Nam: $22,060,000 (WEIDAP project); Government of Viet Nam (MARD Central Govt): $ 406,277 (grant); Government of Viet Nam (MARD Central Govt): $77,550 (in-kind); Government
Project Details: 

Viet Nam is particularly vulnerable to climate change and already impacted by more irregular and intense climate variability and change. Every year the country is affected by a range of hydro-meteorological and climatological hazards: droughts and forest fires during January-April; tropical, hail and wind storms; coastal, riverine, and flash floods; heavy rainfall and landslides in June-December and extreme temperatures (cold and heat waves) throughout the year.

Increased exposure of people and economic assets has been the major cause of long-term increases in economic losses from weather- and climate-related disasters.

Changes in precipitation are leading to hotter and wetter wet seasons and hotter and drier dry seasons, resulting in periods of increasing deficits in surface and ground water availability for agricultural production with longer periods of severe water scarcity during the dry season and increased frequency and intensity of droughts.

As a consequence, overall agricultural productivity is falling, with the corresponding declines in yields and incomes particularly harmful to small-scale farmers vulnerable to reduced water availability on rain fed lands and within this group, poor and near- poor, ethnic minority and women farmers. 

Two of the regions most vulnerable to climate risks are the Central Highlands and South-Central Coast.

Agriculture and water resources are the foundation of the livelihoods of about 64% of the people in the Central Highlands, especially ethnic minorities accounting for 36.4 – 39.1% of the region’s population. The Central Highlands are susceptible to changes in water availability in the dry season when there is little rain and low river flow. Only about 27.8% of the region’s agricultural land is irrigated, and farmers are forced to exploit groundwater for irrigation.

The Central Highlands region constitutes Vietnam’s largest perennial crop zone, where smallholders produce coffee, pepper, cashew, rubber, tea, and a variety of fruit, primarily for market. In addition, they produce rice, maize and cassava, chiefly for local consumption, especially by the poorest.

Farmers in the region currently intercrop perennial crops or combinations of perennial and annual crops as a strategy to mitigate the risk of drought and market price fluctuation. However, under increasingly extreme climate change-induced drought, farmers’ coping strategies are progressively less effective. During droughts, groundwater levels can plunge throughout the region from 80-100 m in depth. Many farmers drill three or four wells but are still unable to obtain sufficient water, augmenting their dependence on increasingly variable rainfall. 

Around 48% of the people in the South-Central Coast region of Vietnam rely on agriculture for their livelihoods, with ethnic minorities comprising from 5.7% of the population in Khanh Hoa province to 23.1% in Ninh Thuan. Sufficient, reliable water sources are particularly critical as the South-Central Coast is the driest area of the country with a long dry season, the lowest rainfall, and a relatively small river system. Only around 30% of agricultural land is irrigated, leaving many farmers reliant on rainfall. Under climate change, droughts in the region are becoming more extreme, and it’s anticipated that many of the poor/near-poor are likely to face food insecurity and increasing poverty.

The objective of this project, then, is to empower vulnerable smallholders in five provinces of the Central Highlands and South-Central Coast regions  – particularly women and ethnic minority farmers - to manage increasing climate risks to agricultural production.

To achieve its objective, the project will enable smallholder farmers to adapt to climate-driven rainfall variability and drought through implementation of two linked Outputs integrating GCF and co-financing resources from the Asian Development Bank and the Government of Vietnam: 1) improved access to water for vulnerable smallholder farmers for climate-resilient agricultural production in the face of climate-induced rainfall variability and droughts, and 2) strengthened capacities of smallholder farmers to apply climate and market information, technologies, and practices for climate-resilient water and agricultural management.

While this project will use GCF financing to specifically target ethnic minority, women and other poor/near poor farmers, it will use GCF and co-financing resources to build the capacities of all farmers in climate vulnerable areas; as such the project will reach 222,412 direct individual beneficiaries in the five provinces of Dak Lak, Dak, Nong, Binh Thuan, Ninh Thuan and Khanh Hoa.

The project was developed as part of an integrated programme funded through multiple sources, as envisaged by the Government of Vietnam (GoV), that was aimed at enhancing water security and building the climate change resilience of the agriculture sector focusing on Vietnam’s Central Highland and South-Central Coastal Regions.

In alignment with this programme, the project will enable the GoV to adopt a paradigm shift in the way smallholder agricultural development is envisioned and supported through an integrated approach to agricultural resilience starting with planning for climate risks based on identification and analysis of agroecosystem vulnerabilities; enhancing water security and guaranteeing access; scaling up adoption and application of climate-resilient agricultural practices and cropping systems; and creating partnerships among value chain stakeholders to ensure access to market and credit.

This approach directly addresses climate risks while also establishing or strengthening institutional capacities for long-term multi-stakeholder support to vulnerable smallholders.

The project was designed to achieve smallholder adaptation to climate change in the most vulnerable districts and communes by complementing and enhancing the activities and results of the Water Efficiency Improvement in Drought Affected Provinces – WEIDAP – project for primary irrigation infrastructure financed through a USD 99.59 million loan from the Asian Development Bank, as well as USD 22.06 million from the Government of Vietnam.

GCF funding will be used a) to achieve last mile connections to this infrastructure by poor/near-poor smallholders, with a particular focus on ethnic minority and women farmers; and b) to attain adoption by all farmers in WEIDAP-served areas of climate-resilient agricultural practices, co-development and use of agro-climate information for climate risk management, and multi-stakeholder coordination for climate- resilient value chain development through climate innovation platforms.

This project will advance the implementation of priority activities in Viet Nam’s Nationally Determined Contribution (NDC). These include: support livelihoods and production processes that are appropriate under climate change conditions and are linked to poverty reduction and social justice; implement community-based adaptation, including using indigenous knowledge, prioritizing the most vulnerable communities; implement integrated water resources management and ensure water security; ensure food security through protecting, sustainably maintaining and managing agricultural land; and adopt technology for sustainable agriculture production and the sustainable use of water resources.

Expected Key Results and Outputs: 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

1.1.1 185 km of new pipe systems taking water from canals or reservoirs, and supplying hydrants located at a reasonable distance from a farmer’s field

1.1.2 19,200 ha served through modernization of main system including canal lining, control structure, balancing storage and installation of flow control and measurement devices with remote monitoring

1.1.3 Provision of new and improved weirs replacing farmer constructed temporary weirs, permanent ponds/storage for irrigating HVCs, and upgrades of upstream storage and supply systems.

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

1.2.1 Design and construct 4,765 connection and distribution systems including installation and maintenance of irrigation equipment to cope with climate variability on 1,430 hectares

1.2.2 Train 4,765 poor and near poor farmers (one connection/distribution system per farmer) on climate-risk informed utilization of irrigation equipment and system maintenance

1.2.3 Establish Water Users Groups for O&M of communal or shared systems, including structures and agreements on potential funding mechanisms

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

1.3.1 Construct or upgrade 1,159 climate-resilient ponds (based on site-specific designs construct 675 new ponds and upgrade 484 existing ponds)

1.3.2 Train over 16,000 poor and near-poor farmer beneficiaries in climate- resilient water resource management to enhance supply

1.3.3 Establish 185 pond- management groups for O&M, including structures and agreements on potential funding mechanisms

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

1.4.1 Train 30 DARD staff and champion farmers in 14 districts (one course in years 2, 4 and 6) to support farmers’ groups in co-design, costing and O&M of climate-resilient, water efficient technologies

1.4.2 Train over 21,200 farmers through 900 Farmer Field Schools on soil and biomass management to enhance moisture-holding capacity, recharge of groundwater, and water productivity to cope with evolving climate risks on water security (in conjunction with Activity 2.1)

1.4.3 Install on-farm water efficiency systems for 8,621 poor/near-poor smallholders linked to performance-based vouchers (linked to Activity 2.1)

 1.4.4 Train smallholder farmers in five provinces on climate-risk informed O&M of water efficiency technologies

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

2.1.1 Sensitize smallholders to establish/re-activate 900 Farmer Field Schools

2.1.2 Train DARD personnel and lead (champion) farmers, as well as other interested parties (NGOs, Farmers and Women’s Unions, etc.) to build a cadre of farmer champions to galvanize adoption and application of CRA packages (15 provincial level workshops for 30 DARD staff in years 2,4 and 6; 28 district and 120 commune level trainings for 30 lead farmers in years 2 and 6)

2.1.3 Train over 21,200 farmers and value chain actors – particularly private sector input providers, buyers, processors, transporters - through 900 FFS on scaling up of climate resilient cropping systems and practices. (Each FFS will conduct 1-day trainings twice per year)

2.1.4 investment support to 8,621 targeted poor/near poor smallholders to acquire inputs and technologies for implementation of the CRA packages through performance-based vouchers.

2.1.5 Participatory auditing of implementation of voucher systems for climate resilient cropping systems and practices (One 1-day meeting for 100 participants in each of the 60 communes in Years 2, 4 and 6)

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

2.2.1 Establish and operationalize multi- stakeholder Climate Innovation Platforms (CIP) in each province and at the level of agro-ecological zones (Annual stakeholder meetings organized once every two years in each of the 5 provinces)

2.2.2 Provide technical assistance and training to enable market linkages with input, information and technology providers and buyers for climate-resilient agricultural production (two trainings, two networking workshops and three trade fairs in each of the 14 districts over four years)

2.2.3 Provide technical assistance and train farmers to enable access to credit through financial intermediaries (One workshop in each of the 60 communes in years 2 and 4)

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

2.3.1 Train 50 hydromet and DARD staff on generating and interpreting down-scaled forecasts for use in agricultural planning (eight training over four years for 50 participants)

2.3.2 Provide technical assistance for the formation ACIS technical groups and training of 420 participants at district level (1-day workshops for 30 participants in each of the 14 districts)

2.3.3 Co-develop, through Participatory, Scenario Planning (PSP) of seasonal and 10-day/15-day agro-climate advisories with smallholder farmers (20 provincial level trainings for 30 staff and 56 district level trainings for 60 participants over four years)

2.3.4 Disseminate advisories to 139,416 households in the 60 communes

Monitoring & Evaluation: 

Project-level monitoring and evaluation will be undertaken in compliance with the UNDP POPP and  UNDP Evaluation Policy.

The primary responsibility for day-to-day project monitoring and implementation rests with the Project Manager.

The UNDP Country Office supports the Project Manager as needed. Additional M&E, implementation quality assurance, and troubleshooting support will be provided by the UNDP Regional Technical Advisor. The project target groups and stakeholders including the NDA Focal Point will be involved as much as possible in project-level M&E.

A project implementation report will be prepared for each year of project implementation. The final project PIR, along with the terminal evaluation report and corresponding management response, will serve as the final project report package.

Semi-annual reporting will be undertaken in accordance with UNDP guidelines for quarterly reports that are produced by the project manager.

An independent mid-term review, equivalent to an Interim Review in GCF terminology, will be undertaken and the findings and responses outlined in the management response will be incorporated as recommendations for enhanced implementation during the final half of the project’s duration.

An independent terminal evaluation will take place no later than three months prior to operational closure of the project and will be made available on the UNDP Evaluation Resource Centre.

The UNDP Country Office will retain all M&E records for this project for up to seven years after project financial closure.

Contacts: 
UNDP
Yusuke Taishi
Regional Technical Advisor, Climate Change Adaptation
UNDP Viet Nam
Dao Xuan Lai
Assistant Resident Representative, Head of Environment and Climate Change Department
Climate-Related Hazards Addressed: 
Location: 
Funding Source Short Code: 
GCF
News and Updates: 

  

Display Photo: 
Expected Key Results and Outputs (Summary): 

Output 1: Strengthening the resilience of smallholder agriculture to climate change- induced water insecurity in the Central Highlands and South- Central Coast regions of Vietnam

Activity 1.1: Establish large- scale irrigation infrastructure to bring irrigation water to eight farming areas across the target regions

Activity 1.2: Establish last-mile connections between WEIDAP irrigation infrastructure and the poor and near poor farmer lands to help cope with increasing rainfall variability and drought

Activity 1.3:  Enhance supplementary irrigation for rain fed smallholders to cope with rainfall variability and drought

Activity 1.4: Increase smallholder capacities to apply on-farm water efficient practices and technologies to maximize water productivity in coping with rainfall variability and drought

Output 2 Increased resilience of smallholder farmer livelihoods through climate- resilient agriculture and access to climate information, finance, and markets

Activity 2.1:  Investments in inputs and capacities to scale up climate-resilient cropping systems and practices (soil, crop, land management) among smallholders through Farmer Field Schools

Activity 2.2: Technical assistance for enhancing access to markets and credit for sustained climate-resilient agricultural investments by smallholders and value chain actors

Activity 2.3: Co- development and use of localized agro-climate advisories by smallholders to enhance climate- resilient agricultural production

Project Dates: 
2020 to 2026
Timeline: 
Month-Year: 
March 2020
Description: 
Green Climate Fund approval
Month-Year: 
June 2020
Description: 
FAA Effectiveness
Proj_PIMS_id: 
6117